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Simple Summary: Increased circulating concentrations of ceramides (Ce) in dairy cows contribute
to subcutaneous adipose tissue (SAT) lipolysis and could enhance the risk of developing metabolic
disorders. Dietary supply of methionine (Met) or arginine (Arg) alters cellular metabolism in key
tissues including SAT. Whether Met or Arg directly affect SAT metabolism when Ce concentrations
are elevated is unknown. We propose that Met or Arg could have a beneficial effect within adipose
tissue in terms of alleviating potential inflammatory and pro-oxidant effects associated with the
transition into lactation.

Abstract: The objective was to perform a proof-of-principle study to evaluate the effects of me-
thionine (Met) and arginine (Arg) supply on protein abundance of amino acid, insulin signaling,
and glutathione metabolism-related proteins in subcutaneous adipose tissue (SAT) explants under
ceramide (Ce) challenge. SAT from four lactating Holstein cows was incubated with one of the fol-
lowing media: ideal profile of amino acid as the control (IPAA; Lys:Met 2.9:1, Lys:Arg 2:1), increased
Met (incMet; Lys:Met 2.5:1), increased Arg (incArg; Lys:Arg 1:1), or incMet plus incArg (Lys:Met
2.5:1 Lys:Arg 1:1) with or without 100 µM exogenous cell-permeable Ce (N-Acetyl-D-sphingosine).
Ceramide stimulation downregulated the overall abundance of phosphorylated (p) protein kinase
B (AKT), p-mechanistic target of rapamycin (mTOR), and p-eukaryotic elongation factor 2 (eEF2).
Without Ce stimulation, increased Met, Arg, or Met + Arg resulted in lower p-mTOR. Compared with
control SAT stimulated with Ce, increased Met, Arg, or Met + Arg resulted in greater activation of
mTOR (p-mTOR/total mTOR) and AKT (p-AKT/total AKT), with a more pronounced response due
to Arg. The greatest protein abundance of glutathione S-transferase Mu 1 (GSTM1) was detected in
response to increased Met supply during Ce stimulation. Ceramide stimulation decreased the overall
protein abundance of the Na-coupled neutral amino acid transporter SLC38A1 and branched-chain
alpha-ketoacid dehydrogenase kinase (BCKDK). However, compared with controls, increased Met or
Arg supply attenuated the downregulation of BCKDK induced by Ce. Circulating ceramides might
affect amino acid, insulin signaling, and glutathione metabolism in dairy cow adipose tissue. Further
in vivo studies are needed to confirm the role of rumen-protected amino acids in regulating bovine
adipose function.
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1. Introduction

Alterations in subcutaneous adipose tissue (SAT) metabolism are among the key home-
orhetic adaptations that characterize the peripartal period in dairy cows [1]. Lipolysis due
to decreases in both insulin concentration and sensitivity, along with increased circulating
ceramides [2], contributes to the onset of metabolic disorders [3–5]. Accumulation of the
sphingolipid ceramide in the plasma and liver of peripartal cows was inversely related to
markers of systemic insulin sensitivity [6]. A recent in vitro study with primary subcuta-
neous bovine adipocytes from beef animals indicated that a supraphysiological amount of
C2:0-ceramide (100 µM) decreased activation of protein kinase B (AKT; phosphorylated
(p)-AKT/total AKT) and 2-deoxy-D-(3H)-glucose uptake [7]. Thus, SAT is responsive to
C2:0-ceramide and is a suitable model to study aspects of nutrient metabolism and insulin
signaling in bovine SAT.

Besides its profound effect on insulin signaling in mammalian cells, downregulation
of amino acid (AA) transporters by ceramides could lead to cell death [8]. A lower protein
abundance of Na-dependent neutral amino acid transporter 2 (SLC38A2) along with
decreased total intracellular AA concentrations were observed in rat L6 myotubes after
C2:0-ceramide (100 µM) treatment for 2 h [9]. In mouse hepatocytes, C2:0-ceramide induced
cell death partly by downregulating the branched-chain amino acid (BCAA) transporter
SLC3A2 and intracellular content of BCAA [10]. Previous studies from our group revealed
that, in addition to being an insulin-sensitive tissue [11], dairy cow SAT is a potentially
important site of AA metabolism [12,13]. Whether ceramides exert any role in regulating
AA uptake and intracellular AA metabolism in SAT, assessed through key molecular
targets, is unknown.

The mechanistic target of rapamycin (mTOR), a key regulator of protein synthesis and
cell growth and proliferation in mammals [14], is regulated by AA availability and plays
multiple roles in adipose tissue [15]. For example, specific depletion of mTOR in adipose
tissue caused insulin resistance in mice [16]. Across a number of studies, feeding rumen-
protected Met (RPM) improved dry matter intake (DMI), milk yield, and milk protein yield
around parturition [17–20]. Further, feeding RPM to achieve a Lys:Met ratio of 2.9:1 in
the metabolizable protein reaching the small intestine alleviated systemic oxidative stress
and ameliorated insulin insensitivity (assessed via glucose tolerance tests) [12,18,20]. The
latter was supported, at least in part, by the upregulation of p-AKT in SAT of cows fed
RPM [12]. Similarly, a reduction in oxidative stress in cows fed RPM was partly explained
by the greater protein abundance of glutathione peroxidase, glutathione S-transferase Mu
1 (GSTM1), and p-mTOR [12].

Despite being a semi-essential AA for adult mammals, available data on Arg high-
lighted its significance in promoting milk protein synthesis [21] and alleviating inflamma-
tion in lactating Holstein cows challenged with lipopolysaccharide (LPS) [22]. Jugular Arg
infusion prevented a decrease in plasma AA such as Ile, Leu, and Arg in cows challenged
with LPS [22]. In vitro studies also reported that increased Arg supply (Lys:Arg ratio at
1:1) led to greater activation of mTOR (p-mTOR/total mTOR) in primary bovine mam-
mary epithelial cells (BMEC) [23]. Although enhanced Arg supply downregulated mRNA
abundance of solute carrier family 7 member 1 (SLC7A1), a major Arg transporter [23]
in nonstimulated BMEC, it attenuated downregulation of SLC7A1 during a challenge
with LPS [24]. Furthermore, enhanced Arg supply led to greater activation of mTOR (p-
mTOR/total mTOR) in BMEC stimulated with LPS [25]. Thus, available data suggest that
increased Arg supply could enhance lactation performance and help alleviate inflammation
partly due to altered AA metabolism and mTOR activation. Of particular interest, a recent
in vitro study observed that 200 µmol/L L-Arg, compared with 50 and 100 µmol/L, up-
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regulated p-mTOR in ovine adipocyte precursor cells [26], which underscored that L-Arg
could stimulate mTOR in ruminant SAT.

As the role of Arg in modulating mTOR in bovine SAT is largely unknown, and there is
evidence to support a role for Met on SAT AA and glutathione metabolism, our hypothesis
was that enhanced Met and/or Arg supply could counteract negative effects of Ce via
increased AA transport and mTOR activation in bovine SAT. Thus, the main objective of this
study was to investigate the effects of Met and Arg supply, alone or in combination, on the
abundance of AA transporters and mTOR, insulin signaling, and glutathione metabolism-
related proteins in bovine SAT explants challenged with C2:0-ceramide.

2. Methods
2.1. Cows

All procedures involving the handling and slaughter of cows were conducted under
protocols approved by the University of Illinois Institutional Animal Care and Use Com-
mittee (Urbana; protocol # 19036). Four clinically-healthy multiparous lactating Holstein
cows from the University of Illinois dairy herd that were due to be culled for being open
were used. Average body weight, parity, days in milk, and milk yield prior to slaughter
were 696 kg, 4, 248 d, and 27.0 kg/d, respectively. Cows had ad libitum access to the same
diet formulated according to NRC (2001) [27] containing rumen-protected Met, rumen-
protected Lys, and monensin once daily at 1400 h (Supplemental Tables S1 and S2). Cows
were milked twice daily, housed in a free-stall barn containing sand bedding and had free
access to water.

2.2. Tissue Collection, Processing, and Cell Culture

Cows were euthanized with a captive bolt at the College of Veterinary Medicine
diagnostic laboratory facilities (University of Illinois, Urbana, IL, USA). Samples of SAT
from the tailhead were obtained immediately post-slaughter and brought to the labo-
ratory in warm Dulbecco’s modified Eagle’s medium and Ham’s F-12 nutrient mixture
(DMEM:F-12; Sigma-Aldrich, St. Louis, MO, USA) containing 1% penicillin/streptomycin
(Pen/Streptomycin; Sigma-Aldrich, St Louis, MO) within 30 min of collection. Subse-
quently, the tissue was trimmed into pieces using a sterile scalpel blade in a sterile Petri
dish (catalog no. 101VR20, Thermo Fisher Scientific, Waltham, MA, USA), and then 200 mg
tissue was incubated in duplicate in 5 mL of medium in 6-well plates. Culture media were:
ideal profile of EAA as the control (IPAA; Lys:Met 2.9:1, Lys:Arg 2:1), increased Met (incMet;
Lys:Met 2.5:1), increased Arg (incArg; Lys:Arg 1:1), or incMet plus incArg (incMet+Arg;
Lys:Met 2.5:1 Lys:Arg 1:1) with or without 100 µM exogenous cell-permeable C2:0-ceramide
(catalog no. A7191, Sigma-Aldrich, St Louis, MO, USA). The dose of C2:0-ceramide was
based on a previous in vitro bovine adipose tissue study [7].

Ten EAAs (L-isomer, Sigma-Aldrich, St Louis, MO) were added into the custom high-
glucose serum-free DMEM (devoid of these 10 EAAs, custom made from Gibco, Carlsbad,
CA, USA) (Table 1). Briefly, the formulation of the EAAs was as follows: control medium
with the ideal AA ratio (IPAA; Lys:Met 2.9:1; Lys: Arg 2:1; Thr:Phe 1.05:1; Lys:Thr 1.8:1;
Lys:His 2.38:1; Lys:Val 1.23:1), incMet (Lys:Met 2.5:1), incArg (Lys:Arg 1:1), and incMet+Arg
(Lys:Met 2.5:1; Lys:Arg 1:1). Media were prepared by increasing only Met, only Arg, or
both while keeping other AA ratios the same as in IPAA. Incubations were carried out in
a humidified incubator at 37 ◦C for 4 h with 5% CO2. After 4 h incubation, SAT explants
were transferred from 6-well plates to screw-capped microcentrifuge tubes, snap-frozen in
liquid nitrogen, and preserved at −80 ◦C until further analysis.
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Table 1. Amino acid (AA) composition of the culture media with an ideal profile of AA (IPAA) and
treatment media supplemented with greater amounts of Arg (incArg), Met (incMet), or both (incMet
+ incArg) to alter the ratio of Lys:Met and Lys:Arg relative to IPAA.

Amino Acid IPAA 1 IncMet 2 IncArg 3 IncMet + IncArg 4

L-Lys (µg/mL) 175 175 175 175
Lys:Met 2.9:1 2.5:1 2.9:1 2.5:1
Lys:Arg 2:1 2:1 1:1 1:1

L-Met (µg/mL) 60 70 60 70
L-Arg (µg/mL) 84 84 175 175
L-His (µg/mL) 74 74 74 74
L-Ile (µg/mL) 121 121 121 121

L-Leu (µg/mL) 206 206 206 206
L-Phe (µg/mL) 93 93 93 93
L-Thr (µg/mL) 97 97 97 97
L-Trp (µg/mL) 16 16 16 16
L-Val (µg/mL) 142 142 142 142

1 IPAA = ideal profile of AA, used as control medium. Ratios of essential AA are as follows: Lys:Met = 2.9,
Lys:Thr = 1.8, Lys:His = 2.38, Lys:Val = 1.23, and Thr:Phe = 1.05, and were based on NRC (2001) [27] and our
previous studies [24]. 2 Composition of AA in the medium was prepared, as described in our previous study [24].
3 Level of Met was based on previous in vitro studies from our laboratory [24]. 4 Level of Arg was based on
previous in vitro studies from our laboratory [24].

2.3. Western Blotting

Total protein was extracted using RIPA lysis and extraction buffer (catalog no. 89900,
Thermo Fisher Scientific, Waltham, MA, USA) containing Halt protease and phosphatase
inhibitor cocktail (100 ×, catalog no. 78442; Thermo Fisher Scientific), following the manu-
facturer’s instructions. Protein concentration was measured using the Pierce BCA protein
assay kit (catalog no. 23227; Thermo Fisher Scientific, Waltham, MA, USA). Details of
the Western blot procedure were reported previously [12]. Briefly, protein samples were
denatured by heating at 95 ◦C for 5 min before loading 20 µL protein into each lane of a
4–20% SDS–PAGE gel (catalog no. 4561094; Bio-Rad, Hercules, CA, USA). Reactions were
run for 10 min at 180 V and then for 45 to 60 min at 110 V. After activating a polyvinylidene
fluoride membrane (catalog no. 1620261; Bio-Rad, Hercules, CA, USA) with methanol for
1 min, the protein sample was transferred to the membrane in a Trans-Blot SD Semi-Dry
Electrophoretic Transfer Cell (catalog no. 170–3940; Bio-Rad, Hercules, CA, USA). Mem-
branes were then blocked in 1 × Tris-buffered saline (TBST) containing 5% nonfat milk
for 2 h at room temperature. The whole membrane was cut into small bands based on the
molecular weight of target proteins. Membranes were then incubated in 1 × TBST contain-
ing primary antibodies to mTOR, p-mTOR (Ser2448), AKT, p-AKT (Ser473), eukaryotic
elongation factor 2 (eEF2), p-eEF2 (Thr56), sodium-coupled neutral amino acid transporter
1 (SLC38A1), branched-chain α-keto acid dehydrogenase kinase (BCKDK), and GSTM1
overnight at 4 ◦C; catalog number and dilution ratios are included in Supplemental Table S3.
The protein GSTM1 catalyzes the conjugation of electrophilic compounds with glutathione
(GSH) to facilitate their degradation or excretion [28] and eEF2, a downstream target of
mTOR, regulates the translation elongation process [29]. Antibodies for mTOR, p-mTOR
(Ser2448), eEF2, p-eEF2 (Thr56) [30], AKT, p-AKT (Ser473) [11], GSTM1 [31], SLC38A1, and
BCKDK [12] have been used previously in bovine samples. Membranes were then washed
6 times with 1× TBST and incubated with anti-rabbit horseradish peroxidase-conjugated
secondary antibodies (catalog no. 7074S; dilution 1:800; Cell Signaling Technology, Danvers,
MA, USA) for 1 h at room temperature. Subsequently, membranes were washed 6 times
with 1 × TBST and then incubated with enhanced chemiluminescence reagent (catalog no.
170-5060; Bio-Rad, Hercules, CA, USA) for 3 min in the dark prior to image acquisition.
Stripping and reprobing a Western blot were used for target proteins and β-actin, which
have the same or similar molecular weight. β-actin (catalog no. 4967S; Cell Signaling
Technology, Danvers, MA, USA) was used as the internal control. Images were acquired
using the ChemiDOC MP Imaging System (Bio-Rad, Hercules, CA, USA). The intensities of
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the bands were measured with Image-Pro Plus 6.0 software (Media Cybernetics, Rockville,
MD, USA). Specific target protein band density values were normalized to β-actin density
values. Representative blots are included in Supplemental Figure S1.

2.4. Statistical Analysis

All data were analyzed as a 2 × 2 × 2 factorial arrangement of treatments using the
MIXED procedure of SAS 9.4 (SAS Institute Inc., Cary, NC, USA). The 3 factors were Met,
Arg, and C2:0-ceramide, each including 2 levels: basal or increased levels of Met or Arg
and with or without C2:0-ceramide, leading to 8 treatments. The model contained the
main effects of Met, Arg, and C2:0-ceramide, as well as the following interactions: Met ×
Arg × C2:0-ceramide, Met × C2:0-ceramide, Arg × C2:0-ceramide, and Met × Arg. The
random effect was cow. Variables were assessed for normality of distribution using the
Shapiro–Wilk test. Non-normally distributed data were log2-scale transformed to fit the
normal distribution of residuals. Least squares means and standard errors were determined
using the LSMEANS statement of SAS v.9.4 (SAS Institute Inc.) and were compared using
Tukey’s test when significant interactions were observed. Significance was determined at
p ≤ 0.05.

3. Results

Ceramide stimulation downregulated overall abundance of p-AKT, p-mTOR and
p-eEF2 (p < 0.01; p < 0.01; p < 0.01; Table 2). There was a Met × Arg × Ceramide interaction
for p-AKT, p-mTOR and p-eEF2 (p < 0.01; p < 0.01; p < 0.01; Figures 1B and 2B,E). Without
ceramide challenge, enhanced supply of Met and Arg alone or in combination led to lower
p-mTOR (p < 0.01; p < 0.01; p < 0.01; Figure 2B). However, compared with the control (IPAA)
cultures challenged with ceramide, enhanced Met or Arg supply alone or in combination
resulted in greater activation of AKT (p-AKT/total AKT) and mTOR (p-mTOR/total
mTOR) (p < 0.01; p < 0.01; Figures 1C and 2C), with a more pronounced response due
to Arg (p < 0.01; Figures 1C and 2C). In contrast, compared with IPAA challenged with
ceramide, enhanced Met or Arg supply alone or in combination led to lower activation
of eEF2 (p-eEF2/total eEF2) (p < 0.01; p < 0.01; p < 0.01; Figure 2F). Ceramide stimulation
downregulated overall abundance of GSTM1 (p < 0.01; Table 2). A Met × Arg × Ceramide
interaction was observed for GSTM1 (p < 0.01; Figure 1D). It is noteworthy that greater Met
supply alone during ceramide challenge led to the greatest abundance of GSTM1 (p < 0.01;
Figure 1D).
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Table 2. Abundance of proteins (relative to β-actin) related to the mechanistic target of rapamycin (mTOR) and insulin signaling pathways in subcutaneous adipose tissue cultured with
different levels of Met or Arg and challenged with ceramide 1.

Item 2
Met Arg Cer p-Value

No Yes SEM No Yes SEM No Yes SEM Met Arg Cer Met × Arg Met × Cer Arg × Cer

Insulin signaling
AKT/β-actin 1.86 1.36 0.02 1.55 1.63 0.02 2.24 1.13 0.02 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

p-AKT/β-actin 0.80 0.57 0.02 0.39 1.16 0.03 1.48 0.30 0.04 <0.01 <0.01 <0.01 <0.01 <0.01 0.63
p-AKT/AKT 0.43 0.41 0.01 0.25 0.72 0.02 0.65 0.27 0.02 0.12 <0.01 <0.01 <0.01 <0.01 <0.01
Glutathione metabolism

GSTM1/β-actin 1.40 2.10 0.02 1.62 1.88 0.02 2.66 0.84 0.02 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Amino acid metabolism

BCKDK/β-actin 1.19 0.88 0.01 0.76 1.37 0.01 1.97 0.53 0.02 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
SLC38A1/β-actin 0.51 0.60 0.01 0.67 0.46 0.01 1.66 0.19 0.03 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

mTOR pathway
mTOR/β-actin 0.71 0.67 0.01 0.81 0.59 0.01 1.10 0.43 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

p-mTOR/β-actin 0.82 0.81 0.01 1.01 0.61 0.01 1.12 0.51 0.01 0.41 <0.01 <0.01 0.02 <0.01 <0.01
p-mTOR/mTOR 1.01 0.83 0.01 1.12 0.75 0.02 0.95 0.88 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

eEF2/β-actin 1.05 1.08 0.01 0.92 1.21 0.01 1.58 0.55 0.01 0.25 <0.01 <0.01 <0.01 <0.01 <0.01
p-eEF2/β-actin 1.23 1.85 0.01 1.17 1.91 0.01 2.28 0.79 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
p-eEF2/eEF2 1.58 1.31 0.02 1.72 1.17 0.02 1.37 1.52 0.02 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
1 −Arg, −Met = cultures without increased supply of Arg or Met; + Arg, + Met = cultures with increased supply of Arg or Met; −/+ C2:0-ceramide (Cer), cultures without or with Cer stimulation. Control media
contained an ideal AA profile with ratios of Lys:Met 2.9:1 and Lys:Arg 2:1. Treatment media was supplemented with greater amounts of Met or Arg to achieve ratios of Lys:Met 2.5:1 and Lys:Arg 2:1 (incMet),
Lys:Met 2.9:1 and Lys:Arg 1:1 (incArg), or Lys:Met 2.5:1 and Lys:Arg 1:1 (incMetArg). Each treatment was challenged with or without 100 µM Cer. Data are LS means, n = 4 cows per group, ±pooled SEMs.
Three-way interactions are depicted in Figures 1–3. 2 AKT = protein kinase B; GSTM1 = glutathione S-transferase mu 1; BCKDK = branched-chain α-keto acid dehydrogenase kinase; SLC38A1 = solute carrier
family 38 member 1; mTOR = mechanistic target of rapamycin; eEF2 = eukaryotic elongation factor 2.
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Figure 1. Protein abundance (relative to β-actin) of AKT (total, panel A), p-AKT (active, panel B), 
ratio of p-AKT/AKT (panel C), and GSTM1 (panel D) in subcutaneous adipose tissue cultured with 
different levels of Met or Arg and stimulated with ceramide. Control media contained an ideal AA 
profile (IPAA) with ratios of Lys:Met 2.9:1 and Lys:Arg 2:1. Treatment media was supplemented 
with greater amounts of Met or Arg to achieve ratios of Lys:Met 2.5:1 and Lys:Arg 2:1 (incMet), 
Lys:Met 2.9:1 and Lys:Arg 1:1 (incArg), or Lys:Met 2.5:1 and Lys:Arg 1:1 (incMet + Arg). Different 
letters indicate differences between treatments (Met × Arg × Ceramide p < 0.05). AKT = protein ki-
nase B; GSTM1 = glutathione S-transferase Mu 1. Data are LS means, n = 4 cows per group, ±pooled 
SEMs. 
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Figure 1. Protein abundance (relative to β-actin) of AKT (total, panel A), p-AKT (active, panel B),
ratio of p-AKT/AKT (panel C), and GSTM1 (panel D) in subcutaneous adipose tissue cultured with
different levels of Met or Arg and stimulated with ceramide. Control media contained an ideal AA
profile (IPAA) with ratios of Lys:Met 2.9:1 and Lys:Arg 2:1. Treatment media was supplemented with
greater amounts of Met or Arg to achieve ratios of Lys:Met 2.5:1 and Lys:Arg 2:1 (incMet), Lys:Met
2.9:1 and Lys:Arg 1:1 (incArg), or Lys:Met 2.5:1 and Lys:Arg 1:1 (incMet + Arg). Different letters
indicate differences between treatments (Met × Arg × Ceramide p < 0.05). AKT = protein kinase B;
GSTM1 = glutathione S-transferase Mu 1. Data are LS means, n = 4 cows per group, ±pooled SEMs.
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Figure 2. Protein abundance (relative to β-actin) of mTOR (total, panel A), p-mTOR (active, panel B), ratio of p-
mTOR/mTOR (panel C) eEF2 (total, panel D), p-eEF2 (active, panel E), and ratio of p-eEF2/eEF2 (panel F) in subcutaneous
adipose tissue cultured with different levels of Met or Arg and stimulated with ceramide. Control media contained an
ideal AA profile (IPAA) with ratios of Lys:Met 2.9:1 and Lys:Arg 2:1. Treatment media were supplemented with greater
amounts of Met or Arg to achieve ratios of Lys:Met 2.5:1 and Lys:Arg 2:1 (incMet), Lys:Met 2.9:1 and Lys:Arg 1:1 (incArg),
or Lys:Met 2.5:1 and Lys:Arg 1:1 (incMet + Arg). Different lowercase letters indicate differences between treatments
(Met × Arg × Ceramide p < 0.05). mTOR = mechanistic target of rapamycin; eEF2 = eukaryotic elongation factor 2. Data
are LS means, n = 4 cows per group, ±pooled SEMs.
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Figure 3. Protein abundance (relative to β-actin) of SLC38A1 (panel A) and BCKDK (panel B)
in subcutaneous adipose tissue cultured with different levels of Met or Arg and stimulated with
ceramide. Control media contained an ideal AA profile (IPAA) with ratios of Lys:Met 2.9:1 and
Lys:Arg 2:1. Treatment media were supplemented with greater amounts of Met or Arg to achieve
ratios of Lys:Met 2.5:1 and Lys:Arg 2:1 (incMet), Lys:Met 2.9:1 and Lys:Arg 1:1 (incArg), or Lys:Met
2.5:1 and Lys:Arg 1:1 (incMet + Arg). Different letters indicate differences between treatments
(Met × Arg × Ceramide p < 0.05). SLC38A1 = solute carrier family 38 member 1; BCKDK = branched-
chain α-keto acid dehydrogenase kinase. Data are LS means, n = 4 cows per group, ±pooled SEMs.

A triple interaction between Met, Arg and ceramide was observed for the protein
abundance of SLC38A1 and BCKDK (p < 0.01; p < 0.01; Figure 3). Ceramide stimulation
reduced overall protein abundance of SLC38A1 and BCKDK (p < 0.01; p < 0.01; Table 2).
With ceramide stimulation, compared with IPAA, greater supply of Met or Arg alone
attenuated the downregulation of BCKDK (p < 0.01; p < 0.01; Figure 3B).
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4. Discussion

The data indicated that C2:0-ceramide had an inhibitory effect on SLC38A1 abundance
and led to reduced activation of AKT in SAT. In contrast, enhancing the supply of Arg and
Met alone contributed to increasing protein abundance of BCKDK, a rate-limiting enzyme
of BCAA catabolism, and mTOR pathway activity in bovine adipose explants stimulated
with C2:0-ceramide.

An observational study concluded that there is a negative association between oxida-
tive stress and insulin sensitivity in peripartal cows [32]. Although it is unclear whether a
Lys:Met ratio of 2.8:1–2.9:1 has beneficial effects in late-lactation cows, our previous studies
consistently demonstrated that achieving a Lys:Met ratio of 2.8:1–2.9:1 at the intestine
by feeding RPM during the peripartal period reduced oxidative stress and inflammation
status [18–20]. A key feature of those studies was the greater and more consistent DMI
and its effect on the synthesis of GSH and taurine, both of which are sulfur-containing
antioxidants [17].

Specifically in SAT, compared with controls, peripartal cows fed RPM had greater
protein abundance of p-AKT (a key regulator of insulin signaling) and GSTM1, suggesting
that these proteins might be crucial during the peripartal period [12,33]. Dairy cows
with greater oxidative stress status exhibited reduced protein abundance of GSTM1 in
SAT [31,33], suggesting that GSTM1 might play a role in alleviating oxidative stress in
bovine SAT.

In the current study, the lower GSTM1, coupled with lower activation of p-AKT in
SAT during stimulation with C2:0-ceramide, suggested that this metabolite could impair
insulin signaling and may also disrupt redox balance in SAT. Although increased Met
had no overall effect on the activation of AKT, it is noteworthy that the greatest protein
abundance of GSTM1 in response to enhanced Met supply was observed in SAT stimulated
with ceramide suggesting that enhanced Met itself might play a positive role within SAT
under physiological conditions that increased concentrations of these compounds.

In nonruminants, it is well-established that the mTOR signaling pathway is a key
regulator of protein synthesis, cell growth, and proliferation [34]. Amino acids such as Gln,
Arg, Met, and BCAA (particularly Leu) can directly or indirectly activate mTOR [35,36].
Despite the fact that greater Met and Arg supply alone or in combination did not reverse
the reduction of SLC38A1 abundance under ceramide stimulation, compared with IPAA
(control), greater Met and Arg supply alone led to greater protein abundance of BCKDK. In
nonruminant cells, BCKDK is a rate-limiting enzyme regulating BCAA catabolism via inac-
tivation and phosphorylation of the BCKD complex [37]. Thus, greater protein abundance
of BCKDK contributes to decreasing intracellular BCAA catabolism. We speculate that
greater abundance of BCKDK in response to increased Met or Arg alone during stimulation
with ceramide partly explains the greater activation of mTOR (p-mTOR/total mTOR) and
lower activation of eEF2 (p-eEF2/total eEF2). Taken together, our results suggested that
increased ceramide concentrations inhibit SLC38A1 abundance in SAT, which is likely to
cause an intracellular deficiency in AA supply.

Some limitations of the present study should be acknowledged. First, by design, this
study narrowly focused on few components of the AA, insulin signaling, and glutathione
metabolism-related pathways during C2:0-ceramide stimulation under basal conditions.
Thus, the effect of insulin per se could not be clarified and will require, for example, an
insulin challenge. Second, in spite of its use in similar studies [7], a supraphysiological
concentration of C2:0-ceramide was used, and this compound is not found naturally in vivo.
Thus, responses detected may not adequately reflect the ability of naturally occurring,
longer-chain ceramides to modify insulin signaling in SAT. Lastly, adipose tissue was
obtained from late-lactation cows, which cannot reflect the responsiveness to Met and Arg
in SAT obtained from peripartal cows.
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5. Conclusions

Overall, data suggested that stimulation with C2:0-ceramide could inhibit AA uptake
by adipose tissue and decrease insulin signaling. Under those conditions, enhancing the
supply of Arg or Met contributed to altering AA metabolism by increasing the protein
abundance of BCKDK and mTOR pathway activity. Unique responses to Arg and Met
supply during ceramide stimulation included greater activation of mTOR by Arg, while
Met increased the antioxidant response through upregulation of GSTM1. Future in vivo
work is warranted to investigate how AA modulate the effect of longer-chain ceramides on
insulin signaling in dairy cows, especially during the peripartal period. The focus should
be placed on both SAT and immune cell activation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ani11072114/s1. Table S1: Ingredient composition of the lactation diet fed to cows, Table S2:
Chemical composition and associated standard deviations for diets fed to cows, Table S3: Catalog
number and source, dilution ratios, and target protein antibodies used in the present study, Figure S1:
Representative blots with band size information.
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incArg Increased Arg
incMet + Arg Increased Met plus increased Arg
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