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To date, it has been confirmed that the occurrence and development of

infectious diseases are tightly associated with regulatory cell death

processes, such as apoptosis, autophagy, and necroptosis. Ferroptosis, as a

newly discovered form of regulatory cell death characterized by iron-

dependent lipid peroxidation, is not only closely associated with tumor

progression, but is also found to be tightly related to the regulation of

infectious diseases, such as Tuberculosis, Cryptococcal meningitis, Malaria

and COVID-2019. The emerging critical roles of ferroptosis that has been

found in infectious disease highlight ferroptosis as a potential therapeutic

target in this field, which is therefore widely expected to be developed into

new therapy strategy against infectious diseases. Here, we summarized the

underlying mechanisms of ferroptosis and highlighted the intersections

between host immunity and ferroptosis. Moreover, we illuminated the roles

of ferroptosis in the occurrence and progression of different infectious diseases,

which might provide some unique inspiration and thought-provoking

perspectives for the future research of these infectious diseases, especially

for the development of ferroptosis-based therapy strategy against infectious

diseases.
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Introduction

Cell is the basic unit of the biological system, which not only provides the

necessary energy and nutrition for physiological events, but also acts as the

indispensable one for the host’s immunity against invasion. Various regulated cell

death modalities are tightly associated with the pathological processes in many

diseases. Strikingly, ferroptosis, a newly discovered cell death, accompanied by

iron independence lipid peroxidation (LPO), has become an eye-catching topic

nowadays (Dixon et al., 2012). The mechanism, morphology, and genomics of

ferroptosis have been proved to be different from the well-known programmed

cell death such as apoptosis, autophagy, and scorching death. Although lots of

efforts have been made to depict the functions and mechanisms of ferroptosis,
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some critical mechanisms and related regulatory functions

have not yet been fully explored, which requires more in-depth

researches.

Over the past few years, shreds of evidences have shown that

the close relationship between ferroptosis and cancer,

neurodegenerative diseases, ischemia-reperfusion diseases, and

kidney diseases (Stockwell et al., 2017; Stockwell et al., 2020;

Wang et al., 2021b), however, there are relatively few studies

describing the roles of ferroptosis in infectious diseases.

Meanwhile, viruses, bacteria, and other pathogens in nature

have coexisted with human beings for a long time, such as the

world pandemic of COVID-19 (Kalra and Chawla, 2020), the

growing bacterial drug resistance (Chen and Chen, 2021) and

dangerous virus-related cancer (Ding et al., 2021) have brought

endless suffering to people. Though many achievements and

progresses have been made by human beings in the combat with

infectious diseases, more works are still needed to be done, such

as the updating of preventive measures and treatment strategies.

Therefore, it is necessary to explore more in-depth

understanding of the occurrence and development of

infectious diseases. Potentially, ferroptosis may be a novel

therapeutic target to develop more effective adjuvant therapies

against infectious diseases.

It is conceivable, but not fully demonstrated, that

ferroptosis triggered in infectious diseases acting a double-

edged sword role that it may be caused by pathogens for

survival or can be exploited as potential therapeutics. In this

review, we briefly described the present understanding of

ferroptosis induction and execution, and also highlighted

the relationships between ferroptosis and infectious diseases

so as to further understand the functions of ferroptosis in

infectious diseases. Particularly, we hypothesized the

therapeutic potential of ferroptosis in these diseases based

on the current researches. We hope this review could enhance

our understanding of ferroptosis in infectious diseases by

exploring how ferroptosis contributes to host control of

pathogens, how ferroptosis is triggered by some pathogens

to promote disease development, and how ferroptosis can be

controlled to defend against infectious diseases.

Mechanism of ferroptosis

Hallmarks of ferroptosis: Lipid
peroxidation

Lipid peroxidation is one of the most prominent features

of ferroptosis, which is composed of a series of free radical

chain reactions (Figure 1). Lipid peroxidation can be described

generally as a process under which oxidants such as free

radicals attack lipids containing carbon-carbon double

bond(s), especially polyunsaturated fatty acids (PUFAs)

(Minotti and Aust, 1989; Halliwell and Chirico, 1993;

Cheng and Li, 2007). Free radicals, such as hydroxyl

radicals (•OH) produced by the Fenton reaction (Fe2+ +

H2O2 → Fe3+ + •OH + OH−), can be excessively produced

due to an excess of ferrous iron (Cheng and Li, 2007). •OH is

an essential substance for the initiation of lipid peroxidation

and is capable of causing oxidative damage to cells. PUFAs are

more susceptible to •OH compared with other intracellular

lipids, the reaction between them generates LOOH, and

ferrous iron catalyzes the cleavage of LOOH, again

producing numerous ROS, such as LOO•, alkoxyl (LO•), or
epoxy peroxyl radical (loo•), which further boost the oxidative

stress in cell.(Halliwell and Chirico, 1993; Cheng and Li,

2007). As a result, this destructive lipid peroxidation

disrupts the integrity and fluidity of the lipid bilayer of

the cell membrane and ultimately leads to cell damage or

death.

GPX4 regulates ferroptosis

Glutathione peroxidase 4 (GPX4), a selenoprotein, one of the

most well-known key factors in the regulation of ferroptosis, can

reduce the level of intracellular lipid peroxide via lipids

detoxification (Brigelius-Flohe and Maiorino, 2013; Yang

et al., 2014). Glutathione (GSH) is used as a cofactor of

GPX4 to assist GPX4, which converts toxic lipid

hydroperoxides to non-toxic lipid alcohols. Thus, the

reduction of GSH level will lead to the inhibition of GPX4,

which suppresses the host capacity to repair peroxidized lipids

and causes the occurrence of ferroptosis. Meantime, diverse

ferroptosis inhibitors and inducers are applied to different

FIGURE 1
Lipid peroxidation: initiation, propagation and termination.
L•: lipid radical; LO•: alkoxyl radical; L-OH, lipid alcohol; L–H,
lipid; LOOH, lipid hydroperoxide; LOO•: epoxy peroxyl radical.
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kinds of research nowadays (Tables 1, 2) For example, as one of

the representatives of class II ferroptosis-inducers (FINs)

different from erastin, 1S, 3R-RSL 3(RSL3) can directly inhibit

GPX4 without reducing the level of GSH to trigger ferroptosis.

Knockdown of intracellular GPX4 can increase the level of

intracellular lipid peroxides accompanied by ferroptosis, while

iron chelator DFO and vitamin E prevent ferroptosis in

GPX4 knockdown cells, reflecting the importance of GPX4 in

protecting cells from excessive toxic lipid peroxides (Yang et al.,

2014).

Due to the important roles of selenium in GPX4, there is

also a close relationship between selenium and ferroptosis

(Ingold et al., 2018). Selenoprotein GPX4 is composed of

selenocysteine, which is similar in structure to ordinary

cysteine, except that the sulfur is replaced by selenium at

the active site of cysteine. Via replacing the active site of

GPX4 selenocysteine with sulfur to cysteine, Ingold et al.

found that the oxidative stress in the cell was intensified

after adding H2O2, and the active site was oxidized to

sulfonic acid (SO2/3H), which inactivated GPX4 and

TABLE 1 Ferroptosis inducers.

Molecule Target Mechanism

Erastin Dixon et al. (2012) System Xc
- Block cystine import, cause GSH depletion

Sulfasalazine Dixon et al. (2014) System Xc
- Interfere cystine uptake, cause GSH depletion, lower potency than erastin

Glutamate Dixon et al. (2014) System Xc
- Higer extracellular concentrations prevent cystine import, causes GSH

depletion

Sorafenib Dixon et al. (2014) System Xc
- Inhibit cystine import, cause GSH depletion

RSL-3 Yang et al. (2014) GPX4 Bind to and inactivates GPX4

ML162 Moosmayer et al. (2021), ML210,JKE-1674 Eaton et al.
(2020)

GPX4 Covalent inhibitor of GPX4

DPI7,10,12,13,17,18,19 Yang et al. (2014) GPX4 Directly inactivate GPX4

FINO2 Gaschler et al. (2018) GPX4 Indirectly inhibit GPX4 activity, oxidize labile iron

FIN56 Shimada et al. (2016) GPX4 Degrade and inactivate GPX4

GPX4-IN-3(26a) Xu et al. (2021a) GPX4 Inhibit GPX4, induce LPO

Dihydroisotanshinone I Wu et al. (2021a) GPX4 Block GPX4 expression

Cisplatin Guo et al. (2018) GSH GSH depletion

Acetaminophen Lorincz et al. (2015) GSH GSH depletion

Ferric ammonium citrate Wu et al. (2021b) GPX4-GSS/GSR-GGT
axis

Induces oxidative injury

FAC (Fang et al., 2018) Iron metabolism Induces iron overload

TABLE 2 Ferroptosis inhibitors.

Molecule Target Mechanism

Deferoxamine, ciclopirox olamine Dixon et al. (2012) Iron chelator Iron chelation, suppress ROS accumulation

Thymosin β4 Lachowicz et al. (2022) Iron chelator Iron chelation, enhance anti-oxidative processes

Butylated hydroxytoluene, trolox Dixon et al. (2012) LPO Inhibit lipid peroxidation

GSK23344770 Fang et al. (2018) LPO Suppress RSL-induced lipid ROS production

Ferrostain-1 Skouta et al. (2014) LPO Inhibit the oxidative destruction of membrane lipid PUFAs, block lipid peroxidation

Lipoxstrain-1 Zilka et al. (2017) LPO Inhibit lipid peroxidation as RTAs

Nigratine Delehouze et al. (2022) LPO Inhibit phospholipid peroxidation, but a weak antioxidant compound

α-tocopherol, Vitamin E Hu et al. (2021) LPO Inhibit phospholipid peroxidation

N-Acetylcysteine Karuppagounder et al. (2018) LPO Neutralizes toxic lipids generated by ALOX5

Glutathione Yang et al. (2014) LPO Inhibit phospholipid peroxidation

β-ME Dixon et al. (2012) Cystine uptake Increases the cystine available for GSH synthesis, improves the activity of GPX4

Cycloheximide Dixon et al. (2012) Protein synthesis Suppress ferroptosis induced by system Xc
− inhibitors

zileuton [32] 5-LOX Inhibits 5-LOX
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eventually induced ferroptosis. This work strongly suggests

that selenium plays an indispensable role in helping

GPX4 resist ferroptosis by regulating lipid peroxidation.

Moreover, Zhang Y et al. discovered a new pathway

regulating GPX4 independently with the level of intracellular

GSH (Zhang et al., 2021). Mammalian rapamycin complex 1

(mTORC1) plays an important role in regulating protein

synthesis, cell growth, lipid metabolism, autophagy, and other

biological activities. In the absence of intracellular cystine, the

activity of mTORC1 will be inhibited and the amount of

mTORC1 localized to lysosomes will be decreased, thereby

reducing the level of intracellular GPX4.

Meanwhile, GPX4 is not the only intracellular antioxidant

molecule inhibiting ferroptosis. Ferroptosis inhibitor protein 1

(FSP1) is an in vitro NADPH-dependent coenzyme Q10 (CoQ)

oxidoreductase localized on the cell membrane and is able to

inhibit lipid peroxidation in a different way (Bersuker et al.,

2019). The supplementation of exogenous FSP1 could promote

the reduced CoQ to enhance the antioxidant function of

capturing free radicals, thereby inhibiting LPO and restoring

the resistance of FSP1 knockdown cells to ferroptosis (Bersuker

et al., 2019). Similar to GPX4 and FSP1, the lipid detoxification

phospholipase iPLA2β can inhibit p53-induced ferroptosis by

resisting lipid peroxidation (Chen et al., 2021), and avoid

ferroptosis by reducing its substrate 15-HpETE-PE, a

ferroptosis-promoting factor (Sun et al., 2021).

Glutathione metabolism

Glutamine metabolism plays essential roles in cell

biosynthesis, cell proliferation and cell death. The heterodimer

of amino acid transporter solute carrier family 7 member 11

(SLC7A11) and amino acid transporter solute carrier family

3 member 2 (SLC3A2) is the main component of the sodium-

dependent cystine/glutamate transporter (systemXc
−) localized

on cell membrane (Koppula et al., 2021), which exchanges

cystine and glutamic acid at a ratio of 1:1. Cystine enters the

cell and converts to cysteine for the synthesis of GSH, and

SLC7A11 can regulate cystine uptake and participate in

glutamine cycle metabolism (Zhang et al., 2021), thus

promoting GPX4 protein synthesis. Consistently, Gao et al.

illustrated that two specific amino acids, cystine and cysteine,

were indispensable for the synthesis of intracellular GSH, and

ROS was increased once in the absence of them (Gao et al., 2015).

Meantime, glutamate-cysteine ligase catalytic subunit (GCLC), a

catalytic enzyme involved in GSH synthesis pathway, can repress

the sensitivity of cells to cystine and cysteine deficiency-induced

ferroptosis (Kang et al., 2021). In addition, BECN1 (beclin 1) can

directly bind to SLC7A11 and inhibit its function for the uptake

of cystine, which leads to the lack of intracellular GSH and the

accumulation of lipid peroxidation, triggering ferroptosis

eventually (Song et al., 2018).

Iron metabolism

Iron is required for the execution of ferroptosis, thus, iron

homeostasis is inseparable from the occurrence of ferroptosis.

To date, a variety of related molecules have been found to

regulate and maintain intracellular iron homeostasis

(Halliwell and Chirico, 1993; Anderson and Vulpe, 2009).

Transferrin receptor (TfR) is a prominent molecule for storing

excess intracellular iron. The deficiency of TfR is capable of

stimulating chronic iron accumulation and increasing the

sensitivity of cells to ferroptosis. For example, the lack of

TfR in hepatocytes is accompanied by ferroptosis, which

aggravates the degree of cell damage (Yu et al., 2020).

Poly(C)-binding proteins 1 (PCBP1), an iron chaperone

from one of the four homologous RNA-binding protein

families in KH domain superfamily, can directly bind iron

and combine with ferritin to complete the storage of

intracellular iron (Shi et al., 2008). Evidence showed that

the lipid peroxidation and product 4-Hydroxynonenol (4-

HNE) were increased in PCBP1 knockout mouse liver cells

and the level of GPX4 was also increased accordingly

(Protchenko et al., 2021). Knockout of PCBP1 led to the

failure of its function as an iron chaperone, and the

increased free ferrous iron in the cell thus catalyzed the

production of ROS through the Fenton reaction, resulting

in the accumulation of lipid peroxides. This research also

pointed out that PCBP1 could control the redox

response in labile iron pool (LIP), thereby inhibiting iron-

induced LPO or cell death under physiological conditions.

Importantly, PCBP1 has the ability to repress ferritinophagy-

mediated ferroptosis via inhibiting ferritinophagy through

silencing BECN1 mRNA and binding with ALOX15 to

attenuate the susceptibility of cells to ferroptosis (Lee et al.,

2022).

In recent years, the relationship between autophagy and

ferroptosis has engaged much attention, and the view that

ferroptosis is an autophagy-dependent death is emerged.

Many studies have reported that ferritinophagy can trigger

ferroptosis (Hou et al., 2016; Zhou B. et al., 2020). Ferritin, an

important protein for storing iron (Theil, 2004), can avoid cell

damage caused by Fenton reaction via combining with excess

ferrous iron (Minotti and Aust, 1989; Halliwell and Chirico,

1993; Cheng and Li, 2007). Notably, nuclear receptor

coactivator (NCOA4), the selective carrier receptor of

ferritinophagy, can drive ferritinophagy via releasing excess

iron into the cell to induce autophagy degradation of ferritin

(Mancias et al., 2014). Physiologically, the intracellular iron

content can be compensated by ferritinophagy via the

NCOA4 pathway. At the same time, down-regulation of

NCOA4 prevents excessive ROS production to inhibit the

occurrence of ferritinophagy and ferroptosis, while over-

expression of NCOA4 causes the opposite performance.

What’s more, the hypoxic environment can inhibit
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NCOA4-regulated ferroptosis and avoid cell death (Fuhrmann

et al., 2020).

Meanwhile, a paper proposed that ATG5, an autophagy-

related gene, regulated ferritinophagy and then induced

ferroptosis (Hou et al., 2016). Eunhee Park et al. subsequently

confirmed this view, they discovered that erastin could induce

autophagy-related cell death, which further lead to iron-

dependent ferroptosis by degradation of ferritin and induction

of TfR1 (Park and Chung, 2019). Also, the inhibition of

autophagy can downregulate intracellular iron content and

weaken the degree of lipid peroxidation in ferroptosis,

illuminating that ferritinophagy is a vital process involved in

ferroptosis. Meanwhile, they considered the occurrence of

autophagy as the consequence for the increase of intracellular

ROS induced by erastin. Moreover, another group (Ma et al.,

2017) indicated that the increase of iron-dependent ROS could

also cause a similar phenomenon, suggesting that the

inducement of autophagy in ferroptosis can be diversified. In

addition, ferroptosis and autophagy can also occur at different

time periods, implying that ferroptosis can also occur

independently from autophagic cell death.

Lipid metabolism
Acyl-CoA synthetase long-chain family member 4

(ACSL4) has been confirmed as a key ferroptosis gene,

playing a crucial role in the synthesis of long-chain PUFA-

CoA (Doll et al., 2017; Kagan et al., 2017). Pharmacological

inhibition of ACSL4 in tumor cells has been proved to show

inhibition effects on ferroptosis. Also, knocking out ASCL4 in

cells reduced the level of PUFAs and eliminated the inhibitory

effect of RSL3 on GPX4, thereby inhibiting ferroptosis (Doll

et al., 2017), implicating that ASCL4 played a key role in RSL-

3-induced ferroptosis. Notably, ASCL4 has the ability to

enrich cell membrane lipids, thereby increasing the

susceptibility in cell to ferroptosis. Moreover, research

showed that protein kinase PKCβII, a lipid peroxide

sensing molecule, promoted and amplified ferroptosis-

related lipid peroxidation by phosphorylating

ASCL4 and accelerated the occurrence of ferroptosis

(Zhang H. L. et al., 2022). Meanwhile, Cytochrome

P450 oxidoreductase (POR) can also catalyze lipid

peroxidation of PUFAs, thereby promoting ferroptosis (Zou

et al., 2020).

Lipoxygenase (LOX) catalyzes the production of lipid

peroxides, as proof, Arachidonate 12-Lipoxygenase

(ALOX12), an isoform of the mammalian lipoxygenase

family, can inhibit p53-regulated ferroptosis via inhibiting

lipid synthesis function by specifically binding to SLC7A11,

which abolishes the function of p53 suppressing tumor growth

through ferroptosis (Chu et al., 2019). Also, over-expression of

5-LOX, p12-LOX, and 15-LOX-1 could enhance cellular

susceptibility to ferroptosis by catalyzing lipid peroxidation,

but these LOXs are likely to boost the initial stage of

ferroptosis by promoting the formation of lipid

hydroperoxides (Shah et al., 2018).

Energy stress

What’s more, cellular energy stress might also be closely

bound up with ferroptosis. For instance, activation of AMP-

activated protein kinase (AMPK) caused by energy stress can

inhibit the synthesis of certain anabolism such as PUFAs,

which further suppresses ferroptosis (Lee et al., 2020).

However, another study showed opposite results, which

pointed out that AMPK helped BECN1 inhibit the

transport of cystine by SCL7A11, and ultimately provoked

ferroptosis (Song et al., 2018). These two opposite findings and

the differences in the mechanisms involved may not be

sufficient to clarify the precise role of energy stress in

ferroptosis, but both indicated the critical roles of energy

stress in ferroptosis.

p53-mediated ferroptosis

Intriguingly, p53 was firstly found to suppress tumor

growth via the induction of ferroptosis instead of the

canonical way like apoptosis (Jiang et al., 2015). They

illustrated that p53 inhibited cystine uptake by repressing

the expression of SLC7A11, which sensitized cells to

ferroptosis. Significantly, Jiang et al. not only proposed a

new mechanism of tumor suppression but also disclosed

the latent relationship between p53 and ferroptosis. More

importantly, this non-canonical p53 activities provides a

brand-new perspective for other researches in many

diseases. Also, they further uncover that p53 acetylation is

crucial for p53-Mediated ferroptosis and tumor suppression

(Wang et al., 2016). However, it is still a mystery that

how p53 orchestrates the ferroptotic responses while it

executes its mission. Later, it was confirmed that SAT1

(spermidine/spermine N1 -acetyltransferase 1) gene induced

by p53 could trigger lipid peroxidation and sensitize cells

to ferroptosis (Ou et al., 2016). Moreover,

ALOX15 induced by SAT1 is the executioner of the

occurrence of ferroptosis. Meanwhile, p53-ALOX12 axis as

we mentioned before and BRD7 (bromodomain-containing

protein 7)-P53-SLC25A28 (solute carrier family

25 member 28) axis is also a part of the regulation

mechanism of p53-induced ferroptosis (Chu et al., 2019;

Zhang et al., 2020).

However, p53 can play a double-edged sword role in

mediating ferroptosis. p53 stabilization suppress ferroptosis

in response to systemXc
− inhibition, which is different from

previously identified function of p53 as a positive regulator of

ferroptosis (Tarangelo et al., 2018). At the same time,

TP53 surprisingly limits erastin-induced ferroptosis via

blocking dipeptidyl-peptidase-4 (DPP4) activity (Xie et al.,

2017). Increasing studies about p53-related ferroptosis have
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been published (Liu and Gu, 2022), gradually becoming an

indispensable puzzle piece of the whole quest to explore the

mechanisms of ferroptosis.

To date, mounting evidence has showed that the mechanisms

and functions of ferroptosis (Figure 2) and its complicated and

diverse relations with mutiple diseases. Intriguingly, these

FIGURE 2
Mechanism of ferroptosis. I. Ferritinophagy-related ferroptosis: the degradation of ferritin via autophagy causes the iron dysregulation, which
can lead to iron overload and trigger ferroptosis. II. GPX4 anti-ferroptosis way: GPX4 converts toxic lipid hydroperoxides to non-toxic lipid alcohols.
SystemXc

− exchanges cystine and glutamate in a ratio of 1:1. Cystine enters the cell and converts to cysteine for the synthesis of GSH, thus promoting
GPX4 protein synthesis and enhancing its antioxidant function. III. Rag-mTORC1-4EBP signaling axis: mammalian target of rapamycin complex
1 (mTORC1) and promotes GPX4 protein synthesis at least partly through the Rag-mTORC1-4EBP signaling axis. (Rag(Ras-related GTPase): Rag
GTPases play important roles in mTORC1 activation in response to amino-acid stimulation; eIF4E: eukaryotic initiate factor 4E; 4EBP(eIF4E binding
protein): binding to eIF4E and thus decreased GPX4 level. IV. p53-mediated ferroptosis: (1) acetylation of p53 is crucial for p53-induced ferroptosis;
(2) SAT1 activated by p53 induces ferroptosis via promoting ALOX15 expression;(3) the elevated BRD7 expression promote p53 mitochondrial
translocation, leading to the interaction betweenmitochondrial p53 and SLC25A28, which could lead to the abnormal accumulation of redox-active
iron and hyperfunction of electron transfer chain (ETC). (4) p53 promote ALOX12 binding with SLC7A11, eventually causing the inhibition of
SystemXc

− and triggering ferroptosis. (5) p53 inhibit erastin-induced ferroptosis via blocking the activity of DPP4. V. FSP1: FSP1 locates in the plasma
membranewhere it functions as an oxidoreductase that reduces coenzymeQ10 (CoQ). ReducedCoQ acts as a lipophilic radical-trapping antioxidant
that halts the propagation of lipid peroxides, thus inhibiting ferroptosis. VI. PE-OOH as a ferroptotic death signal: ferroptosis involves a highly
organized oxygenation center, wherein oxidation in endoplasmic-reticulum-associated compartments occurs on only one class of phospholipids
(phosphatidyletha- nolamines (PEs)) and is specific toward two fatty acyls—arachidonoyl (AA) and adrenoyl (AdA). Moreover, several key enzymes like
ASCL4, LPCAT3 and 15-LOX play a key role in proferroptotic system.
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mechanisms may shed light on therapeutic development in

different diseases in the future.

Ferroptosis and phagocytosis

Ferroptosis and DAMPs
Innate immune cells, the first line of defense against

infection, recognize pathogen-related molecular patterns

(PAMPs) through pattern recognition receptors (PRRs)

(i.e., Toll-like receptors (TLRs) and NOD-like receptors

(NLRs)), thus initiating basic, simple, and rapid defensive

responses to fight pathogen invasions (Thaiss et al., 2016).

Damage-associated molecular patterns (DAMPs) (i.e., high

mobility group protein B1 (HMGB1)) can be released from

the host to initiate the corresponding inflammatory response

against infections (Zindel and Kubes, 2020), such as regulating

the inflammatory responses induced by ferroptosis (Wen et al.,

2019). HMGB1 could increase through autophagy and bind to

advanced glycosylation end-product specific receptor (AGER) to

promote macrophage release tumor necrosis factor (TNF) in

response to erastin, sorafenib, RSL3, and FIN56 (ferroptosis

inducer 56) induced ferroptosis. In addition, knockdown of

HMGB1 reduced erastin-induced ROS generation and

suppressed TfR1 expression through the RAS-JNK/

p38 pathway, thereby regulating ferroptosis (Ye et al., 2019).

Ferroptosis and macrophages
TLRs are able to recognize PAMPs and DAMPs, and initiate

corresponding immune responses, such as the immune clearance

function of macrophages. Research believed that the efficiency of

macrophages to clear apoptotic cells was better than that of

ferroptotic cells (Kloditz and Fadeel, 2019). However, there is

also research considered that SAPE-OOH (1-steaoryl-2-15-

HpETE-sn-glycero-3-phosphatidyletha- nolamine), an oxidized

phospholipid molecule on the membrane of ferroptotic cells,

could be specifically recognized by TLR2, and thus provoked

macrophages to phagocytose ferroptotic cells as immune

clearance (Luo et al., 2021). Meanwhile, they found that

macrophages in TLR2 knockout mice also phagocytosed

ferroptotic cells well, suggesting that in addition to

TLR2 recognition of SAPE-OOH, there were other pathways

to maintain the phagocytic clearance of ferroptotic cells.

Significantly, Gao’s team observed that ferroptosis inducers

could induce ferroptosis in intracellular bacteria, thereby

assisting macrophages to inhibit the growth of intracellular

bacteria (Ma et al., 2022). In addition, they also dynamically

monitored ferroptosis markers in macrophages after 12 and 24 h

of bacteria infection and discovered that these markers increased

during early infection, but dropped back to normal at the late

stage. These results imply that ferroptosis has the potential to be

served as a potential therapeutic target for intracellular bacteria at

the early stage of infection.

What’s more, with the stimulation of pathogen infection,

TLR recognition, and interferon signal regulation,

macrophages usually differentiate into M1 macrophages

equipped with pro-inflammatory effects, while

M2 macrophages have the anti-inflammation and tissue

repair effects (Murray, 2017). Also, a study showed that

KRAS protein-encapsulated exosomes, secreted by

pancreatic ductal adenocarcinoma mouse cancer cells that

mediated by autophagy-dependent ferroptosis, could

combine with AGER on the surface of macrophages,

eventually promoting the differentiation of macrophages

toward M2 (Dai et al., 2020). While macrophages perform

functions such as endocytosis, the cells in aerobic environment

yet can’t lead to ferroptosis in M1 macrophages, because there

are a large number of inducible nitric oxide synthase (iNOS) in

the activated M1 cells, which plays an antioxidant role similar

to GPX4 (Kapralov et al., 2020). The high level of iNOS

eventually makes M1 macrophages be resistant to

ferroptosis, while conversely, M2 macrophages who lack

iNOS is more sensitive to ferroptosis. At the same time,

M1 macrophages can exert this protective function to

protect neighboring cells from ferroptosis by regulating

their resistance. Ferroptosis-related metabolism, such as

glutathione metabolism, also has an impact on macrophage

polarization. Adequate glutamine contributes to

M2 differentiation, if glutamine is deficient, the number of

M2 cells would decrease with the down-regulation of related

genes, leading to the significant down-regulation of TCA

(tricarboxylic acid) cycle transcriptional activity and

autophagy disorders (Jha et al., 2015). Obviously, the

relationship between ferroptosis, ferroptosis-related

metabolism and macrophage polarization, and the ability to

resist infection require more detailed researches.

One might wonder whether there are different correlations

between macrophage and ferroptosis. Indeed, macrophages not

only play a momentous role in anti-infection immunity but also

gobble up aging or injured red blood cells and regulate iron

homeostasis. Different polarization types of macrophages come

with different functions in regulating iron metabolism (Cairo

et al., 2011). It is widely known that iron contributes to the

growth of invading bacteria. Under the stage of infection,

M1 macrophages actively save iron in cells to limit the growth

of extracellular bacteria by reducing the expression of

ferroportin1 (FPN1), the only known iron exporter, and

increasing extracellular iron uptake (Ganz, 2009).

Consistently, iron deficiency can inhibit the growth of

intracellular bacteria (Paradkar et al., 2008). For example,

IFN-γ (Interferon-γ) limits the number of intracellular

bacteria by reducing iron intake and increasing

FPN1 expression (Nairz et al., 2008). In addition, contrary to

the function of M1 macrophages, M2 macrophages tend to

release iron to extracellular cells through FPN1 (Recalcati and

Cairo, 2021).
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Ferroptosis and neutrophil

Neutrophil is another important member of innate immune

system, which counteracts pathogens via somemechanisms, such

as phagocytosis and the production of NETs (neutrophil

extracellular traps) (Castanheira and Kubes, 2019). Many

published papers have told us the correlations between

ferroptosis and neutrophil in cancer, but there are still limited

information in infectious diseases. Proverbially, NETs are

weapons used by neutrophils to fight against microbes

(Brinkmann et al., 2004). However, in sepsis-associated acute

lung injury (ALI), NETs contribute to the pathological

progression through inducing ferroptosis in alveolar epithelial

cells (Zhang H. et al., 2022).

A paper illustrating precise cell death pathways and

signaling events orchestrate early inflammation after heart

transplantation is thought-provoking (Li et al., 2019).

They suggested that ferroptosis initiated neutrophil

recruitment through TLR4/Trif signaling pathways, which

reflected the possibilities of ferroptosis and relevant

signaling events affecting innate immune function. Also,

neutrophil-triggered ferroptosis occurred in tumor cell and

showed positive feedback for tumor progression (Yee et al.,

2020). These works collectively suggested that there

might also be some critical roles for neutrophil-triggered

ferroptosis against infections, which still need to be further

confirmed.

Ferroptosis and infectious diseases

Ferroptosis and viral infection

Tremendous progress has been made to defend against

pathogens invasion for a long time, a variety of vaccines have

been developed to guard against virus infection or to reduce

the symptoms of infection, but not all individuals can produce

high titers of antibodies to successfully prevent disease after

vaccination. Proverbially, T cell immunity is indispensable for

defending against virus invasion. Matsushita et al. found that

the immune function and virus clearance ability of GPX4-

deficient T-cell mice were impaired after being infected with

lymphocytic chorititis virus (Matsushita et al., 2015). Here,

GPX4 deficiency caused abnormal lipid peroxidation, which

led to T cell ferroptosis, thus weakening T cell immunological

responses against virus infection. However, vitamin E, which

has an antioxidant function, could restore the number of

T cells in mouse and enhance their antiviral response. After

that, Yao’s team reported that the occurrence of ferroptosis in

follicular helper T(TFH) cells in mouse and human tonsils after

ovalbumin injection, with higher levels of lipid ROS, MDA

(malondialdehyde), and 4-HNE in TFH cell compared with

non-TFH cells (Yao Y. et al., 2021). In addition, the same

phenomenon was also found in human peripheral blood.

Furthermore, combined with the result of Matsushita et al.

(Matsushita et al., 2015), they listed some opinions: I.

GPX4 selectively takes part in TFH cell immune responses,

II. Enhanced TCR signal increases the sensitivity of TFH cell to

ferroptosis, III. TFH cell immune response can be regulated by

ferroptosis. Also, with the treatment of selenium, the

GPX4 expression and the number of TFH cell were

increased, and the efficiency of antibody responses in mice

and teenagers after vaccination were elevated. In summary,

these results reveal that “selenium-GPX4-ferroptosis” plays a

crucial role in regulating TFH cell homeostasis, and can be

targeted to enhance the immune response of the human body

after vaccination, providing ideas and possibilities for

preventing viral infection and enhancing the immune

effects of the vaccine (Figure 3A). What’s more, antigen-

specific memory CD4+ T cells can persist and confer rapid

and efficient protection from microbial reinfection. mTORC2

(Mammalian rapamycin complex 1) is critical for long-term

persistence of virus-specific memory CD4+ T cells, which

ablation will induce aberrant mitochondrial ROS

accumulation and ensue ferroptosis-causative lipid

peroxidation (Wang et al., 2022).

Meanwhile, the expression of p53 in U251 cells infected by

Newcastle-disease-virus (NDV) was up-regulated, which led to

the decrease of SLC7A11 and GPX4 protein levels, while

knockdown of p53 reduced the ROS level (Kan et al., 2021).

And NCOA4-related ferritinophagy was triggered by NDV,

which could increase the level of intracellular ROS and

ferrous iron, and then trigger ferroptosis, indicating that NDV

could kill tumor cells in a ferroptotic way by inducing

ferritinophagy or inhibiting SLC7A11.

What’s more, lipid metabolism is involved in viral replication

by regulation of the formation, assembly, and release of

replicative organelles. ASCL4, a key factor involved in lipid

metabolism and ferroptosis, greatly promoted the replication

of some enteroviruses and coronaviruses (Kung et al., 2022). In

ASCL4 knockout cells, the viral titers of enteroviruses such as

CV-A6, coronaviruses such as Cov-229E, influenza virus (IAV),

and Zika virus were lower than those in the normal cells. In

addition, enterovirus CV-A6 and coronaviruses such as CoV-

229E, CoV-NL63, CoV-OC43, CoV-HKU1, and SARS-CoV-

2 could induce ferroptosis in cells by regulating

ASCL4 functions. Consistently, the inhibition of ASCL4 can

repress virus replication effectively by inhibiting ferroptosis,

which implicates the significance of ASCL4-induced

ferroptosis in viral replication.

Previous studies have implied that ferroptosis might

participate in the pathogenesis of COVID-19 (Figure 3B), as

proof, iron overload was relatively associated with the COVID-19

infection (Zhou C. et al., 2020). Increased hepcidin may raise the

risk of ferroptosis occurrence by iron accumulation in cellular,

which certainly suggest the therapeutic potential of iron

chelators. Ferroptosis inhibitors includes iron chelators, like
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the famous one DFO (deferoxamine), has been approved by the

FDA for the treatment of iron overload (Meyer, 2006).

Meanwhile, the induction of ferroptosis by SARS-Cov-2 could

be rescued by ASCL4 inhibitors (Kung et al., 2022). Also, SARS-

Cov-2 showed inhibitory effects on the expression of the

selenoprotein GPX4 mRNA level in vivo(Wang et al., 2021a).

Undoubtedly, targeting ferroptosis will pose some new

perspectives for preventing and controlling viral infections. At

the same time, the influence of SARS-CoV-2 and possible

immunosuppressive drugs can cause the temporal inhibition

of the humanbody immunological function, thus resulting in

active TB caused by reactivation or infection of M. tuberculosis

(Yang and Lu, 2020). Consequently, the co-infection of different

pathogens requires more attentions in the future.

Ferroptosis and bacterial infection
Previous studies have focused on the relationship between

iron and Mycobacterium tuberculosis (Mtb), although excess

iron could be extremely toxic to Mtb (Imlay et al., 1988; Byrd,

1997; Rodriguez, 2006), sufficient iron to some extent is

beneficial for the growth and propagation of Mtb in the

host (Gangaidzo et al., 2001; Schaible and Kaufmann,

2004). High concentrations of vitamin C could inhibit the

growth of MDR (multiple drug resistance)-Mtb in the

medium, leading to an increase of iron concentration in the

bacteria with more ROS generated through the Fenton

reaction, which in turn promoted lipid synthesis, caused

DNA damage, changed the redox homeostasis, and

ultimately inhibited the growth of MDR-Mtb (Vilcheze

et al., 2013). However, Amaral et al. firstly discovered that

Mtb-induced macrophage necrosis had many characteristics

of ferroptosis, accompanied by iron overload, lipid

peroxidation, and GPX4 downregulation in H37Rv-infected

macrophages in both vivo and in vitro, which greatly increased

the number of cell death (Amaral et al., 2019) (Figure 4A). And

importantly, a reduction in granulomatous inflammation was

observed in tissue sections with the treatment of ferrotstain-1

(Fer-1), and bacterial load in the lung of mice was also

FIGURE 3
Ferroptosis and viral infections. (A) The deletion of GPX4 in T cells selectively abrogated TFH cells functions via ferroptosis in immunized mice.
Importantly, selenium supplementation cloud enhance GPX4 expression in T cells, promoting TFH cell proliferation and boosting antibody responses
in immunizedmice. (Yao Y. et al., 2021). (B)During SARs-Cov-2 infection, the Gpx4mRNA level was decreased (Wang et al., 2021a) and iron overload
was observed (Zhou C. et al., 2020), and the induction of ferroptosis by SARS-Cov-2 could be rescued by ASCL4 inhibitors (Kung et al., 2022)
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decreased, suggesting that inhibition of ferroptosis might

contribute to the host cell resistance to Mtb to a certain

extent. Meanwhile, BACH-1, a transcription factor, can

disrupt iron homeostasis and redox by inhibiting GSH

synthesis or the expression of LIP homeostasis-related

genes, thereby promoting ferroptosis (Nishizawa et al.,

2020). Combined with this, they observed that the number

of intracellular bacteria and lung necrosis areas were reduced

after the knockout of BACH-1 (Amaral et al., 2020).

Consistently, the deficiency of BACH-1 in iron overload

and Mtb-infected macrophages could resist the impairment

of iron overload and ferroptosis (Aberman et al., 2021).

Commonly, the above studies suggest that BACH-1-related

ferroptosis may be a potential target for the effective treatment

of tuberculosis. But interestingly, ferroptosis can also help

macrophages kill intracellular bacteria such as s.aureas (Ma

et al., 2022) (Figure 4B), which is contrary to the above studies

to some degree, indicating that the mechanism of ferroptosis

in macrophage resistance to intracellular bacteria still needs to

be further explored.

Commonly, 15-lipoxygenases (15LOXes) can induce

ferroptosis by catalyzing lipid peroxidation (Kagan et al.,

2017). In general, lipoxygenase can’t be produced in bacteria,

but surprisingly, 15LOXes can be expressed in P. aeruginosa

(Vance et al., 2004). Moreover, Dar et al. firstly proposed that 15-

LOXes in P. aeruginosa could catalyze lipid peroxidation in

human bronchial epithelial cells, thereby inducing ferroptosis

and further spreading to surrounding cells and tissues (Dar et al.,

2018). Oxidative stress caused by P. aeruginosa is one of the most

important causes of cystic fibrosis in the human lung as P.

aeruginosa can elevate ROS in cystic fibrosis airway epithelial

cells. This could lead to lipid peroxidation and ultimately trigger

ferroptosis, while Fer-1 and other ferroptosis inhibitors could

improve the pathological condition of the diseased airway

(Ousingsawat et al., 2021), implicating that the inhibition of

ferroptosis was of great significance in the treatment of P.

aeruginosa.

In addition, some studies have also revealed the important

role of ferroptosis in the development of sepsis. For example, the

inhibition of lipopolysaccharide-induced ferritinophagy-related

ferroptosis could improve cardiac function and survival

prognosis in mice with lipopolysaccharide-induced cardiac

injury (Li et al., 2020). At the same time, itaconate, a

metabolite produced during inflammatory macrophage

FIGURE 4
Ferroptosis and bacteria infections. (A) Lipid peroxidation induces plasmamembrane destabilization, leading to ferroptosis-mediated cell death
with M. tuberculosis infection, and ferroptosis drives macrophages necrosis and allows M. tuberculosis to thrive and spread, which promote the
infection (Amaral et al., 2019). (B) Ferrous iron could be delivered to the intracellular bacterial vacuole via inward FPN transportation, eventually
inducing ferroptosis-like death of bacteria, which assists killing bacteria of macrophages (Ma et al., 2022).
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activation, could inhibit ferroptosis by up-regulating Nrf2

(Nuclear Factor erythroid 2-Related Factor 2) levels, thereby

alleviating the symptoms of acute lung injury (ALI) and the

presence of macrophages in the lung tissue infiltration (He et al.,

2022).

Ferroptosis and fungal infection
Cryptococcal meningitis (CM) is one of the most common

clinical fungal infections, especially in AIDS patients with

immunodeficiency. Notably, iron accumulation and lipid

peroxidation occurred in the brains of CM patients (Xu X.

et al., 2021), and ferritin levels in the cerebrospinal fluid were

significantly elevated (Campbell et al., 1986). Consistently,

iron overload exacerbates the condition of CM patients

(Barluzzi et al., 2002). Meantime, after Cryptococcus

infection of alveolar macrophages, significant intracellular

lipid peroxidation occurred, and a large number of high-

density lipid droplets were observed under electron

microscopy (Gross et al., 2000). In addition, Cryptococcus

infection of activated macrophages in the cerebrospinal fluid

of AIDS patients could promote the release of pro-

inflammatory cytokines and chemokines, which further

promoted the expression of DMT1 and FPN1, and

indirectly increased the extracellular iron uptake level of

cells, resulting in an intracellular iron surplus (Urrutia

et al., 2013; Jarvis et al., 2015). To date, no studies have

directly pointed out the role of iron excess and lipid

peroxidation in cryptococcus infection. However,

considering that excess iron can induce lipid peroxidation,

it can be assumed that there may be potential connections

among iron accumulation, ROS accumulation, ferroptosis,

and cryptococcus infection, which requires further

explorations.

Iron is of great significance both to the invading of bacteria

and fungi in human body. Patients with clinical liver

transplantation are prone to fungal infection, which seriously

threatens the patients. A retrospective study suggested that iron

overload was an independent risk factor for fungal infection after

liver transplantation, and controlling iron content before

transplantation could reduce the risk of fungal infection

(Alexander et al., 2006). Also, unlike ferroptosis regulated by

Fenton response mediated by LOXs or Fe2+, NOXs can regulate

ferroptosis induced by exogenous Fe2+ in Aspergillus flavus (Yao

L. et al., 2021). However, there are few published researches that

uncover the links between ferroptosis and fungal infections, such

as Candida, Aspergillus, and Saccharomyces infections.

Obviously, more works are needed to done to further explore

this terra incognita.

Ferroptosis and parasitic infection
Infection of GPX4-deficient mice with Leishmania could

lead to a reduction in the number of CD4+ T cells, which

contributes to the maintenance of Leishmania in vivo

(Matsushita et al., 2015). Malaria caused by Plasmodium

infection in humans is prevalent all over the world,

especially in Africa. Hence, the elimination of malaria is

particularly important for the public health (Cotter et al.,

2013). Once infected with malaria parasites, the host-owned

pattern recognition receptors recognize the PAMPs and

DAMPs of the parasite and activate immune cells to secrete

inflammatory factors, causing oxidative stress to generate a

large amount of ROS, which may eventually lead to cell death

(Cotter et al., 2013). What’s more, Singh et al. reported that the

mutation of amino acid 47 in human TP53 caused defects in

p53-induced ferroptosis, resulting in massive intracellular iron

accumulation in macrophages, which would lead to M2-

polarization of macrophages, eventually helping resist

Plasmodium infection but also promoting bacterial

infections such as Listeria (Singh et al., 2020). In addition,

malaria parasites can obtain sufficient iron from hemoglobin

by attacking red blood cells, but can also lead to excess ferrous

iron, exacerbating the Fenton reaction (Sena-Dos-Santos et al.,

2021). Obviously, Plasmodium infection is closely related to

iron homeostasis and ROS, and intracellular iron metabolism

is important for resistance to Plasmodium. Notably, the

SLC7A11-GPX4 pathway helps resist the infection of

liver Plasmodium (Kain et al., 2020). And p53 indirectly

suppresses the activity of GPX4 via inhibiting SLC7A11,

causing lipid peroxidation to kill Plasmodium. Apparently,

Plasmodium is sensitive to ferroptosis, and induction of

ferroptosis can protect against Plasmodium infection to a

certain extent.

Therapeutic potential of ferroptosis

Nowadays, glucocorticoids are used as clinical routine to

treat COVID-19, such as dexamethasone. However, this kind of

treatment comes along with dose-dependent side effects, which

might limit the therapy efficiency in clinical. Mässenhausen et al.

firstly discovered that dexamethasone sensitized ferroptosis by

GSH depletion (Von Mässenhausen et al., 2022). Dialectically, it

is crucial to understand the mechanisms of the side effects

brought by high dose of glucocorticoids. And importantly,

how can they minimize the ferroptosis damage of side effects

and optimize the clinical treatment effects of dexamethasone?

Meanwhile, hallmarks of COVID-19 are also associated with iron

overload and problematic ROS scavenging. Due to the research

we mentioned above (Meyer, 2006; Wang et al., 2021a; Kung

et al., 2022), we hypothesized that ferroptosis inhibitors had

potential to be a kind of adjuvant therapy, for example, could

ameliorate the side effects of ferroptosis damage from the use of

glucocorticoids, and impaire viral replication via iron chelation.

Suggestively, multiple interactions between SARS-Cov-2 and

ferroptosis may provide diverse perspectives in the exploration

of strategy for COVID-19 treatment.

Frontiers in Pharmacology frontiersin.org11

Xiao et al. 10.3389/fphar.2022.992734

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.992734


For the recent years, the therapeutic potential of ferroptosis

was widely discussed in cancer or other diseases, excepted for

infectious diseases. Although the concept of ferroptosis was

officially proposed until 2012, but its relevant mechanisms

had existed in many diseases for a long time. Table 1 and 2

may give us some hints or clues for the exploration of therapeutic

methods. These inhibitors or inducers are involved in many basic

biological processes, such as iron metabolism, redox reaction,

and protein synthesis. And these processes always appear to be

dysregulated in diseased conditions. And it is reasonable to seek

therapy targets via three aspects: iron overload, LPO and

GPX4 antioxidant system. Obviously, it is of worth to discuss

the possibility of therapy for these drugs in infectious diseases,

especially when close interrelationships between ferroptosis and

the diseases are showed. Crucially, what can iron accumulation,

lipid peroxidation damage and disrupted cellular redox

contribute to the treatment of infectious diseases? The

understanding of these works would further benefit the use of

ferroptosis for therapies.

Additionally, a summary table of the potential therapeutic

target or treatment of ferroptosis has been made up (Table 3).

Notably, among these possible options discussed here are a

combination of hypothesis stemming from in vivo or in vitro

researches.

Conclusion and perspectives

For many years, soaring progresses have been made in

delineating the mechanisms that modulate ferroptosis and its

TABLE 3 Summary of the relationships between ferroptosis and infectious diseases and potential therapeutic target or treatment.

Infectious disease Ferroptosis effects
on diseases or
model

Potential therapeutic
treatment or target

Bacteria infection

Mycobacteria tuberculosis infection Facilitates the necrosis of infected macrophages,
promotes the dissemination of Mtb in vitro

Inhibition of BACH-1 related ferroptosis Amaral et al.
(2020), Aberman et al. (2021), the use of Fer-1 Amaral
et al. (2019))

P. aeruginosa infection Catalyzes lipid peroxidation in human bronchial
epithelial cells, promotes the spreading to surrounding
cells and tissues

Inhibition of 15-LOXes-related ferroptosis, the use of
Fer-1 Ousingsawat et al. (2021)

Sepsis-induced cardiac injury Mitochondria damage caused by ferritinophagy-related
ferroptosis

Inhibition of NCOA4-related ferritinophagy, the
inhibiton of ferroptosis via upregulating Nrf-2, the use of
Fer-1 and Dexrazoxane (DXZ) He et al. (2022)

S. aureus, E. coli, S. pullorum, and S. enteritidis
infection

Ferroptotic stress promotes macrophages against
intracellular bacteria, inducing ferroptosis in bacteria (in
the mouse infection models)

Enhancing ferroptotic stress with sulfasalazine
suppressed bacteria Ma et al. (2022)

Listeria infection p53-induced ferroptosis results in massive intracellular
iron accumulation in macrophages, promoting infection

The inhibition of p53-induced ferroptosis Singh et al.
(2020)

Viral infection

U251 cells infected by Newcastle-disease-virus (NDV) Upregulated expression of p53 leads to the decrease of
SLC7A11 and GPX4 protein level; ferritinopahgy
induced ferroptosis

The inhibition of p53-related ferroptosis or NCOA4-
related ferritinophagy Kan et al. (2021)

enteroviruses (CV-A6) and coronaviruses (CoV-229E,
CoV-NL63, CoV-OC43, CoV-HKU1, and SARS-CoV-
2) infected in vivo

Upregulated expression of p53 leads to the decrease of
SLC7A11 and GPX4 protein level; ferritinopahgy
induced ferroptosis

The inhibiton of ASCL4 Kung et al. (2022)

COVID-19 Decreases the GPX4 mRNA level, upregulated hepcidin
cause deranged iron metabolism, promote infection

The inhibtion of ASCL4, the use of iron chelators like
DFO Meyer (2006); Wang et al. (2021a); Kung et al.
(2022)

Parasite infection

Leishmania infection Infection of GPX4-deficient mice with Leishmania leads
to a reduction in the number of CD4+ T cells, which
contributes to the maintenance of Leishmania in vivo

Enhancement of GPX4 expression Matsushita et al.
(2015)

Malaria p53-induced ferroptosis leads to M2-polarization of
macrophages, helping resist infection, p53-SLC7A11-
GPX4 pathways resist infection in liver

Induce the mutation of amino acid 47 in human TP53,
induction of p53-induced ferroptosis Singh et al. (2020)

Fungal infection

Cryptococcal meningitis Ferroptosis hallmarks were detected in clinical samples,
but no studies have directly pointed out the role of
ferrotptosis in cryptococcus infection

Hypothesize the inhibition of iron accumulation or lipid
peroxidation may contribute to the therapy Gross et al.
(2000)
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occurrence in different diseases (i.e., Parkinson’s, kidney diseases,

cancers), however, only a visble crack can be seen in the door of

infectious diseases. Therefore, bridging ferroptosis with

infectious diseases is particularly on the map. As we reviewed

above, multiple functions of ferroptosis in infectious diseases can

be generally considered as a double-edged sword (Figure 5). On

the one hand, ferroptosis poses threats to immune cells like

perturbing the normal immunity performance against infections

in macrophages. On the other hand, some kinds of “pro-

immunity” ways of ferroptosis, such as its occurrence in

pathogens inside defensing against the infection, causing the

release of DAMPs as PAMPs and activating the immune

responses, can facilitate the host control of infections. For

example, some intracellular pathogens evade the killing of

macrophages by immune escape while ferroptosis promotes

macrophages to kill intracellular bacteria, indicating that

ferroptosis may be used as a means of treating intracellular

bacteria. However, this effect might be inversed to show

impaired killing effects of host cells to the intracellular

bacteria due to the dysfunction of host cell ferroptosis. Such

fascinating facts undoubtedly point out the engaging connections

between ferroptosis and host immunity, especially in host cells,

such as macrophages. Obviously, more thorough clarifications

about the modulations and functions of ferroptosis in infectious

diseases are needed to be done.

Furthermore, relationships between ferroptosis-related

pathways, metabolism, and host immunity against infections

are also striking enough in the discovery tour. As proof, the

“selenium-GPX4-ferroptosis” pathway provides a novel insight

into the development and enhancement of vaccination.

Meanwhile, iron homeostasis, one of the key factors of

ferroptosis, to some degree is a tiger that host riding with.

Excess iron-induced ferroptosis causes the damage, but on the

bright side, NCOA4-mediated ferrtinophagy can possibly be

utilized by macrophages to kill intracellular bacteria via

inducing ferroptosis. Also, iron homeostasis is maintained by

various proteins and transcription factors, such as iron

chaperone proteins PCBP1, a negative regulator of ferroptosis.

Although the connections between PCBP1 and infectious

diseases haven’t been elucidated, these kinds of functional

molecules may provide more inspiration for the future work

in this field. Simultaneously, lipid metabolism involved in

infectious diseases, such as 15-LOXes in P. aeruginosa

catalyzed lipid peroxidation in human bronchial epithelial

cells to induce ferroptosis with increased damage, is also

worth to be mentioned. This means that ferroptosis-driven

lipid metabolism might be a target for the development of

infectious diseases. Similarly, it is reported that ROS, which

induces ferroptosis, mainly comes from mitochondria (Li

et al., 2021). Given the importance of mitochondrial as a

multifunctional unit in managing basic physiological events

and diverse host responses against infections, it makes sense

to extrapolate that modulation mitochondrial functions might be

a way to control ferroptosis pathways upon infections. In

FIGURE 5
Ferroptosis: a mixed blessing for infectious diseases.
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summary, compelling evidences indicate the complex

connections among physiological and pathological

metabolism, ferroptosis, and pathogen infections, which might

be a new entry points of therapy in infectious diseases.

Many researchers have proposed their perspectives about the

role of ferroptosis or illustrated the mechanisms involved in

infectious diseases. For example, While Amaral et al. suggested

the inhibition of ferroptosis might ameliorate the Mtb infection,

they also considered that simultaneously lessen tissue damage

while reducing pathogen burden and dissemination is an

attractive aspect of this strategy (Amaral et al., 2019). And

Yao et al. proposed that regulation of ferroptosis as a strategy

to boost humoral immunity in infection and following

vaccination (Yao Y. et al., 2021). Summarily, these diverse

perspectives elicit public an open mindedness in the

exploration of ferroptosis for infectious diseases treatment.

However, plenty of questions remain unknown, such as

whether it is possible to develop ferroptosis as target into a

new therapeutic method for infectious diseases or not. To what

extent can ferroptosis assist the host killing of pathogens, and

how can we minimize the damage of ferroptosis to host

physiological functions? How does ferroptosis mediate the

pathological progresses during the infections? How do

ferroptosis-related regulations affect the innate and adaptive

immunity against the infections? What are the similarities and

complementarities between ferroptosis and cell death such as

autophagy and necrosis in infectious diseases? Undoubtedly, tons

of puzzles sitting right there need us to solve in the future.

Delving into and thoroughly settling the mechanisms of

ferroptosis in host upon infections is a promising, yet albeit

challenging strategy to help conquer these diseases. And we

believe that with the increasing understanding of the relations

and underlying mechanisms between ferroptosis and infectious

diseases, the regulation of ferroptosis might be developed into

novel therapeutic strategy, which would further benefit the

control of the threatening infectious diseases.
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