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Abstract: Functional connectivity, representing a statistical coupling relationship between different
brain regions or electrodes, is an influential concept in clinical medicine and cognitive neuroscience.
Electroencephalography-derived functional connectivity (EEG-FC) provides relevant characteristic
information about individual differences in cognitive tasks and personality traits. However, it remains
unclear whether these individual-dependent EEG-FCs remain relatively permanent across long-term
sessions. This manuscript utilizes machine learning algorithms to explore the individual specificity
and permanence of resting-state EEG connectivity patterns. We performed six recordings at different
intervals during a six-month period to examine the variation and permanence of resting-state EEG-FC
over a long period. The results indicated that the EEG-FC networks are quite subject-specific with
a high-precision identification accuracy of greater than 90%. Meanwhile, the individual specificity
remained stable and only varied slightly after six months. Furthermore, the specificity is mainly
derived from the internal connectivity of the frontal lobe. Our work demonstrates the existence of
specific and permanent EEG-FC patterns in the brain, providing potential information for biometric
applications.
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1. Introduction

Brain functional connectivity plays an essential role in neuroscience. It reflects the
complex functional dependence and coupling of neural activity between brain regions [1].
Measures of connectivity can be recognized by a variety of physiological recording tech-
niques, including magnetic resonance imaging (MRI), near-infrared spectroscopy, and
electroencephalography (EEG). As a new method of individual differences and patho-
logical research, functional network analysis has attracted increasing attention from the
scientific community [2,3]. However, the individual specificity and permanence of human
brain networks have not been thoroughly studied.

Individuals may have unique and characteristic connectivity patterns. Some previ-
ous MRI studies have demonstrated that functional connectivity networks exhibit high
variability among individuals, serving as “fingerprints” of individuals [4]. fMRI provides
good anatomical resolution and endogenous explanations for individual differences in
functional brain networks, but its temporal resolution is limited [5]. Unlike fMRI, EEG is
a practical and convenient approach to explore the temporal changes in functional brain
connectivity, non-invasively recording neuronal activity at the millisecond level [6].

The increasing application of EEG network research has attracted attention regarding
whether EEG functional connectivity (EEG-FC) can be sustained over time and across
cognitive states. Permanence represents the intraindividual stability of brain activities
over a period of time [7]. Previous studies, such as those on EEG biometrics, only dealt
with single-session data sets. This study design leads to a concern about whether the
accuracy of the recognition represented the uniqueness of the recognition according to the
EEG characteristics of the subjects or the uniqueness of each acquisition session [8]. At
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present, some studies have begun to focus on the permanence of biometrics [9,10]. A study
found that the permanence of the core-specific network structure of EEG-FC in five healthy
subjects remained stable for several days [11]. Some studies have demonstrated that resting-
state EEG-FC represents a powerful method for high-precision biometric identification
purposes [6,12].

However, these studies on EEG-FC patterns recorded only two or three sessions over
a few weeks, which resulted in a lack of variation over a long period in the longitudinal
study. Therefore, it is necessary to establish a sufficient number of recordings to firmly
demonstrate whether specific functional connectivity can remain relatively permanent
across time. In this manuscript, we explored the individual specificity and temporal per-
manence of resting-state EEG-FC from 15 healthy participants with multiple experimental
sessions over six months.

Based on the previous fMRI and EEG studies, we had two hypotheses: (1) There may
be individual differences in EEG-FC patterns, which could be verified by identification.
(2) The individual-specific EEG-FC may be relatively permanent across disjoint sessions.
Biometric identification was used as a research strategy in this manuscript to verify these
hypotheses. Our exploratory work may be helpful to reveal the individual differences in
neural electrical signal activity.

2. Materials and Methods
2.1. Participants

A total of fifteen healthy subjects (24 ± 2 years old) participated in this study. No
history of neurological or psychiatric disorders, migraine, diabetes, or tinnitus was reported.
All participants were right-handed and had normal vision (or corrected vision). All
participants submitted written informed consent after receiving a detailed explanation of
the experimental procedure. The studies involving human participants were reviewed and
approved by the Medical Ethics Committee of 921 Hospital.

2.2. Experiment Protocol

The experimental environment was quiet. As shown in Figure 1, the subjects were
given experimental precautions and sat in a comfortable chair 1 m away from the monitor.
To reduce eye movement, the participants were required to look at a single black ‘+’ in
the center of a display screen for at least 2 min and close eyes for another 2 min. During
the recording of the 4 min resting-state EEG, the participants needed to keep still, avoid
blinking, and to not think about other things. Recordings were repeated multiple times for
each subject over a period of six months, including Day 1 (Session A), Day 2 (Session B),
Day 7 (Session C), Day 30 (Session D), Day 90 (Session E), and Day 180 (Session F).
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Figure 1. EEG Acquisition.

2.3. Data Acquisition and Pre-Processing

In the process of creating the dataset, we used Nerusen 32-channel wireless EEG
acquisition equipment from the Neuracle company(Changzhou, China). The position
of the electrodes was shown in Figure 2. According to the 10/20 international standard
system, the electrodes were located at frontal, central, temporal, parietal, and occipital
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scalp sites [13] (Fp1, Fp2, F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, A1, T7, T8, A2, C3, Cz,
C4, CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8, PO3, PO4, O1, Oz, and O2). The reference
electrodes were REF and GND. The sampling rate was set to 1000 Hz, and the electrode
impedance was adjusted below 10 kΩ.
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EEG data were exported to EEGLAB [14] for pre-processing. In the first step, EEG
data were filtered with a bandpass filter of 1–40 Hz, including a notch filter of 50 Hz. Then,
eye movements, eyeblinks, muscle activity, and other obvious artifacts were corrected by
applying an independent-component analysis (ICA) implemented in the EEGLab toolbox.
Based on the artifact-free dataset (Reject ICs), we applied a spatial Laplacian filter using
the current source density (CSD) toolbox to reduce the effects of volume conduction [15].

2.4. Connectivity Measures and Machine Learning

Previous studies have suggested that 2 s is sufficient for functional connectivity of
resting-state EEG data [16]. Therefore, the preprocessed EEG data were segmented every
two seconds. We performed the same process described above for each session dataset.
Each session dataset included 15 subjects, 4 min of resting-state EEG signals. In total, this
resulted in 120 × 15 segments for connectivity calculations. In order to maximize the
retention of individual brain signal characteristics, we chose to retain the neural activity
of all frequency bands for brain network analysis. The frequency band of EEG-FC was
selected as 1–40Hz. We used the Hermes Toolbox [17] to calculate the Granger causality
(GC) index and the mutual information (MI) index.

Granger causality, derived from the definition of causality in statistics, was introduced
into neuroscience to describe brain functional connectivity. For two simultaneously mea-
sured time series signals x(t) and y(t), x(t) causes y(t) if the former contains information
that helps predict the future of the latter. Two time series x(t) and y(t) are modeled by
BVAR (the bivariate autoregressive model), which including the past samples from the
time series itself and the other time series. The calculation formula of the Granger causality
index is as follows:

x(n) =
P
∑

k=1
ax|x,kx(n− k) +

P
∑

k=1
ax|y,ky(n− k) + uxy(n)

y(n) =
P
∑

k=1
ay|x,kx(n− k) +

P
∑

k=1
ay|y,ky(n− k) + uyx(n)

(1)
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In Equations (1) and (2), aij are the model parameters, p is the order of the BVAR
model and ui are the residuals associated to the model, var(.) is the variance over time and

x | −x,
−
y is the prediction of x(t) by the past samples of values of x(t) and y(t). Granger

causality (GC) from y(t) to x(t) greater than or equal to zero. In our calculation, the model
order p was 15. The GC net relationship enabled the detection of directed and reciprocal
influences common in brain coupling [18]. The GC net calculated by our recording data
could describe the individual effective connectivity between distinct electrodes in the
resting state.

Based on concepts from information theory, mutual information (MI) measures the
interdependence between two variables, which quantifies the amount of information
obtained from about one random variable by other random variables [19].

MIxy = ∑
i

p(x, y) log
p(x, y)

p(x)p(y)
(4)

In Equation (4), p(x, y) is the joint probability distribution function of x(t) and y(t),
and p(x) and p(y) are the marginal probability distribution functions of x(t) and y(t),
respectively. The equation represents the cross-mutual information between x(t) and y(t).
The MI of two random variables is a measure of the mutual dependence between the
two variables. If the value of MI is zero, the electrical signals of the two channels were
independent.

As shown in Figure 3, after constructing the brain network matrix of GC and MI,
we used the identification procedures as a strategy evaluating individual specificity and
permanence. We calculated that the number of net features between all electrode pairs
of the GC index and MI index at each segment was 1024 (32 × 32) and 496 (32 × 31/2),
respectively. As a reliable method, machine learning has been frequently used in previous
MRI and EEG studies [20,21]. We used a support vector machine with a radial basis kernel
function (SVM-RBF) algorithm to identify 15 participants. The one-against-one (OAO)
multiclassification method was used in this manuscript. OAO designs a classifier between
any two types of samples. When making classification decisions for an unknown sample,
the voting method is adopted, and the category with the most votes in the category of the
unknown sample.

We utilized the multi-classification method of machine learning for individual iden-
tification. By classifying the subject in a single session data set, we can explore whether
the functional connectivity based on EEG could realize high variability among individuals.
High-precision individual identification could indicate the existence of individual-specific
brain network. In addition, the reproducibility and permanence of specific brain networks
could be reflected by the classification accuracy across disjoint sessions.
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3. Results
3.1. The Functional Connectivity Network between Individuals Is Specific within
Different Sessions

The accuracy of identification in a single session represents the strength of individ-
ual specificity. High identification accuracy corresponds to strong individual functional
connectivity differences. To explore the specificity of functional connectivity index, we
performed identification classification on each session dataset. A total of 9/10 of each
session dataset was taken as the training set, and 1/10 served as the testing set. Through
ten-fold cross-validation, the 15-classification accuracy of each single session was obtained.
Figure 4 shows multiple experimental sessions (A–F) conducted on the same group of
subjects over a period of 6 months. The time points are Day 1, Day 2, Day 7, Day 30,
Day 90, and Day 180. Figure 5a shows the individual specificity of functional connectivity
from each single session experiment. The data of the same session experiment are divided
into the training set and test set, and the classification accuracy is obtained by ten-fold
cross-validation. The 15-classification accuracy of the GC network on a single session
was 0.89 to 0.96, and the MI network was 0.82 to 0.92, respectively. Here, we show that
individuals have unique EEG-FC profiles similar to fingerprints.
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3.2. Individuals Have Relatively Permanent Functional Connectivity Patterns across
Long-Term Sessions

The accuracy of identification across sessions represents the permanence of individual
specificity. High accuracy corresponds to the similarity of individual functional connectivity
between subsequent follow-up sessions and first sessions. To explore the permanence
of the functional connectivity metric, we tested it across sessions. Session A collected
on Day 1 was used as the training set. Session B collected on Day 2 was used as the
testing set. The Session C–F data at other time points were used as the test set, in turn.
The classification accuracy of cross-time sessions was obtained. Figure 5b shows the
permanence of functional connectivity. The data of the first-day session is used as the
training set, and the data of other session experiments are used as the test set. The GC
network classification accuracy decreased from 0.939 on the second day to 0.770 on the
180th day. It shows that the individual specificity remained relatively stable and vary
slightly in 6 months. The classification accuracy of mutual information decreased from
0.903 on the second day to 0.627 on the 180th day, which showing a monotonous decrease.

3.3. The Difference in Individual Brain Networks Mainly Comes from the Internal Connections of
Frontal Lobe

According to the 10/20 international standard system, the electrodes were located at
frontal, central, temporal, parietal, and occipital scalp sites [13]. EEG signals collected by
different regions of the brain surface reflect completely different information. To explore
the contribution of different brain regions to GC net specificity, we used machine learning
to identify the features that make important contributions to classification. We extracted
the classification scores of each feature vector and applied canonical correlation analysis
(CCA) to find the related functional connectivity. The functional connectivity of each pair
of electrodes was assigned a weight, indicating its contribution to the identification process.
The major connection is defined as the functional connectivity with the top 10% of feature
weights in the identification by SVM. The weight represents each pair’s contribution to the
identification process. Larger weights indicate more specific connections.

We used BrainNet [22] to draw the top view, right view, frontal view, and left view
of the specific connectivity distributed on the brain surface. For clear representation,
the colored lines indicate connections within each brain region, and grey lines represent
inter-region connections. As shown in Figure 6, The larger spheres in the red network
indicate a larger number of major connections in the frontal lobe region. Different colored
spheres represent electrodes in different brain regions. Compared to other colors of the
connection, these red lines indicate strong connections between electrodes in the frontal
region of the brain. The difference in individual brain networks is mainly derived from
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the internal connections of the frontal lobe. The results indicated that individuals have
relatively permanent specific connectivity patterns mainly due to the internal connections
of the frontal lobe.
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4. Discussion

The neural activation and connectivity of non-invasive high-resolution spatiotemporal
patterns have greatly improved our understanding of the individual mechanisms involved
in perception, attention, and learning. Measures of functional connectivity of EEG signals
are increasingly being used to study brain function in spontaneous neural activity. In our
work, the brain network based on GC has the potential to reveal the long-term specific
patterns of individuals. Our work shows that the measurement of EEG-FC at the sensor
level can be used for biometric purposes with high recognition accuracy. In addition, the
permanence of EEG-FC as a biological identifier was further demonstrated. Functional and
effective connectivity measures convey important information about the neural network.
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Although the EEG network is generally believed to be fragile, it was demonstrated to be
suitable for convenient and efficient biometrics.

Resting-state is a state in which the brain keeps quiet and awake without performing
specific cognitive tasks. It may be the most basic but essential state of the brain [23].
Our results described the specificity and permanence of resting-state EEG connectivity
measures, which could be considered in exploring inter-individual differences in brain
relationships. However, it is important to note that this study only focused on the resting-
state EEG, and caution is necessary when extending our results to event-related potentials
or EEG of natural stimuli. It still needs to further explore whether specific EEG functional
networks could maintain permanence under various cognitive tasks such as watching
videos, playing games, and listening to music.

EEG signals collected from different areas of the brain surface reflect completely
different neural activity information within the brain. Different brain regions could re-
flect different functional states [24]. Previous fMRI studies using data from the Human
Connectome Project have demonstrated that the frontoparietal network emerged as most
distinctive in individual characteristic connectivity patterns [4]. Although EEG does not
have high-intensity spatial resolution, we could describe the correspondence of brain
scalp functional areas through the electrodes on the surface scalp. The functional network
consists of neural electrophysiological activity that can span multiple scalp regions of the
brain [25]. We explored the major connections in the network by the contribution of each
pair of electrodes to the recognition process. The frontal lobes represent higher cognitive
functions and are responsible for learning, language, decision-making, and emotion [24,26].
Neural activity in the frontal lobe represents the region where conscious thoughts and
decisions occur [27]. This feature may have resulted in a stable GC network in the flow
of neuro-electrical signals to the frontal lobe network. In the process of investigating the
EEG-FC, our conclusion verifies to some extent that the frontal network corresponding
to EEG is also the most distinctive region of individual specificity in the resting state.
This may help to represent individual brain networks with more significant and fewer
EEG networks. In addition, electrical activity in the resting state may produce significant
functional connectivity networks in various functional areas. EEG-FC patterns within
frontal functional areas may be more assertive in the resting state. In the future study, it still
needs to explore whether the permanence of individual EEG-FC patterns is independent of
the various cognitive tasks across time.

5. Conclusions

In this study, we have explored the individual specificity and temporal permanence
of EEG-FC with multiple experimental sessions over a relatively long time. Through our
research, we report the following conclusions. The EEG-FC network based on Granger
causality could exist for a long time as an individual unique connectivity pattern. In the
characteristic connectivity pattern, the internal connections of the frontal lobe network may
play a significant role. These results are conducive to revealing the individual differences
in neural electrical signal activity and promote the application of the resting-state brain
network in biometric identification.
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