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Introduction
Chimeric antigen receptors (CARs) are synthetic 
tumour-specific receptors that are genetically 
reprogrammed in vitro using a patient’s own T 
lymphocytes, which bind a tumour antigen in a 
major histocompatibility complex-independent 
manner, allowing T cells to recognise and kill 
antigen-expressing cancer cells. In the past few 
years, clinical trials using CAR T cells have dem-
onstrated high rates of response in the treatment 
of patients with haematological malignancies, as 
well as increased duration of remission in patients 
with acute lymphoblastic leukaemia (ALL),1,2 
chronic lymphocytic leukaemia (CLL),3 and par-
tial B cell lymphomas.4,5 CAR T-cell therapy has 
provided a new therapeutic option to patients with 
relapse/refractory haematological malignancies. 
Based on the results, the United States Food and 
Drug Administration (FDA) approved tisagenle-
cleucel in August 2017 for paediatric patients and 
young adults with B-cell ALL (B-ALL). 
Furthermore, in October 2017, the FDA approved 
CAR T-cell therapy for the treatment of B-cell 

lymphoma.6 A current challenge in CAR T-cell 
therapy is that a portion of the patients achieving 
remission following CAR T-cell therapy subse-
quently undergo relapse. The mechanism of 
development of resistance to CAR T-cell therapy 
is not completely understood. Some patients have 
been reported to demonstrate antigen-positive 
relapse due primarily to shorter duration of per-
sistence of CAR T cells, whereas others show 
antigen-negative relapses associated with lineage 
switching, acquired mutation and alternative 
splicing, epitope-masking and antigen downregu-
lation.7–15 The current review outlines the diverse 
strategies to overcome or reduce resistance to 
CAR T-cell therapy.

Basic structure and development of  
CAR T-cells
CAR T-cell therapy is a cellular therapy that redi-
rects a patient’s T cells to specifically target and 
destroy tumour cells. CARs are proteins expressed 
on the surface of T and natural killer (NK) cells, 
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which contain extracellular binding domains, a 
hinge region that mediates the linkage of extracel-
lular to transmembrane domains, a transmem-
brane domain and an intracellular signaling 
domain (Figure 1).16–20 In 1987, Kuwana et  al. 
first proposed the concept of CAR and con-
structed a prototype of CAR-T cells that specifi-
cally recognised tumour-associated antigens.21 In 
the first-generation CARs, the intracellular sign-
aling domain comprised solely a CD3ζ chain, a 
component of the endogenous T-cell receptor 
(TCR).22 These first-generation CARs showed 
minimal killing and persistence in vivo along with 
limited clinical benefits.23–28 Second-generation 
CARs incorporated co-stimulation into the CD3ζ 
construct. Most investigators work with second-
generation CARs, involving those that express the 
classical co-stimulatory molecules, namely the 
tumour necrosis factor (TNF) superfamily mem-
bers 9 (4-1BB) and 4 (OX40).29,30 However, 
some investigators have expanded their toolkit to 
include other types of co-stimulatory molecules 
into the CAR constructs, such as OX40, 4-1BBL, 
or inducible co-stimulator (ICOS).31–33 Studies 
have reported that second-generation CAR T 

cells demonstrated potent expansion and cytokine 
secretion abilities, and persistence of anti-tumour 
T cells both in vitro and in vivo.7,17,34–36 Third-
generation CARs containing three or more co-
stimulatory domains to boost T-cell activation 
signals, including CD28, 4-1BB, and CD3ζ, were 
developed to improve the design and enhance the 
activation of the second-generation CARs.37–45 
The fourth-generation CARs (T cells redirected 
for universal cytokine killing, TRUCKs) can 
secrete pro-inflammatory cytokines such as IL-12 
into the tumour microenvironment,46,47 which 
consequently improve the tumour eradication 
ability of these cells.48–52 

Efficacy of CAR T cells in the treatment of 
haematological malignancies
Haematological malignancies are one of the most 
common cancers among patients in China. 
Presently, haematological malignancies remain 
incurable and have a high recurrence rate and 
mortality. In recent years, novel gene and tar-
geted therapies have emerged for the treatment of 
patients with haematological malignancies; 

Figure 1. Schematic representation of CAR structure. CAR T cells are composed of three parts: (1) an scFv, 
(2) a transmembrane domain, and (3) a signal transduction domain of the TCR. First-generation CARs used a 
CD3ζ as the signal transduction domain of the TCR, whereas second-generation CARs include additional co-
stimulatory signaling domains (CD28 or 4-1BB). Third-generation CARs consist of two distinct co-stimulatory 
domains, such as both CD28 and 4-1BB. Fourth-generation CARs are additionally armored with genes that 
enable, for example, the expression of cytokines.
CAR, chimeric antigen receptor; scFv, single-chain variable domain of an antibody; TCR, T-cell receptor.
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however, clinical remission rates are limited. In 
2013, the journal Science summarised the top 10 
breakthrough technologies in the scientific com-
munity, with tumour immunotherapy topping the 
list. CAR T-cell therapy, as a special tumour 
immunotherapy, has demonstrated remarkable 
results in the treatment of patients with malignant 
tumours, especially lymphatic haematopoietic 
malignancies.

B-ALL
CAR T-cell therapy has emerged as a highly effec-
tive therapy for patients with relapsed or refractory 
B-ALL with previously limited treatment options. 
The therapy was reported to demonstrate com-
plete responses (CRs) ranging from 60% to 90% 
(Table 1).2,7,48–53 Relapse rates of approximately 
30–50% were reported in patients with B-ALL, 
with the majority being CD19-negative relapses.7 

In a phase II, single-cohort, 25-centre global 
study, 75 patients received an infusion of tisagen-
lecleucel and were followed up for at least 
3 months; the overall remission rate was 81%.54 A 
total of 45 patients (60%) had complete remission 
and 16 (21%) had complete remission with 
incomplete haematological recovery. Among the 
patients with complete remission, 17 experienced 
relapse before receiving additional anticancer 
therapy. Characterisation of CD19 status at the 
time of relapse showed that 1 patient had CD19-
positive and 15 had CD19-negative recurrence, 
whereas six patients had unknown status. Turtle 
et al. conducted a clinical trial on 29 patients with 
B-ALL who received CAR T cells, and demon-
strated a complete response (CR) rate of 93%. 
Among the patients with complete remission, nine 
had a relapse. Characterisation of CD19 status at 
the time of relapse showed that two patients had a 
CD19-negative relapse.55

Table 1. Summary of CAR T cells in the treatment of B-ALL, B-NHL and CLL.

Disease Patient populations Response and relapse References

B-ALL 53 adults 44/53 (83%) achieved a CR, the median overall survival was 
12.9 months.

Park et al.2

30 paediatric and adults 27/30 (90%) achieved a CR, seven patients who had a complete 
remission subsequently had a relapse between 6 weeks and 
8.5 months after infusion of CAR T cells.

Maude et al.7

75 paediatric and adults 45/75 (60%) had a CR, the rate of overall survival was 90% at 
6 months after infusion and 76% at 12 months after infusion.

Kochenderfer et al.54

21 paediatric and adults 14/21 (66.7%) achieved a CR. Lee et al.53

B-NHL 28 adults 6/14 DLBCL patients achieved a CR and 10/14 FL patients 
achieved a CR.

Schuster et al.60

7 adults 4/7 (57%) achieved a CR. Three patients are in ongoing CR at 
12 months post CAR T cells infusion.

Locke et al.63

101 adults CR rate was 54%. With a median follow-up of 15.4 months, with 
40% continuing to have a complete response.

Ye et al.66

15 adults 8/15 (53%) had a CR. Seven patients are in ongoing CR, ranging 
from 9 to 22 months post CAR T cells infusion.

Schuster et al.60; 
June and Sadelain61

7 adults 2/7 achieved a CR, one patient attained a PR, another four 
patients exhibited SD. Two patients are in ongoing CR at 
3 months and 13 months post CAR T cells infusion.

June and Sadelain61

CLL 14 adults 8/14 (58%) achieved an objective response, with 4/14 (29%) 
achieving a CR. CAR T cells persisted for >5 years in two 
patients with durable CRs.

Porter et al.59

3 adults 2CR, 1PR; two of whom experienced long-lasting CR. Porter et al.59

B-ALL, B-cell acute lymphoblastic leukaemia; B-NHL, B-cell non-Hodgkin lymphoma; CAR, chimeric antigen receptor; CLL, chronic lymphocytic 
leukaemia; CR, complete remission; DLBCL, diffuse large B-cell lymphoma; FL, follicular lymphoma; PR, partial remission; SD, stable disease.
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B-cell non-Hodgkin lymphomas and CLL
Previous research has shown remarkable rates of 
complete and durable remission in patients with 
CLL56–59 and B-cell non-Hodgkin lymphoma 
(B-NHL).23,56–61 CAR T-cell therapy has been 
approved for the treatment of lymphoma in 
adults, with a lower remission rate of approxi-
mately 50–70%.6,62–64 Furthermore, antigen loss 
has also been observed in such patients.65,66 In a 
multicentre, phase II trial, 111 patients with his-
tologically confirmed diffuse large B-cell lym-
phoma, primary mediastinal B-cell lymphoma, or 
transformed follicular lymphoma were enrolled, 
of which 101 received Axicabtagene Ciloleucel, 
an autologous anti-CD19 CAR T-cell therapy. 
The objective response rate observed in the 
patients was 82%, and the CR rate was 54%. At a 
median follow-up of 15.4 months, 42% of the 
patients continued to demonstrate a response, 
with 40% showing CR.6 Another clinical trial 
enrolled 28 adult patients, wherein complete 
remission occurred in 6 out of 14 patients with 
diffuse large B-cell lymphoma and in 10 out of 14 
patients with follicular lymphoma.59,66 Porter 
et  al. treated 14 adult patients with CLL using 

CD19 CAR T cells, and reported CR in 4 (29%) 
patients.59

Underlying mechanisms of resistance
Two main mechanisms have been recognised in 
relapse following CAR T-cell therapy, including 
antigen-negative and antigen-positive relapses.

Antigen-positive relapse
Antigen-positive relapse has been assumed to be 
due primarily to short persistence of CAR T 
cells7; however, it can also occur in association 
with a suppressive tumour microenvironment.67 
The reasons for loss of CAR-T cell persistence 
are complex and might be difficult to determine 
in individual patients. According to a trial by Park 
et al., shorter duration of persistence of the CD19-
CD28-ζ CAR T cells employed by Memorial 
Sloan Kettering Cancer Center (MSKCC) could 
partially explain the low rate of CD19-positive 
relapse.2 In another study, although the CR rates 
in the cohort were robust, early relapse was noted 
in a subset of patients, associated with loss of 

Figure 2. Mechanisms of resistance to CAR-T cell therapy. (A) Lentiviral modification of a single leukemic 
cell allowed for joint CAR19 and CD19 expression on their cell surface, effectively masking the CD19 epitope 
from CAR T cells. (B) Tumour cells can switch to a genetically related but phenotypically different disease. (C) 
Tumour cells, through genetic mutations, can either completely lose CD19 receptor expression or modify the 
CD19 receptor that lack the extracellular epitopes recognised by CAR T cells. (D) Tumour cells downregulate 
the surface target antigen to levels below those needed for CAR T cells activation.
CAR, chimeric antigen receptor.
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CAR T cells in the blood due to an anti-CAR 
T-cell immune response to the epitopes in the 
murine single-chain variable fragment (scFv). 
This mechanism was reported to contribute to 
the early loss of CAR T cells in some patients 
after the use of a CAR containing a murine scFv.68

Antigen-negative relapse
The reason for antigen-negative relapse was 
unclear. Since the antigen-negative relapse has 
been considered a major barrier to CAR-T thera-
pies, studies have uncovered multiple mecha-
nisms responsible for the antigen-negative relapse, 
which are described below.

Epitope-masking. Ruella et  al. described a rare 
case of a 20-year-old man with B-ALL who had 
suffered three chemotherapeutic relapses. He was 
enrolled in a phase I trial [ClinicalTrials.gov identi-
fier: NCT01626495] to evaluate the safety, feasi-
bility, and engraftment of CD19-targeted CAR T 
cells (CTL019) in paediatric and young adult 
patients with B-ALL.10 The patient was in com-
plete remission at day 28 after infusion. However, 
he experienced relapse after 9 months of the CAR 
T-cell therapy with CD19-negative disease. Ruella 
et al. probed this patient’s CD19-negative relapse, 
ruling out CD19 mutations and splicing variants, 
and found that the anti-CD19 CAR had been 
introduced into a single leukaemic B cell during 
manufacturing of the CD19 CAR T cell. This 
tumour clone was infused into the patient along-
side the CAR T-cell therapy and eventually 
expanded, which led to disease progression and 
death. The study reported that resistance to 
CTL019 occurred not due to loss of target by the 
leukaemic blasts, but due to the CAR molecule 
bound to adjacent CD19, which effectively masked 
the CD19 epitope from CAR T cells in the patient. 
Ruella and his team were able to create a model of 
this phenomenon, known as ‘epitope masking’ 
(Figure 2A), both in vitro and in vivo.

Lineage switch. Lineage switch occurs when a 
patient experiences relapse with a genetically 
related but phenotypically different malignancy 
(Figure 2B), which might be a mechanism for 
antigen loss after CAR T-cell therapy observed in 
clinical trials.9,69–72 Evans et  al. reported relapse 
after CD19 CAR T-cell therapy in a patient with 
CLL with Richter’s transformation. The patient 
demonstrated a plasmablastic lymphoma, which 
is inherently CD19-negative.73 A group of 
researchers from Seattle reported that two of the 

seven patients with B-ALL harbouring rearrange-
ment of the mixed lineage leukaemia gene experi-
enced relapse with CD19-negative AML following 
treatment with CD19 CAR T cells.9

Receptor genetic mutations. Acquired mutations 
and alternatively spliced CD19 alleles in the 
malignant B cells are other mechanisms for 
CD19-negative relapse following CD19-targeted 
CAR T-cell therapy (Figure 2C). Sotillo et  al. 
found that exon 2 of CD19 was frequently spliced, 
leading to the disappearance of the CD19 epit-
ope, which is recognised by CAR T cells.8 In addi-
tion, they observed the variants Δexon-5, 6, which 
lack the transmembrane domain of CD19, 
thereby leading to loss of surface expression. Fur-
thermore, they observed that the CD19 protein 
was present in some patients; however, it was 
truncated due to lack of the epitope required to 
trigger CAR T cell recognition for lysis. The 
Orlando trail identified mutations in CD19 in all 
12 specimens at the time of relapse.74 Mutations 
were found throughout exons 2–5 of CD19. 
Encoding of the transmembrane domain begins 
at exon 5; therefore, variants in exons 2–5 have 
been predicted to lead to a truncated protein 
lacking membrane anchorage. Each patient in the 
study had at least one unique frameshift insertion 
or deletion and, in some cases, missense single 
nucleotide variants were also observed, and alter-
native splicing occurred with rare frequency. 
Therefore, acquired mutations and alternative 
splicing could be other possible mechanisms 
responsible for antigen-negative relapse.75,76

Antigen downregulation. Partial antigen loss may 
be considered a mechanism for resistance to CAR 
T-cell therapy due to antigen downregulation 
(Figure 2D).11–15 During the course of antigen 
recognition, natural TCRs produce a highly organ-
ised immune synapse that can recognise an anti-
gen at a very low density.77,78 However, the 
immune synapse created during antigen recogni-
tion by CARs is less organised than that by a natu-
ral TCR.79 These distinctions are likely to 
significantly affect the quality of responses induced 
in T cells expressing CARs. Fry et  al. observed 
that relapses in patients treated with a CD22 CAR 
were associated with diminished and variable 
CD22 site density on B-ALL cells.11 The investi-
gators further demonstrated in animal studies that 
differential levels of CD22 on leukaemic cells 
could have a dramatic impact on the anti-cancer 
efficacy. Another study using a CD20 CAR dem-
onstrated that a threshold level of around 200 

https://journals.sagepub.com/home/tam


Therapeutic Advances in Medical Oncology 12

6 journals.sagepub.com/home/tam

antigen molecules per target cell was required to 
induce lysis, while approximately 10-fold higher 
numbers of molecules were needed to stimulate 
cytokine production.13 Therefore, the signal 
strength and effector function of CARs might be 
limited by density of the tumour antigens.

Overcoming resistance to CAR T-cell therapy

Improving CAR T-cell design
Selection of effector T cells. Effector T cells are 
the main processing plant for the biological activ-
ity of CARs, and play a crucial role in the anti-
tumour effect and duration of action of CARs. 
Accurate detection and isolation of the most 
potential subpopulations of T cells before in vitro 
expansion can improve the outcomes of CAR 
T-cell immunotherapy. The cytotoxic activity and 
proliferative capacity of effector memory T cells 
are superior to that of central memory T cells 
(TCM) in vitro; however, TCMs have the poten-
tial to induce immune memory, as well as exert a 
longer lasting anti-tumour activity.80 Stem cell 
memory T cells (TSCM) have the property of 
persistent self-renewal; therefore, these cells have 
the potential for high proliferation and  persistence.81 
Thus, the process of inducing the conversion of 
CAR T cells into TCMs and TSCMs could be  
an alternative method to prevent antigen- positive 
recurrence by enhancing the response and persis-
tence of the cells.

Antigen density. Numerous studies have demon-
strated that antigen density on tumour cells cor-
relates with the efficacy and remission durability 
of CAR T cells in patients with leukaemia and 
lymphoma.13,15,82–85 A recent research demon-
strated that upregulation of CD22 on the cell sur-
face improved CAR T cell functionality and 
long-term persistence.82 Moreover, Bryostatin 1, 
a drug that is being administered safely to humans, 
can increase the expression of CD22 in leukaemia 
and lymphoma cell lines, resulting in longer dura-
tion of in vivo response. Another research found 
that γ-secretase inhibitors could markedly increase 
surface levels of BCMA on myeloma cells, thereby 
improving tumour recognition by CAR T cells in 
vitro and enhancing anti-tumour efficacy of 
BCMA-targeted CAR T-cell therapy.86

Selection of co-stimulatory molecules. The co-
stimulatory molecules in the intracellular signal-
ling region of the CAR T cells play an important 
role in regulating T cell expansion, duration, and 

anti-tumour effects; however, the biological 
activities of individual costimulatory molecules 
are different. Common costimulatory molecules 
include CD28, 4-1BB, OX40, ICOS, and CD27, 
of which CD28 and 4-1BB can effectively pro-
mote the secretion of IL-2 and IFN-γ. Studies 
have shown that 4-1BB can effectively promote 
the expansion of memory T cells and reduce the 
depletion of persistent CAR T signals.45 Thus, 
CAR T cells incorporating a 4-1BB costimula-
tory molecule might lead to a reduced antigen-
positive relapse. Hombach et al. proved that CAR 
T cells containing CD28 costimulatory mole-
cules were more effective than those containing 
CD28-OX40, because CD28-OX40 are capable 
of promoting activation-induced cell death and 
reduce anti-tumour activity.87 Other studies have 
shown that CAR T cells with two co-stimulants 
(such as CD28 and 4-1BB) were more effective in 
improving the survival and cytotoxicity of T cells 
than CAR T cells with a single co-stimulatory 
molecule. The above studies indicate that co-
stimulatory molecules greatly affect the efficacy 
of CAR T-cell therapy; however, further in vitro 
and in vivo research is necessary to determine the 
optimal type and number of co-stimulatory 
molecules.

Fully human CARs. Presently, clinical trials com-
monly use the CAR scFv segment of murine ori-
gin, which has high affinity and immunogenicity. 
CAR T cells with high affinity have poor ability to 
distinguish tumour cells with high levels of target 
antigen from normal cells with low expression. 
Furthermore, the human body will reject CARs 
with high immunogenicity, considering them for-
eign bodies. Reducing immunogenicity of CARs 
using fully human scFvs could improve the per-
sistence of CAR T cells and their functions against 
tumour cells.88–90 Sommermeyer et  al. reported 
that CARs constructed from fully human CD19-
specific scFvs exhibited superior function in vitro 
and in vivo compared with the FMC63 CAR uti-
lised in clinical trials.91 Specifically, fully human 
CD19-specific scFvs were more effective in lysing 
CD19+ target cells, produced higher levels of 
cytokines, and proliferated more after activation 
compared with murine scFv.

Armoured CAR T cells. Armoured CAR T cells are 
modified to co-express cytokines and co- stimulatory 
molecules in order to enhance the anti-tumour 
immune response by converting a suppressive 
tumour microenvironment into a  proinflammatory 
one.92 For example, CAR T cells armoured to 
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secrete IL-12 enhance the cytotoxic activity of 
CD8+ T and NK cells and stimulate a Th1 helper 
T cell response.93 CD40L expressed in armoured 
CAR T cells increased the cytotoxicity of these 
cells in vitro and prolonged survival of lymphoma-
bearing mice. CAR T cells armoured with 4-1BBL 
has been reported to exert immunostimulatory 
effects.94 However, the effectiveness of this 
approach needs further clinical translation as the 
results have been predominantly proven on pre-
clinical models.

Universal CAR T cells. Universal CAR T cells are 
used in genome-editing technologies such as zinc 
finger nuclease, transcription activator-like effec-
tor nuclease (TALEN) and CRISPR-Cas9 to 
knock out TCR, human leukocyte antigen and 
other related signaling pathway genes on donor T 
cells,95 thereby reducing the risk of graft-versus-
host disease and immune rejection. Furthermore, 
simultaneously knocking out immune check-
points such as programmed death-1 (PD-1) has 
been shown to enhance the function of CAR-T 
cells.95–98 Waseem et al. used TALEN to knock out 
TCR and CD52 on CAR T cells targeting CD19 
for the treatment of patients with refractory ALL, 
and reported improvement in the condition of the 
patients within 28 days after treatment. The 
results proved the safety and effectiveness of uni-
versal CAR T-cell immunotherapy for the first 
time.97 Therefore, use of universal CAR T cells 
might be another possible strategy to overcome 
resistance to CAR T-cell therapy.

Multi-targeted CAR T cells. Strategies to  overcome 
the relapse rate due to antigen loss following  
CAR T-cell therapy can be combined with the 

following approaches: (a) T-cell products that are 
separately transduced for different CARs can be 
infused together or sequentially; (b) use of a sin-
gle vector that encodes two or three different 
CARs on a single T cell (bicistronic CAR); or (c) 
encode two CARs on the same chimeric protein 
using a single vector (tandem CAR) (Figure 3). 
Majzner et al. described these different approaches 
in a review.12 Many of these approaches are cur-
rently being investigated in clinical trials on 
patients with haematological malignancies.11,99–101 
A recent study investigated the clinical efficacy of 
bispecific tandem CAR T cells directed against 
both CD19 and CD20 antigens in patients with 
relapsed/refractory (R/R) B-cell NHL.102 In addi-
tion, Ruella et al. reported that dual CAR CD19 
and CD123 overcame both antigen escape and 
lineage switch.103 Several clinical trials are under-
way to test multi-specific CAR T cells; however, 
the effectiveness of these approaches remains to 
be established.

Improvement of tumour immune 
microenvironment
Improving the tumour immune microenvironment 
can greatly improve the immune efficacy of CAR 
T cells and reduce the adverse events. However, 
due to the complexity of the tumour microenviron-
ment and the diversity of regulatory mechanisms, 
clinical efficacy cannot be achieved by monother-
apy. The main regulatory mechanisms of the 
immune microenvironment can be combined 
with the following comprehensive treatments.

Studies have proved that addition of an agent 
blocking the PD-1 immunosuppressive pathway 

Figure 3. Targeting more than one antigen receptor approaches. (A) Coadministration-producing two separate 
CAR-T cell products and infusing together or sequentially. (B) Bicistronic CAR-using a single vector that 
encodes two or three different CARs on a single T cell. (C) Tandem CAR-encoding two CARs on same chimeric 
protein using a single vector.
CAR, chimeric antigen receptor.
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(anti-PD-1) greatly improved the efficacy of CAR 
T cells by inhibition of the interaction between 
PD-1 and its ligands PD-L1/PD-L2.104,105

Similarly, chemotherapy and radiotherapy can 
improve immunosuppression by inducing apop-
tosis of or specifically removing regulatory T cells 
(Tregs). Moreover, eradication of Tregs can 
enhance the cell response and increase levels of 
CAR T cells.106 One study found that chemother-
apy based on low-dose cyclophosphamide could 
effectively eliminate Tregs and exert immu-
nomodulatory effects. A combined immunother-
apeutic approach has been reported to improve 
the prognosis.107

The cytokines TGF-β and IL-10 are the major 
immunosuppressive factors, and downregulate the 
expression of TGF-β and IL-10 receptors on T 
cells by genetic engineering methods, to improve 
the efficacy of CAR T cells. In addition, activation 
factors such as IL-2, IL-12, and IL-15 can promote 
the immune function of effector T cells by creating 
a microenvironment that is conducive to the sur-
vival and efficacy of T cells, resulting in more effec-
tive anti-tumour effects by inducing the secretion of 
activating factors by CAR T cells.47,108,109

Combination therapy
Combining CAR T-cell therapy with other agents, 
such as Bruton tyrosine kinase inhibitors, may 
reduce recurrence after infusion and improve long-
term survival. Fraietta et  al. reported that treat-
ment with ibrutinib could significantly increase the 
implantation and expansion of CAR T cells in 
patients with CLL, and enhanced its targeted cyto-
toxic activity.110 The outcomes could be attributed 
to downregulation of immunosuppressive recep-
tors and improvement in the proliferation and acti-
vation functions of T cells by ibrutinib.110,111 On 
the other hand, differentiation of Th2 cells could 
have been inhibited and immune response of Th1 
cells could have been promoted by inhibiting the 
activity of IL-2 mediated T cell kinase.112 Other 
studies have shown superior effectiveness of the 
combined therapeutic approach than ibruti-
nib113,114 or CAR T-cell monotherapy,115 thus pro-
viding a new research direction to address the issue 
of resistance to CAR T-cell therapy.

Conclusion
In conclusion, advancements in our understand-
ing of the mechanisms of resistance to CAR T-cell 

therapy are leading to new insights regarding this 
treatment. Novel strategies are being developed 
to overcome the resistance and improve clinical 
outcomes in patients with relapsed and refractory 
haematological malignancies. Various treatment 
approaches, such as targeting more than one anti-
gen receptor, armoured CAR T-cells, fully human 
CAR T cells, CAR NK-cell therapy, and combi-
nation therapies with other immunotherapeutic 
agents are being explored to overcome the issue 
of resistance. However, the effectiveness of the 
aforementioned treatments remains unclear. 
Thus, further research is needed to maximise the 
duration of responses while minimising the risk of 
relapse.
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