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Abstract: Security of the Internet of Things is a crucial topic, due to the criticality of the networks and
the sensitivity of exchanged data. In this paper, we target the Message Queue Telemetry Transport
(MQTT) protocol used in IoT environments for communication between IoT devices. We exploit
a specific weakness of MQTT which was identified during our research, allowing the client to
configure the behavior of the server. In order to validate the possibility to exploit such vulnerability,
we propose SlowITe, a novel low-rate denial of service attack aimed to target MQTT through
low-rate techniques. We validate SlowITe against real MQTT services, considering both plain text and
encrypted communications and comparing the effects of the threat when targeting different daemons.
Results show that the attack is successful and it is able to exploit the identified vulnerability to lead a
DoS on the victim with limited attack resources.

Keywords: internet of things; protocols security; cyber-security; network security; slow dos
attack; mqtt

1. Introduction

Nowadays, the Internet of Things (IoT) is a consolidated technology and it is currently adopted
in many contexts and applications of different nature. In the Internet of Things environments,
simple objects are able to manage, process and communicate data of the surrounding environment and
send them to other IoT devices or to more complex systems. In the IoT world, people and objects can
directly interact with each other, thanks to the spread of smartphones, tablets and other mobile devices
that provide Internet access from anywhere. Because of the rapid developments in the underlying
technologies, IoT introduces new opportunities for a large number of applications, potentially able to
improve the quality of human life. IoT networks and devices are indeed widely adopted in different
scenarios such as home automation, Industry 4.0, healthcare and critical infrastructure domains:
through IoT devices and networks, applications can remotely monitor environments, or to control
more complex systems such as smart light bulbs, robotics, health parameters, sensor networks and
smart integrated systems. In particular, IoT is a widely adopted in Industry 4.0, where intelligent
devices and objects are revolutionizing the business and production scenario, increasingly connection
and optimization between production machines through digital data and analysis. Industrial Internet
of Things (IIoT) is a term conceived and developed to be adopted and applied exclusively in the
context of the fourth generation industry [1]. The purpose of IIoT is to optimize production processes,
by connecting machines together and supporting data processing to allow predictive analytics activities,
able for instance to predict maintenance requirements, hence potentially leading to significant cost
reductions and to more efficient production systems.
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An ad-hoc communication protocol available for implementing IoT networks is Message Queue
Telemetry Transport (MQTT), a publisher/subscriber system introduced in 1999 [2] and adopted
nowadays [3] in both IoT [4] and IIoT [5] contexts. The MQTT protocol is based on the TCP/IP stack
and it is positioned at the application layer of such stack. Being a protocol adopted in IoT and IIoT
networks, communications security is a critical and delicate aspect, since processed data/information
are related to sensitive industrial contexts [6].

In this paper, we focus on the analysis and study of the security of the MQTT protocol, since such
protocol is adopted both in industrial [7] and home automation contexts [8], with the aim of identifying
vulnerabilities and design new attacks methodologies exploiting the weaknesses of the protocol.
Particularly, the proposed work is contextualized in the IoT security topic, where we introduce the
exploitation of a specific parameter of MQTT, through the design, development and validation of a novel
threat known as SlowITe, acronym of Slow DoS against Internet of Things Environments, and targeting
MQTT services. The proposed attack is a denial of service (DoS) attack aimed to make a network service
unavailable to its intended users. SlowITe belongs to the Slow DoS Attack (SDA) category of DoS attacks
[9] and it is specifically designed to target the MQTT protocol, adopting the low-rate approach common
of other slow DoS threats. Since, to the best of our knowledge, no previous SDA threats are designed to
target MQTT, while the main focus are HTTP and HTTPS [10–13], the proposed SlowITe threat should
be considered a relevant advancement in the IoT security field.

The remaining of the paper is structured as follows: Section 2 reports the related work on the
topic. Section 3 introduces the MQTT protocol, while Section 4 describes in detail the proposed attack.
Executed tests and obtained results are reported in Section 5. Section 6 introduces instead protection
approaches able to defend a network system from the proposed threat. Finally, Section 7 concludes the
paper and reports further works on the topic.

2. Related Work

The starting point to investigate the security of the Internet of Things is to analyze the most
adopted communication protocols. In this context, [14,15] review different IoT communication
protocols, with a focus on their main features and characteristics. Authors compare 6LoWPAN,
acronym of IPv6 over Low-Power Wireless Personal Area Networks, ZigBee, Z-Wave and Bluetooth
Low Energy network protocols. Similarly, [16–21] investigate both communication protocols such
as ZigBee, 6LoWPAN and Z-Wave protocols, also considering application layer protocols like CoAP,
MQTT, AMQP. Instead, if we consider investigation of specific protocols, ZigBee security is studied
in different works, proposing specific and novel cyber-attacks targeting such protocol [22–25] or
analysing the impact of well-known cyber-threats such as replay attack, sniffing, brute force, flooding
or worm [26–29]. Concerning Z-Wave, several works focus on security of such protocol: [30] identifies
a specific vulnerability in the encryption/decryption phase of the protocol, while [31] proposes a
cyber-threat able to insert a Rogue controller inside a Z-Wave network. [32] evaluated instead security
of Z-Wave networks by adopting different approaches based for instance on Radio Frequency (RF).
Another IoT communication protocol alternative to ZigBee and Z-Wave is 6LoWPAN. Security of
6LoWPAN networks is investigated in [33], analyzing vulnerabilities of the protocol. In addition,
investigation of different attacks targeting such protocol is found in literature, including denial of
service (DoS) [34], sinkhole [35], fragmentation [36] or wormhole [37] attack. Although the proposed
work focuses on the introduction of a novel DoS threat targeting IoT networks, our focus is on the
MQTT application layer protocol. In addition, unlike existent threats, the innovative denial of service
attack proposed in this work makes use of low-rate techniques to accomplish its purpose, instead of
the adoption of a flooding based approach.

In the field of IoT protocols, it is important to distinguish between communication protocols
like ZigBee, Z-Wave and 6LoWPAN, and application layer protocols such as CoAP, AMQP and
MQTT [16–21]. If we focus on works investigating the security of the application layer IoT protocols,
ref. [38] compares MQTT, CoAP, AMQP and HTTP protocols. Instead, [39] analyses security aspects
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of selected IoT frameworks based on MQTT, CoAP, AMQP and HTTP, while [40] investigates CoAP,
MQTT and AMQP by considering reliability, security, and energy consumption features of such
protocols. Although such works focus on application layer protocols like MQTT, they do not focus on
the weaknesses of the protocol, to be potentially exploited by a malicious user.

As previously mentioned, the proposed work focuses on the MQTT application protocol, used in
machine-to-machine (M2M) communications between IoT devices for real-time data analysis applied
to different contexts such as home automation, healthcare, logistics, or industry [41]. To the best of our
knowledge, research on MQTT security is still limited. Nevertheless, [42,43] show the adoption of the
web service Shodan (available at www.shodan.io) to identify vulnerable MQTT brokers publicly
accessible on the Internet. Instead, [44–47] implement a distributed denial of service attack on
MQTT. Unlike the proposed SlowITe threat, in this case, flooding based attacks are considered.
Hence, a low-rate approach is not considered.

Previous works we have mentioned highlight critical security aspects of IoT protocols, vulnerable
to different attacks and exposed to cyber-security issues, also because of the characteristics of IoT
environments. As mentioned, the proposed work exploits a weakness of the MQTT protocol,
by introducing a novel attack targeting it through low-rate DoS approaches. Considering the impact
of the threat, able to maintain a DoS for long times and by using a very limited amount of resources,
the proposed work should be considered a relevant step in the IoT and cyber-security fields, due to the
application of low-rate DoS attacks to target IoT protocols like MQTT. In addition, the proposed work
should be considered relevant in the network protocols security topic, since it is needed to identify
and validate protocols weaknesses, with the final aim of designing more secure protocols.

3. The MQTT Protocol

MQ Telemetry Transport (MQTT) is an application layer protocol introduced by IBM in 1999.
Although it should not be considered a recent protocol, MQTT is nowadays adopted for different
applications such as handling mobility [4], monitoring data [48], notification systems [49], heart and
ECG monitoring [50,51], and it was adopted in the past by large-scale companies like Facebook in the
Messenger application [3]. In 2016, the Organization for the Advancement of Structured Information
Standards (OASIS) declared MQTT as the reference standard for communications on Internet of Things
environments [52]. Because of this, MQTT is still considered an important protocol in the IoT field and
its security assumes a crucial and critical role.

MQTT is considered a lightweight protocol, since its messages have a reduced code footprint.
Each message consists indeed of a fixed header, an optional variable header, a message payload limited
to 256 MB, and a quality of service (QoS) payload. Considering MQTT version 3, scope of the proposed
work, three different QoS levels are supported and they determine how the content is managed by
the MQTT protocol [4]. MQTT stack is composed of three different layers: (i) a physical layer, (ii) a
TCP/IP stack, and (iii) an MQTT application layer.

The protocol adopts a publish/subscribe communication model based on a central node hosting
the MQTT server called a broker. MQTT is used for M2M communication and, because of this, it has
an important role in the Internet of Things [53]. By considering Figure 1, we representing a sample
scenario of an MQTT network, clients are able to send or publish information/messages on a given
topic, which is a specific virtual channel/room, to a server that acts as the MQTT messages broker.
After receiving a message from a client, the broker sends such information to the customers that
previously subscribed the same topic.

The MQTT protocol can be used on wireless networks with limited bandwidth constraints or
through unreliable connections. Indeed, in MQTT, if the connection between a subscriber and a
broker is interrupted, each pending message will be stored by the broker and sent only once the
communication is re-established.

https://www.shodan.io
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Figure 1. Network sample representation of the Message Queue Telemetry Transport (MQTT)
publish/subscribe approach.

An MQTT session is divided into four phases: (i) connection, (ii) authentication,
(iii) communication and (iv) termination. A client initiates the connection by creating a TCP/IP
connection with the broker on a pre-defined port. Standard ports are 1883 for clear text communications
and 8883 for encrypted SSL/TLS communications. Since the MQTT protocol aims to be a protocol for
devices with limited resources and IoT sensors [54], SSL/TLS may not always be an option [55]. When
SSL/TLS is used, after the connection is established, encryption initiation is accomplished. Hence,
the behavior is analogous to the clean text communications case. Authentication can be implemented
by sharing, as plain-text, the username and password pair to the server, in a CONNECT packet that
represents the first message sent to the MQTT application server. At this point, the server answers
with a CONNECT+ACK (CONNACK in the following) packet [56]. Such packets flow allows the MQTT server
to authenticate a (client) node on the broker.

4. The SlowITe Attack

The Slow DoS against Internet of Things Environments (SlowITe) attack is a novel denial of
service threat targeting the MQTT protocol. Such threat belongs to the category of Slow DoS Attacks,
making use of minimum attack bandwidth and resources to target a network service executing a
denial of service [9,57,58]. Since Slow DoS Attacks are able to target TCP-based protocols only [9],
the MQTT service is considered as a target by SlowITe since running over TCP. Particularly, the aim of
SlowITe is to instantiate a high number of connections with the server, in order to seize all available
connections the MQTT broker is able to manage simultaneously. Once all available connections (at the
application layer) are established by the attacker, the DoS state is reached. At this point, the aim of
the attacker is to keep the MQTT broker busy as long as possible, hence maintaining the DoS state,
by using at the same time the least possible bandwidth.

In particular, considering a single connection, once the three-way-handshake is accomplished,
it is important to initiate a communication with the server, in order to seize the connection with
the listening daemon. For instance, for other SDA like Slowloris, this is done in HTTP by sending
the beginning of the GET request to the server [9,59]. Such payload can’t be adopted by SlowITe,
since the payload accepted by the MQTT server is not compliant to the HTTP protocol. Nevertheless,
as previously mentioned, in order to authenticate the client to the MQTT broker, the CONNECT packet
is needed. Hence, it is required by the attack to send such a packet to the server. Indeed, SlowITe
exploits the CONNECT packet supported by MQTT to instantiate the communication with the broker.
The application layer payload of such packet is sized around s1 = 30 bytes (the exchange of username
and password pairs is not considered here), depending on the size of the client identifier used to
uniquely identify the connection, at the application layer. Once such a packet is received by the server,
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a CONNACK acknowledgment packet is sent back to the client, with an application payload sized s2 = 2
bytes. At this point, the attacker can follow two different approaches: (i) from one side, avoid sending
additional messages to the server, hence, waiting for the server-side connection closure; or (ii) exploit
additional packets and communications to keep connections alive for an indefinite time.

Although it may not seem to be the best option, for the implementation of SlowITe, we followed
the first approach, since the second approach is not needed in practice, as connections are closed by
the server after extremely long times.

In particular, after the CONNECT packet is sent to the server, the server has to keep the connection
alive for a period of time equal to k = 1.5 times [60] the Keep-Alive parameter T , that is by default
equal to T′ = 60 s [61,62]. This means that by sending a single CONNECT packet it is possible to keep the
connection alive for k · T′ = T′DoS = 90 s. Although similar exploitation on HTTP allows the attacker to
keep connections alive for 300 s [59], found value should be considered relatively high, since it means
that each connection requires (at the application layer) just s1+s2

8·T′DoS
= 2.84 bps. After the Keep-Alive

timeout expired, as expected, the connection is closed by the server and the attacker needs to establish
a new connection with the server in order to seize the freed connection slot again.

Although such approach may be successful, from the attacker point of view, as it would be able
to potentially size all connections available on the server, hence reaching the DoS, and keeping the
server unavailable for around T′DoS = 90 s, using low-rate techniques, SlowITe exploits a specific
vulnerability of MQTT that makes the attacker able to set the Keep-Alive parameter to an arbitrary
value. Such openness of the protocol should be considered a relevant weakness of the MQTT protocol,
found during our research and exploited by SlowITe. In order to exploit it, it is possible to specify the
value of T on the CONNECT packet itself. Hence, it is possible for the client to configure the behavior
of the server, in terms of the expiration of the timeouts used for connection closures. Being 16 bits
allocated to the value of T on the MQTT CONNECT packet, although it is possible to void the Keep-Alive
mechanism by setting up a Tmin = 0 Keep-Alive value, such configuration may not be allowed
by the server: for instance, HiveMQ provides the ability to disable unlimited Keep-Alive values
(see https://www.hivemq.com/docs/hivemq/4.3/user-guide/configuration.html). Nevertheless,
it is possible to specify a maximum value of T equal to Tm = 65,535. In this way, once the CONNECT
packet is sent to the server, the connection will not be closed by the server, before k · Tm seconds.
Hence, the connection will be kept alive for around 27 h and 18 min. This means that for such a period
of time, no network packets are exchanged between the client and the server, at the application layer.
Such extremely high value should be considered an important result of the proposed work.

The behavior is replicated for a number of connections depending on the server’s configuration
and its load. Indeed, in order to make the attack effective and make the MQTT broker unreachable by
legitimate clients, SlowITe must seize all available connections. The number of connections that the
MQTT broker is able to manage is configured on the running server: considering for instance Eclipse
Mosquitto v1.6.2, one of the most known MQTT servers [63], “typically, the default maximum number
of connections possible is around 1024” (more details are available on the GitHub source code page of
Mosquitto at https://github.com/eclipse/mosquitto/blob/master/mosquitto.conf). This means that
with a number of connections equal to Nm = 1024 or greater, it is theoretically possible to lead a DoS
on an MQTT server.

Since SlowITe’s aim is to seize all connections of the server through low-rate techniques, the impact
on the server, in terms of bandwidth, CPU, or memory is negligible. This is a common characteristic
of Slow DoS Attacks, but it should be considered important, since it makes it more difficult to detect
running attacks [64]. The proposed attack should, therefore, be considered an innovative threat
exploiting a vulnerability of the MQTT protocol through low-rate approaches. In the next sections,
we are going to describe the tests we have executed, in order to validate SlowITe.

https://www.hivemq.com/docs/hivemq/4.3/user-guide/configuration.html
https://github.com/eclipse/mosquitto/blob/master/mosquitto.conf
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5. Executed Tests

In this section of the paper, we first describe the adopted testbed, hence report the results we have
obtained during the execution of the SlowITe tests. Initially, we validated the SlowITe attack against
Eclipse Mosquitto [63] MQTT server, for both plain text and SSL ports. Then, we tested the attack
against other MQTT services such as ActiveMQ [65], HiveMQ [66] and VerneMQ [67], comparing
obtained results in terms of efficacy and bandwidth requirements.

5.1. Testbed

In order to validate the proposed SlowITe attack, a real network has been adopted. The victim
host was represented by a physical host based on Ubuntu Linux 18.04 server LTS, running Eclipse
Mosquitto v1.6.2 [63] based on the MQTT v3.1.1 and listening on ports 1883 (plain text) and 8883
(SSL). Other scenarios involve tests on ActiveMQ v5.15.12317, HiveMQ v4.3.2 (in its free version) and
VerneMQ v1.10.2, running on plain text port 1883 . The default configuration was adopted for each tool.
Instead, the attacker is composed of a Raspberry PI 3 Model B based on Raspbian 9.8 and running the
SlowITe software over the Java environment. Connectivity between the two nodes is provided through
Ethernet connection. The choice to use a low-powered node as the attacker is driven by the characteristics
of Slow DoS Attacks, requiring limited resources to accomplish their purpose [9,59,68,69]. It should also
be noted that, as previously mentioned, like for other kinds of SDA [57], the impact of the attack on the
server is limited, in terms of bandwidth, CPU and memory. In addition, the Raspberry PI often being
used in IoT contexts, we try to execute the attack from an IoT node.

Once the attack is running, we validated it by checking if the DoS is effectively reached on the
server. Nevertheless, considering Eclipse Mosquitto (a similar concept is also valid for the other
daemons tested), since the number of simultaneous connections the server is able to manage is not
well defined (see the “around 1024” limit introduced above), it is needed to check application layer
connectivity with a listening daemon during the attack. In particular, a checking node that periodically
checks the status of the server is needed, trying to connect to the MQTT broker through a single
legitimate connection. Similarly to the concept behind the Schrödinger’s cat paradox [70], such a check
connection may alter the status of the server itself. Indeed, such a connection may itself induce a DoS
on the server. Nevertheless, our aim is to verify if the attack is able to generate the DoS itself or not.
Such verification is accomplished by simulating a legitimate connection and checking if a (legitimate)
client is able to connect to the server. Particularly, if the connection is accomplished, the DoS state is
not reached. Otherwise, the attack is considered successful.

In order to validate the attack, during its execution, connectivity with the server is checked by
the victim itself, by repeatedly trying to connect to the MQTT broker, as a client, every Tcheck = 1 s,
and checking if the application layer connection is established or not. According to the approach
described above, in case the connection with the broker is established, the DoS is not reached.
Conversely, if the MQTT connection is not established, the attack is successful.

5.2. Obtained Results

In order to test if SlowITe is successful, we first needed to identify the connection closure time,
by analyzing the behavior of a single malicious connection with the MQTT broker. Hence, we needed
to validate if the attack is successful, by creating multiple malicious connections with the server and
observing the behavior of the server. Finally, we validated the attack on the SSL listening port of the
server. Considering such tests, in the following, we report the results we have obtained.

5.2.1. Connection Closure Tests

After a connection is established, according to Section 4, we need to validate such connection
is closed after k = 1.5 times the Keep-Alive value T. Hence, according to Section 4, for default
values, being T′ = 60 s, we expect a connection closure after around T′DoS = 90 s. In order to test it,
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we established a single SlowITe connection with the server and observed the behavior of the MQTT
broker. We found that the CONNECT command is sent by SlowITe after 0.003 s the send of the first SYN
packet. As a consequence, the CONNACK message is sent almost instantly by the server. Then, at time
90.625 the server sends a TCP FIN packet to the client to close the communication, which is definitely
closed at time 90.670. Therefore, we found that T′DoS is equal in practice to 90.670, that is in line with
our expectations. The overall attack bandwidth is equal to 86.29 bps.

In order to analyze the effect of the extended Keep-Alive parameter, we tried to specify it, from the
attacker’s point of view, to its maximum Tm = 65,535 value. According to Section 4, such value allows
us to evaluate the actual possibility to keep connections alive for extremely long times, around 27 h.
Similarly to the previous case with a Keep-Alive equal to T′ = 60 s, as expected, we have obtained a
connection closure after 98,302.876 s, hence, as, expected, more than 27 h. This means that a malicious
user could set the Keep-Alive to its maximum Tm value, in order to keep connections alive as long as
possible and, at the same time, reduce bandwidth requirement to minimum values.

Hence, we have found that with both the configurations adopted, it is potentially possible to lead
a DoS on the server, when trying to seize all available connection of the broker. For the next tests,
since we have found that the adopted T does not influence the possibility to lead a DoS, we have
adopted T = T′ = 60 s, that, as reported in Section 4, represents the default value.

5.2.2. Multiple Connections Tests

In order to test if the attack is successful and the DoS is effectively reached on the targeted server,
it is important to define N, the number of connections to establish with the server. In Section 4 we
have introduced that such number is “around 1024”. Because of this, in order to identify the number
of connections needed for our tests, we used N = Nm = 1024 and executed a SlowITe attack against
the MQTT broker service, by targeting the 1883 port, used for plain text communications. At this point,
assuming the application daemon is able to manage exactly Nm − Ne ≤ Ns ≤ Nm + Ne simultaneous
connections, with Ne unknown, we expect that one of the following cases is satisfied: (i) N < Ns,
hence the attack is unsuccessful, as legitimate clients are able to connect the broker; or (ii) N ≥ Ns,
hence the DoS is reached, as some of the malicious connections are still not established with the broker.
In the latter case, considering an attack creating N = Nm connections with the victim, assuming no
legitimate connections are established during the observation, we define Ne = |Nm − Ns|. In particular,
Ne represents the number of connections not exploited by the attack, if Ns ≤ Nm. Otherwise, if
Ns > Nm, Ne represents the number of additional connections that the attack would need to lead a
DoS on the victim. Results of the executed tests are shown in Figure 2, by focusing on different time
intervals of the attack. In particular, Figure 2a highlights the first 20 s of the attack, where SlowITe
instantiates the connections in order to reach the DoS state. Similarly, Figure 2b reports instead details
on the time interval where connections are closed by the server, to analyze if, after 1.5 times the
Keep-Alive value sent from the client, connections are closed. Finally, Figure 2c shows the entire time
scale focused on the maximum number of connections established by the client, to analyze the DoS
state during the entire execution of the attack.

Results show that just after 3 s from the beginning of the attack, a large number of connections
with the server are established by SlowITe. Particularly, we found that the number of simultaneous
connections managed by the server is equal to 1012 . Hence, we found Ns = 1012 =⇒ Ne = 12.

By instead analyzing the DoS state on the victim, we found that the DoS is reached as soon
as Ns connections are established, and maintained until the first connection is closed by the server.
Similarly to the tests reported in Section 5.2.1, such event occurs after around T′DoS = 90 s. In virtue of
such a result, we found that N = 1024 is a good choice for the execution of the attacks, although each
N between 1012 and Nm would be good in this case.

Considering the connection closures, we found that the last connection was closed by the server
after 92.060 s from the beginning of the capture. Such a result was expected, since it is compliant to the
results we obtained and reported in Section 5.2.1. We found that the overall attack bandwidth was
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measured as 86493.85 bps. Compared to the previous test on a single connection, such result is in line
with the expectations, since N connections are established with the server, instead of a single one.

SlowITe execution against Eclipse Mosquitto MQTT service supporting plain text
communications

(a) (b)

(c)

Figure 2. Effects of a SlowITe attack against an Eclipse Mosquitto MQTT service. (a) First 20 s of the
attack. (b) Temporal window reporting connections closures. (c) Analysis of the DoS state on the server.

5.2.3. Tests on SSL/TLS

Previous tests focus on the exploitation of plain text communications, while we will now target an
MQTT service supporting SSL/TLS. We expect in this case a minor increase in bandwidth consumption,
compared to the previous tests, since an additional security layer is introduced in the communication
flow. Particularly, after running SlowITe, we found that the effect of the server is very similar to the
one depicted in Figure 2. Indeed, in this case, the DoS is reached just after 4 s from the beginning
of the attack. Moreover, the DoS status is maintained until time 95.797, while the last connection is
closed at time 95.887. This means that SlowITe is able to exploit not only plain text communications,
but SSL-based communications as well.

Nevertheless, we found that the attack bandwidth required to perpetrate SlowITe is in this case
increased. In particular, we found that 341188.81 bps are required for the attacker. As expected, such an
increase of requirement depends on the introduction of the SSL/TLS layer on the communication,
requiring an additional exchange of messages between the client and the server.

5.2.4. Additional Tests against Other MQTT Service

After executing tests on Eclipse Mosquitto, we analyzed the impact of SlowITe also on other
MQTT services. Indeed, since the aim of SlowITe is to target the MQTT protocol, instead of a single
software supporting such protocol, we executed the threat on different services. Particularly, as previously
mentioned, we targeted ActiveMQ [65], HiveMQ [66] and VerneMQ [67], running on their default settings.

Considering ActiveMQ, we found that the maximum number of simultaneous connections the
server is able to manage is by default equal to Na

m = 1000 (see https://activemq.apache.org/xml-

https://activemq.apache.org/xml-configuration.html
https://activemq.apache.org/xml-configuration.html
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configuration.html). Therefore, during our tests, the malicious software was adopted to establish
Na = Na

m connections.
Instead, regarding HiveMQ, during our tests, we targeted the free version of the software,

which supports at most Nh
m = 25 simultaneous connections (see https://www.hivemq.com/

downloads/). Similarly to the ActiveMQ case, SlowITe was configured in this case to initiate Nh = Nh
m

connections with the server. It’s important to consider that in this case, although a lower number of
connections is adopted, the DoS state could still be reached, since we expect that connection number
Nh

m + 1 will not be managed by the server, hence experiencing a denial of service.
Finally, as the number of maximum connections supported by VerneMQ is equal to Nv

m = 10000
(see https://docs.vernemq.com/configuration/listeners). As preliminary tests showed us that the
service is effectively able to manage a slightly higher number of connections, we considered, in this
case, Nv = 11000, hence keeping Nv > Nv

m.

Similarly to the SlowITe scenario reported in Section 5.2.2, we adopted T = 60 s, while traffic
capture refers to an overall duration of 200 s. Tests on each service tool were performed individually.
Table 1 reports the effects of the attack against each server, where, according to the definition reported
above, we consider Nm the maximum number of concurrent connections supported by the server and
N the number of connections established by the attacker. In addition, we define Tc the instant of time,
represented as second, the first connection is closed by the server, from the beginning of the capture.

Table 1. Comparison between MQTT services.

Targeted Service Nm N Tc Network Bandwidth (bps)

Total For Each Connection

Mosquitto 1024 1024 92 38,890.88 38.43
ActiveMQ 1000 1000 145 38,320.96 38.32
HiveMQ 25 25 90 958.96 38.36
VerneMQ 10,000 11,000 90 449,321.92 44.89

For each considered scenario, the attack was successful: after just a few seconds from the beginning
of the attack, all connections are established with the server and the DoS is reached. This means that
SlowITe is able to target different services supporting MQTT.

Nevertheless, we found that the VerneMQ service is not affected by a denial of service, when Nv =

Nv
m = 10,000 is considered. Indeed, for the executed tests, we found that the server is effectively able

to manage 10,009 simultaneous connections, instead of the 10,000 configured. Although the objective
of the test to validate the possibility to lead a DoS on a VerneMQ service is reached, the investigation
of the behavior of the server and the relation between the adopted configuration and the number of
connections the server is able to effectively manage is the scope of further work on the topic.

During our tests, we also found that bandwidth requirements are in line with expectations and
they depend on the number of connections established. Particularly, considering the different number
of connections established during the attack, the attack bandwidth required is similar for each scenario
and VerneMQ requires more bandwidth, while ActiveMQ requires less bandwidth than the other
tested services.

In addition, we found that connections are closed, as expected, around 90 s, which is a value
in line with the T′DoS parameter previously defined. This is not true for ActiveMQ: we found that
connections are closed later than expected, hence maintaining the DoS state for longer times. Under
such circumstances, where the KeepAlive parameter is set 60, we found Tc = 145. As such value is very
close to T + T′DoS, we presume that the timeout used by ActiveMQ to implement server-side connection
closures is initiated after the number of seconds specified as Keep-Alive is elapsed. The validation of
such a hypothesis is the scope of further work on the topic.

https://activemq.apache.org/xml-configuration.html
https://activemq.apache.org/xml-configuration.html
https://www.hivemq.com/downloads/
https://www.hivemq.com/downloads/
https://docs.vernemq.com/configuration/listeners
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Although we found that different configuration is required to target different services, SlowITe
was able to lead a DoS on all tested services, hence demonstrating the ability of the proposed threat to
target the MQTT protocol in real scenarios.

6. Considerations about Protection from SlowITe

As previously demonstrated, the SlowITe attack can represent an important threat for IoT systems
based on the MQTT protocol. For this reason, it is important to properly protect the system from
attacks like the proposed one. Although such protection is the scope of further works on the topic,
in this section of the manuscript we introduce some approaches that could be adopted to define a
protection system potentially able to identify and mitigate a SlowITe attack.

In the context of Slow DoS Attacks, detection and mitigation of such threats is still an open
challenge in the research field [64]. Particularly, while it may be trivial to detect and mitigate a single
attacking node (by filtering out the source IP address), as Slow DoS Attacks could be distributed to
multiple nodes, detection of a distributed attack may not be easy, especially considering real-time
requirements [71]. Nevertheless, identification and mitigation of Slow DoS Attacks is proposed in
the literature, especially considering anomaly-based intrusion detection systems by making use
of statistics [72], spectral analysis [71], Fourier transform [64], or by defining in detail metrics
characterizing such kind of attacks [73].

Other research works focus instead on the detection of “old-style” flooding based DoS attacks on
MQTT networks: [74] propose a classification model to develop an IDS by using a dataset containing
frames under attacks. [75] develops a detection system for DoS attacks based on a network behavior
model. [76] proposes ARTEMIS, a framework based on machine learning techniques and algorithms
to detect DoS attack against MQTT networks. [45] implements a mitigation approach to mitigate
DoS attacks based on QoS features of MQTT and authentication algorithms available on the protocol.
Ref. [77] uses a fuzzy logic-based system to detect the malicious behavior of the node combined with a
fuzzy rule interpolation mechanism to detect DoS attacks. [78] develops an Intrusion Detection System
based on a threshold packet discarding policy to topics defined on the MQTT broker.

All these scientific works can be used as a starting point for developing a SlowITe attack detection
system. Nevertheless, it is important to consider that, unlike other services like HTTP where the
behavior of a legitimate node could be easier to model, due to the different applications of MQTT,
the classification and categorization of IoT nodes using MQTT could not be trivial. For instance,
while in HTTP the aim of a legitimate client is to retrieve a resource from the service in extremely short
times, hence making Slow DoS Attacks deviate such behavior (since, as for SlowITe, connections are
kept alive for long times during an attack), in case of MQTT, clients, and their connection may remain
active without sending any relevant application payload even for hours. Because of this, detecting
SlowITe may not be trivial.

Nevertheless, by analyzing each connection between the client and the server during a SlowITe
attack, it is possible to define the time of inactivity Ti as the time passing between the send of the
CONNACK packet/message from the server and the send of the TCP FIN packet, sent to close the
connection after the expiration of the server-side timeout. Considering the the Mosquitto scenario
previously considered in Section 5.2, we found that the mean of Ti is µTi = 90.582332985 s, very similar
to T′DoS defined above, while its variance is σTi = 0.076503686. Such values could be adopted and
compared to a legitimate MQTT scenario to potentially identify a running attack. Nevertheless, due to
the variety of applications of MQTT, defining an appropriate protection methodology is not trivial,
although further work on the topic may be directed on the characterization of a set of legitimate MQTT
scenarios, with consequent adoption of the approach proposed in [72], to identify running attacks.

Considering protection from SlowITe, further work on the topic may also be directed to refine the
MQTT protocol to improve how the Keep-Alive parameter is managed, in order to avoid exploitation
from malicious nodes. For instance, it may possible to disable the possibility to configure the
Keep-Alive parameter from the client itself: in this case, by forcing the client to use a particularly low
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parameter, attack bandwidth requirements would increase. It is possible to extend the protocol to use
specific and extremely low timeouts forcing the client to send data just after the CONNECT command is
sent. A similar approach is used in HTTP [57].

7. Conclusions

In this paper, we have investigated the Internet of Things topic and related protocols. We have
focused on the MQTT application protocol, widely used in different IoT contexts [4,5], to identify its
exposure to denial of service attacks. We used low-rate DoS approaches [9] to target the protocol,
by designing and introducing the SlowITe attack, able to target MQTT services to lead a DoS, by requiring
limited attack bandwidth. Particularly, we exploited the possibility to set the Keep-Alive parameter of
the server from the client itself, hence configuring the behavior of the server, in terms of connections
closure timeouts, from the attacking node. This should be considered a weakness of the MQTT protocol,
validated in the proposed work, through the design and implementation of the SlowITe attack. In virtue
of this, further work on the topic may be focused on a refinement of the MQTT protocol definition,
in order to avoid such behavior. Similarly, additional works on the topic may focus on the definition of
detection and mitigation systems to counter the proposed threat, or to model the behavior of legitimate
MQTT clients.

We tested the attack on a real network, targeting real MQTT services based on Eclipse Mosquitto [63],
ActiveMQ [65], HiveMQ [66] and VerneMQ [67] with an low-powerful node represented by a Raspberry
PI. Tests were executed by first analyzing the behavior of the server on a single connection, in order
to identify the potential exploitation of SlowITe, hence perpetrating real DoS attacks, based on plain
text communication and encrypted communications as well. We have found that, after establishment,
a single connection can be kept alive for more than 27 h, without sending any data to the listening
daemon. Further work may be directed on a refinement of SlowITe to keep connections alive for an
indefinite time, to test both new and first version of SlowITe against other possible brokers running
on cloud-based solutions, or to further investigate the behavior of ActiveMQ, VerneMQ or additional
services. In addition, since we have focused on the MQTT protocol, further investigations on the topic
may consider other application layer IoT protocols like CoAP and AMQP [38].
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