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The Arctic is undergoing rapid environmental change, potentially affecting the

physicochemical constraints of microbial communities that play a large role in

both carbon and nutrient cycling in lacustrine environments. However, the microbial

communities in such Arctic environments have seldom been studied, and the drivers

of their composition are poorly characterized. To address these gaps, we surveyed the

biologically active surface sediments in Lake Hazen, the largest lake by volume north of

the Arctic Circle, and a small lake and shoreline pond in its watershed. High-throughput

amplicon sequencing of the 16S rRNA gene uncovered a community dominated by

Proteobacteria, Bacteroidetes, and Chloroflexi, similar to those found in other cold and

oligotrophic lake sediments. We also show that the microbial community structure in this

Arctic polar desert is shaped by pH and redox gradients. This study lays the groundwork

for predicting how sediment microbial communities in the Arctic could respond as climate

change proceeds to alter their physicochemical constraints.

Keywords: microbial diversity, microbial community composition, arctic lakes, lake sediments, high-throughput

sequencing, machine learning

INTRODUCTION

While human-induced climate change is a global reality, its effects are amplified in the
Arctic, severely impacting freshwater ecosystems there. Indeed, increases in air temperature and
precipitation lead to enhanced glacial melt and runoff (Bliss et al., 2014), permafrost thaw (Mueller
et al., 2009), and a reduction in ice-cover duration (Vincent and Laybourn-Parry, 2008). In response
to these changes, High Arctic lakes can undergo shifts in their temperature, light and nutrient
availability, pH, and salinity (Mueller et al., 2009; Lehnherr et al., 2018). Changes in these abiotic
factors can be expected to influence the structure of microbial communities which, in turn, can
then affect their physicochemical environment, for example through nitrogen fixation, organic
carbon mineralization, or sulfate reduction. However, the microbial communities inhabiting
polar lake sediments are still poorly characterized, and what drives community composition is
relatively unknown. Although over the past few years several studies taking place in the polar
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regions have used next-generation sequencing to characterize
microbial communities (Stoeva et al., 2014; Emerson et al., 2015;
Hauptmann et al., 2016; Schütte et al., 2016; Wang et al., 2016;
Mohit et al., 2017; Thaler et al., 2017), data on sediment microbial
communities in these environments is still sparse. The available
data are also biased toward small lakes and thaw ponds, thus
underrepresenting large arctic lakes.

To predict how environmental changes might impact future
freshwater quality and productivity in the Arctic, we first need
to understand the structure of the microbial communities that
are mediating the biogeochemical cycles in these environments.
This is usually achieved by PCR amplicon sequencing of the
16S rRNA gene, which is commonly used as a phylogenetic
marker gene for bacteria and archaea. To move beyond
the structural description of a microbial community, we
need to understand (i) how the environment is shaping
a community, and (ii) how a community, in turn, shapes
its environment. Metrics describing microbial community
structure can be correlated with physicochemical variables using
multivariate methods, such as Non-metric MultiDimensional
Scaling (NMDS), (un-)constrained correspondence analysis,
or cluster analysis (Buttigieg and Ramette, 2014). However,
most of these approaches remain descriptive, and assume
that the relationships between community composition and
abiotic factors are linear. To address these limitations, machine
learning methods have been used, for instance to predict disease
progression from human gut microbiomes (Pasolli et al., 2016),
to determine the factors affecting microbial diversity in soil (Ge
et al., 2008), or to show that pH controls microbial diversity in
acid mine drainage (Kuang et al., 2013). More recently, Beall
et al. (2016) identified Operational Taxonomic Units (OTUs)
with different abundances between high and low ice conditions
in lakes, while Sun et al. (2017) predicted that very low levels
of antimony [Sb(V)] and arsenic [As(V)] increase microbial
diversity in soils. However, such machine learning approaches
have not yet been used to characterize the drivers of microbial
diversity in Arctic freshwater environments. Without a full
metagenomics or metatranscriptomics dataset, it is difficult
to properly describe a functional link between community
structure and function. When such data are unavailable,
studies have suggested that amplicon-based sequencing data be
used to make limited functional predictions of environmental
microbial communities (Louca et al., 2016b). This type of
functional prediction relies on the presence of taxa known
to participate in well characterized biological processes or
functions (e.g., oxygenic photoautotrophy, sulfate reduction, and
methanogenesis; Langille et al., 2013; Aßhauer et al., 2015; Louca
et al., 2016b) but has yet to be applied to undersampled and / or
extreme environments such as high arctic lake sediments.

Here, we characterized over a period of two years the
microbial community structure in sediments collected from
freshwater systems in the Lake Hazen watershed, located in
Quttinirpaaq National Park on northern Ellesmere Island,
in Nunavut, Canada (82◦N, 71◦W; Figure S1). Bacterial
and archaeal 16S rRNA gene amplicon sequencing from
environmental DNA samples allowed us to characterize the
microbial communities across space and time. Taking advantage

of recent developments in machine learning, we determined
the physicochemical drivers of the community structures, and
use functional mapping of the community structure (Louca
et al., 2016b) to make predictions about the sediment microbial
communities.

MATERIALS AND METHODS

Collection of Sediment Cores and
Associated Chemistry
The Lake Hazen watershed is a polar oasis with temperatures
higher than usually found at similar latitudes (Keatley et al.,
2007) due to the influence of the Grant Land mountains in
the northwest. Sediment cores were collected from three water
bodies within the watershed: Lake Hazen itself, Pond1, and
Skeleton Lake (Figure S1). Lake Hazen (74 km long, up to 12 km
wide, area 54,200 ha, max. depth of 267m; Figure S2a) is the
world’s largest lake by volume north of the Arctic Circle. It is
primarily fed by runoff from the outlet glaciers of the Grant Land
Ice Cap and drained by the Ruggles River to the northeastern
coast of Ellesmere Island. Lake Hazen has a relatively stable
year-round water temperature of ∼3◦C (Reist et al., 1995), is
fully ice covered in the winter (Latifovic and Pouliot, 2007),
and is ultra-oligotrophic (Keatley et al., 2007). Lake Hazen is
monomictic, mixing fully in the summer partially influenced by
turbidity currents originating from the glacial inflows (Lehnherr
et al., 2018). A slight reverse temperature stratification (i.e.,
lower temperatures right below the ice) develops during the
winter. The surface sediments of Lake Hazen are soft silts,
with a total organic carbon content between 3.1 and 8.3%.
The bathymetry and geochemistry of Lake Hazen have been
thoroughly characterized in Köck et al. (2012). While large
lakes like Lake Hazen are rare in the Arctic, small lakes and
shallow ponds are a characteristic feature of the Arctic landscape.
Skeleton Lake (1.9 ha, max. depth 4.7m; Figure S2b) is fed
by permafrost thaw waters, and subsequently drains through
two ponds, a wetland, and a small creek before flowing into
Lake Hazen (Emmerton et al., 2016). Pond1 (0.1–0.7 ha, max.
depth 0.5–1.3m; Figures S2c,d) is located along the northwestern
shore of Lake Hazen. In high glacial runoff years, Pond1 may
become hydrologically connected to Lake Hazen as water levels
rise (Emmerton et al., 2016; Figure S2d). The organic carbon
content of the sediments in Pond1 ranges from 7.0 to 10.4%
and in Skeleton Lake from 13.0 to 35.1%. Skeleton Lake and
Pond1 are fairly productive in the summer with photosynthesis
by macrophytes, mosses, and algal mats that cover the sediments
(Figure S2c), despite their low chlorophyll a concentration
(Keatley et al., 2007; Lehnherr et al., 2012). Some of the
productivity in Skeleton Lake and Pond1 might also be driven
by carbon and nutrients originating from fecal matter of birds
as both sites are important nesting habitats. In the summer,
their water temperature can rise to 19◦C, but in the winter, ice
cover reaches to the bottom in Pond1 and shallower (<2m)
parts of Skeleton Lake. The water columns of both Skeleton
Lake and Pond1 are depleted of O2 during the winter because
of heterotrophic activity.
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Short sediment cores were collected over three field
expeditions: (i) in spring 2014 from two sites in Lake Hazen
itself (Snowgoose Bay [depth: 44m] and Deep Hole [258m];
Figures S2a, S3a), (ii) in spring 2015 from three sites in Lake
Hazen (off John’s Island [141m], Snowgoose Bay [50m], and
Deep Hole [261m]) plus one site at the center of Skeleton
Lake [4m] (Figures S1, S3b), and (iii) in summer 2015 from
Pond1 [1.5m] plus a shallow shoreline site [0.3m] in Skeleton
Lake (Figures S1, S3c,d). In spring, all sites were covered with
just less than 2m of snow-covered ice; in summer, samples
were collected during open water (ice-free) conditions. At
each site, three intact replicate cores were collected for DNA
extraction, and determination of physicochemical profiles and
of porewater chemistry. All sediments were collected either with
an UWITEC (Mondsee, Austria) gravity corer (deep sites), or
manually (shallow sites in Pond1 and Skeleton Lake) into 86mm
inner diameter polyvinyl chloride core tubes. Due to logistical
constraints, only a single core was available for DNA extraction
from each time and site. Cores for DNA extraction were
sectioned in 0.25 cm (spring 2014) or 0.50 cm (summer 2015)
intervals immediately after sampling, preserved in InvitrogenTM

RNAlaterTM (Thermo Fisher Scientific Inc.,Waltham,MA, USA),
and stored at −18◦C before DNA extraction. Contamination of
samples was minimized by cleaning the sectioning equipment
between each section and wearing non-powdered latex gloves
during sample handling. In spring 2015, whole cores were
frozen directly after sampling at −18◦C, transported back
to the University of Ottawa, and sectioned at 1 cm intervals
while frozen. Surfaces of the sections in contact with the non-
sterile sectioning equipment were scraped clean with bleach-
sterilized tools in a laminar flow hood (HEPA 100) before
subsampling from the middle of the sections. Redox potential,
pH, [H2S], and dissolved [O2] profiles were measured at
100µm intervals in the field within an hour of collection, using
Unisense (Aarhus, Denmark) microsensors connected to the
Unisense Field Multimeter (Tables S1, S2). Redox and [H2S]
data were unavailable for summer 2015 cores because of broken
microsensors. For the summer 2015 cores [NO−

3 ], [Cl
−], and

[SO2−−
4 ] were also measured in sediment porewaters by ion

chromatography (Table S2). Cores used for analyses of porewater
chemistry were sectioned at 1 cm intervals into 50ml falcon tubes
in the field, followed by flushing of any headspace with UHP N2

before capping. Tubes were then centrifuged at 4,000 rpm, after
which the supernatant was filtered through 0.45µm cellulose
nitrate filters into 15ml tubes, which were then frozen until
analysis at the Elemental Analysis and Stable Isotope Ratio Mass
Spectrometry Laboratory (Department of Renewable Resources,
University of Alberta). Concentrations for H2S were set to 0
where it was not detected with the microsensors. For the three
lowest horizons in the Skeleton Lake 2015 core, [H2S] was input
as the value measured at the deepest sediment depth before the
microsensor broke (169.8 mgL−1), as a conservative estimate
since its oxidation in the completely anaerobic sediments was
likely minimal. When several measurements were made over
the sectioning depth used for DNA extraction, concentration
readings were averaged. Hereafter, “sediment depth” refers to
the lower sediment depth of each sample, measured down from

the sediment-water interface. Principal Components Analysis
(PCA) was employed to visualize physicochemical differences
and relatedness between the different coring sites. For this, the
autoplot function from the R package ggfortify 0.4.1 (Horikoshi
and Tang, 2017) was used.

Sequencing and Data Preprocessing
Upon returning to the University of Ottawa, samples for DNA
extraction were homogenized, divided into duplicate 250mg
(WW) subsamples, and washed with a buffer (10mM EDTA,
50mM Tris-HCl, 50mM Na2HPO4·7H2O at pH 8.0) to remove
PCR inhibitors (Zhou et al., 1996; Poulain et al., 2015). DNA was
extracted from the duplicate subsamples with PowerSoil R© DNA
Isolation Kit (MO BIO Laboratories Inc, Carlsbad, CA, USA),
and then the duplicate extracts were combined. The 16S rRNA
gene fragment was amplified with universal primers in the spring
2014/2015 samples, and primer sets specific to either Bacteria or
Archaea in the summer 2015 samples (for details, see SI text).
The extraction kit elution buffer was used as a negative control in
screening experiments. Sequencing was completed with Illumina
MiSeq using paired-end 300 bp reads at Molecular Research
LP (Shallowater, TX, USA; for details, see SI text). Sequencing
of a single sample per sediment depth per core was deemed
sufficient, since no pairwise comparisons of individual samples
were conducted in the data analysis. All handling of the samples
was conducted in a laminar flow hood (HEPA 100) stainless steel
sterile cabinet that was treated with UVC radiation and bleach
before each use.

Forward and reverse reads were paired with PEAR 0.9.10
(Zhang et al., 2014a), and libraries were split with QIIME 1.9.1
(Kuczynski et al., 2011). Chimeric sequences were removed with
vsearch 2.0.0 (Rognes et al., 2016) utilizing the UCHIME (Edgar
et al., 2011), against the SILVA 128 SSURef NR99 database (Quast
et al., 2013). The reads were clustered into OTUs with Swarm
2.1.9 (Mahé et al., 2015) and singleton OTUs were removed.
Counts were normalized using cumulative sum scaling with the
Bioconductor package metagenomeSeq 1.18.0 (Paulson et al.,
2013). Representative sequences of the OTUs were aligned to the
SILVA 128 database (Quast et al., 2013), with SINA Incremental
Aligner 1.3.0 (Pruesse et al., 2012). Taxonomy was assigned to
the OTUs in SINA, with the Least Common Ancestor method.
For phylogeny-based analyses, the alignments were trimmedwith
trimAl 1.2 using the heuristic “automated1” option (Capella-
Gutiérrez et al., 2009) followed by visual inspection in Unipro
UGENE 1.26.3 (Okonechnikov et al., 2012).Maximum likelihood
phylogenetic trees were built with FastTree 2.1.9 (Price et al.,
2010), using the GTR + Ŵ model of sequence evolution (Aris-
Brosou and Rodrigue, 2012).

Data Analyses
The number of sequences was tracked throughout each step
of the pipeline for quality control (Table S3). The taxonomy
of OTUs with >99% sequence identity to the SILVA 128
database was refined to the closest matching entry to facilitate
functional mapping. OTUs with ambiguous, mitochondrial,
or plastid assignments were removed with phyloseq 1.20.0
(McMurdie and Holmes, 2013). Negative controls were not
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sequenced for this study and, as such, we were not able to
directly remove possible contamination brought by the DNA
extraction kit. Although studies with lowmicrobial biomass (e.g.,
blood, lungs, dry surfaces) are expected to be more sensitive
to contaminants (Salter et al., 2014; Glassing et al., 2016),
we tested the impact of possible contaminants by identifying
and removing putative contaminating genera from our samples
(see SI text; Figure S4). We compared the unmodified data
to analyses where we removed 100% of known contaminants
from MOBIO PowerSoil DNA extraction kits (Glassing et al.,
2016), the kit used in our study. The result of our comparative
analyses showed (i) no changes in alpha diversity analyses, (ii)
few changes in the clustering analyses (Figure S5) and (iii)
no changes in the ordination analyses (Figure S6), leaving our
conclusions unaffected in all cases. Note that e.g., 5 of the 10
most abundant contaminants (Veillonella, Methylobacterium,
Prevotella, Tumebacillus, and Oxalobacter) were not found in
our samples. In addition to known contaminants from the
MOBIO kit used here and described in the main text, we
also tested for known contaminants from four additional DNA
extraction kits (Salter et al., 2014) that were not used in our
study (see SI text; Figures S4–S6). However, as the putative
contaminant genera could plausibly be part of the sediment
community and the identity of true contaminants are not known,
they were not removed from the data. To visually estimate
the sequencing depth in our samples, rarefaction curves were
constructed from non-normalized data with singleton OTUs
included (Figure S7). To assess the functional potential of the
communities based only on 16S rRNA gene amplicon data,
the normalized and curated OTU abundances were mapped to
phylogenetically conserved functional groups in a customized
database using FAPROTAX 1.0 (see SI text; Figures S8, S9; Louca
et al., 2016b). Briefly, the predictions made by FAPROTAX are
based on references from the literature, and work by mapping
OTUs (at any given taxonomic level) to functional groups. The
associations are based solely on cultured strains, so that an
association between a taxonomic level and a functional group is
only made if all representatives at that taxonomic level display
the particular function. The total DNA extracted from sediments
does not solely represent the metabolically active part of the
community, as DNA from both dormant and dead organisms
is usually co-extracted (Klein, 2007; Carini et al., 2017; Lennon
et al., in review). Thus, without transcriptomic or proteomic data
our functional predictions should be considered hypothetical.

To assess the biological significance of phylogenetic
characterizations, samples were analyzed based on two levels
of diversity: within and among samples. First, we investigated
trends in alpha-diversity (within-sample diversity). Because the
contribution of individual taxa to ecosystem processes is likely
dependent on their abundance (Nemergut et al., 2013), we chose
Simpson’s dominance (Morris et al., 2014) as the metric for
alpha-diversity. Simpson’s dominance is robust to both spurious
OTUs and variations in sampling depth between sequencing
runs (Pinto and Raskin, 2012). The sequencing depth in our
samples (Good’s coverage: 76.0–97.2%; Figure S10) suffices to
accurately estimate alpha-diversity (Lundin et al., 2012). To
enable comparisons of alpha-diversity and sequencing coverage

to other studies, we also calculated Chao1 and Shannon indices,
and Good’s coverage (Figure S10). All this was done based on
ten randomized rarefactions of the raw OTU counts with the
R package phyloseq 1.20.0 (McMurdie and Holmes, 2013). The
relationships between alpha-diversity and its predictors (sample
categories or physicochemical variables) were determined
with random forests (Breiman, 2001; Liaw and Wiener, 2002).
The forests were grown to 5,000 trees, using the R package
ranger 0.7.0 (Wright and Ziegler, 2015). Selection of the most
important predictors was based on the Gini index by adding
predictors one by one in order of decreasing importance (Menze
et al., 2009). The best and most parsimonious model was then
selected by minimizing the Model Standard Prediction Error
(MSPE) for regression random forests (in the case of continuous
predictors), or by maximizing Cohen’s Kappa for classification
random forests (in the case of categorical predictors). The
relationships between the most important predictors and
Simpson’s dominance were estimated with partial dependence
plots of the best models with the R package edarf 1.1.1 (Jones
and Linder, 2016), which display how model prediction changes
as a function of each predictor, while other predictors are fixed
to their average value. Thus, each variable’s effect on the model
prediction is considered independently, and each predictor’s
relative effect size can be estimated from the variability displayed
by the model prediction.

Second, in terms of beta-diversity (between-samples
diversity), phylogenetic distances between pairs of samples
were calculated with a Double Principle Coordinate Analysis
(DPCoA; Pavoine et al., 2004), using OTU abundances and
patristic distances estimated from the maximum likelihood
tree. The phylogenetic data were limited to OTUs with >0.01%
overall abundance, because of the quadratic increase in runtime
per added OTU in DPCoA (Fukuyama et al., 2012). The Bray-
Curtis distances between samples were calculated from group
abundances in the functional predictions. A Mantel test was
used to test for differences between sample physicochemistry,
and either their phylogenetic or functionally predicted group
distances. Phylogenetic data and functional predictions from
spring 2014/2015 were then clustered using the t-distributed
stochastic neighbor embedding (tSNE) algorithm (van der
Maaten and Hinton, 2008), implemented in the R package rtsne
0.13 (Krijthe and van der Maaten, 2017), with “perplexity” set
to 5. Clusters were identified with the HDBSCAN algorithm
(Campello et al., 2013), in the package dbscan 1.1.1 (Hahsler
et al., 2017), with “minPts” set to 3. Regression and classification
random forests were used together with partial dependence plots
to identify the most important physicochemical and categorical
variables for the clustering patterns, as described above. Two
different subsets of the phylogenetic data were analyzed: the most
abundant OTUs (>0.01% abundance) and the dataset limited
to OTUs that matched at least one group in the FAPROTAX
database. Summer 2015 data were not included in the tSNE
analyses because only a single core per lake was available.

The correlations between categorical and continuous variables
to beta-diversity were assessed by unconstrained correspondence
analysis with “envfit” from the R package vegan 2.4.3 (Oksanen
et al., 2016). The variables were fit on NMDS ordinated
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distance matrices (described above) for both phylogenetic
data and functional predictions, and the statistical significance
was assessed with 10,000 permutations. For the continuous
physicochemical variables, non-linear relationships were
analyzed with “ordisurf,” which is based on surface fits, contra
vector fits in envfit (Figure 6, Figures S12–S14). All P-values were
Bonferroni-corrected per data set. Random forests (described
above) were further used to corroborate these analyses. In the
phylogenetic data, OTU abundances were grouped at phylum,
class, and order levels for the random forest models, which
were all screened for the best and most parsimonious model.
Lower (i.e., more exclusive) taxonomic levels were disregarded
to increase the ecological meaningfulness of the results (Xu
et al., 2014). Partial dependence plots were again generated with
the R package edarf to examine the relationships between the
most important OTUs and their functionally predicted group
abundances to each sample category, spatial, and environmental
variable. All these data analyses were done with R 3.4.0 (R Core
Team, 2017); the corresponding scripts can be accessed through
GitHub (https://github.com/Begia/Hazen16S), the sequencing
data can be retrieved from the NCBI Sequence Read Archive
(https://www.ncbi.nlm.nih.gov/bioproject/PRJNA430127),
and the geochemical data from the National Centers for
Environmental Information online repository (http://accession.
nodc.noaa.gov/0171496).

RESULTS AND DISCUSSION

Sediment Microbial Communities Are
Similar to Other Arctic Lakes
Microbial community structure of Lake Hazen and Skeleton
Lake sediments in spring 2014/2015 exhibited similarities to
other lake sediments in polar (Tang et al., 2013; Wang et al.,
2016; Mohit et al., 2017) and high-altitude regions (Zhang
et al., 2014b) that have comparable ranges of temperature,
nutrient and light availability. The most abundant bacterial
phyla at our sampling sites were Proteobacteria, Bacteroidetes,
Chloroflexi, Actinobacteria, Acidobacteria, Planctomycetes, and
Verrucomicrobia (see SI text; Figure 1). The dominant archaeal
phylum at all sites was Woesearchaeota, similarly to water
columns of oligotrophic high-altitude lakes (Ortiz-Alvarez and
Casamayor, 2016).

Sediments in Skeleton Lake had higher abundances of
Chloroflexi, Actinobacteria, Cyanobacteria, and archaeal phyla,
while Acidobacteria were more abundant in Lake Hazen
sediments. Differences between the lakes might be driven
by better light availability at the sediment-water interface,
and higher production of sulfide in Skeleton Lake sediments
compared to Lake Hazen. Indeed, all coring sites from Lake
Hazen had overlying water columns of more than 40m,
measurable dissolved [O2] in the top 1 cm (John’s Island samples
had >4.7 mgL−1 O2 down to 5 cm), and low [H2S] (<1.2µM).
Furthermore, although toxic, low levels of H2S can enhance
cyanobacterial photosynthesis when light intensity is low (Klatt
et al., 2015). Hence, Cyanobacteria in Skeleton Lakemight be able
to photosynthesize below the ice cover in the spring.

In sediments sampled in summer 2015, Chloroflexi was the
most abundant bacterial phylum in both Skeleton Lake and
Pond1 (Figure 2). Their high abundance has been previously
observed in hypersaline methane-rich springs in the High Arctic
(Lamarche-Gagnon et al., 2015). In the current study, the salinity
was low ([Cl−] < 4.4 mgL−1), but Skeleton Lake, and the
ponds bordering Lake Hazen are methanogenic (Emmerton
et al., 2016). The archaeal communities in Skeleton Lake
sediments were dissimilar to those in Pond1. Woesearchaeota
were more common in Skeleton Lake, and Euryarchaeota in
Pond1 sediments.

Mercury methylation had previously been quantified
in both Skeleton Lake and Pond1 (Lehnherr et al., 2012),
but its microbial actors were unknown. Fourteen OTUs in
our data mapped to mercury methylation in our custom
functional mapping database, and their 16S sequences, all
matched closely to Methanosphaerula palustris (Cadillo-
Quiroz et al., 2009). The genome of the type strain of this
species has been shown to possess the hgcAB genes that
strongly predict mercury methylation capability (Gilmour
et al., 2013). Other taxa most likely also take part in mercury
methylation in these sediments. However, our amplicon-based
study might have missed their presence because of primer
bias and low 16S database coverage of organisms in these
environments.

Intra-lake/pond compositional variability could also be high.
For instance, the communities at the two sites sampled in
Skeleton Lake in spring (Figure 1) and summer 2015 (Figure 2),
were strikingly different. Sediments from the deeper site
(Figure S3b), sampled in spring 2015 under ice cover, had a
mostly heterotrophic community dominated by Proteobacteria.
Meanwhile, sediments from the shallower site (Figure S3d),
sampled in summer 2015, were dominated by phototrophs such
as Chloroflexi and Cyanobacteria, and anaerobic fermenters
such as Bacteroidetes and Gracilibacteria (Thomas et al., 2011;
Wrighton et al., 2012). This indicates high spatial heterogeneity
of sediment communities in Skeleton Lake sediments. Primer
bias and seasonality of the microbial communities in Skeleton
Lake might play a part in this, but the question would
require further study. Our qualitative observations of the
microbial communities are consistent with (i) measurements
of high CH4 emissions from ponds bordering Lake Hazen
(Emmerton et al., 2016), (ii) increased [MeHg] in Skeleton
Lake (unpublished data), (iii) high autochthonous carbon, and
(iv) nitrogen limitation at the sites (St. Louis, unpublished
data).

Both Redox Chemistry and pH Drive
Community Diversity and Structure
Physicochemical Data Partially Explains

Phylogenetic Variability
The phylogenetic variability may be driven by the unique
physicochemical properties of each site, which can vary
substantially both in time and in space. A PCA of the physical and
geochemical variables in spring 2014/2015 shows that samples
group by individual core (Figure 3A). More specifically, the PCA
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FIGURE 1 | Geochemical variability, and microbial community composition of the spring 2014/2015 samples using universal primers. Abundances of taxa have been

merged at the phylum level (Proteobacteria at class level). Phyla with less than 1% overall abundance in the data set are merged.

revealed two major independent (orthogonal) axes of variability:
(i) [H2S]/redox/water depth, and (ii) pH/[O2] (Figure 3A).
Samples with measurable [H2S] had lower redox potential and

were from shallower sites (mostly from Skeleton Lake; Table S1).
Samples closer to the sediment/water interface had higher pH
and [O2]. Our sampling likely captured some of the most
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FIGURE 2 | Geochemical variability, and microbial community composition of the summer 2015 samples using archaeal and bacterial primers. Abundances of taxa

have been merged at the phylum level (Proteobacteria at class level). Phyla with less than 1% overall abundance in each data set are merged.

FIGURE 3 | PCA biplots of the physicochemical variables in: (A) spring 2014/2015 samples, and (B) summer 2015 samples.

relevant physicochemical variables constraining the microbial
community structures. Indeed, the Euclidean distances between
the samples calculated from physicochemical variables were
correlated with their phylogenetic DPCoA distances (Mantel-
R2 = 0.57, Bonferroni-corrected P < 0.01). The physicochemical
variability also correlated with the functionally predicted
group abundances (Bray-Curtis distances; Mantel-R2 = 0.40,
Bonferroni-corrected P < 0.01). However, only 25% of the OTUs

could be mapped to any function and were thus covered by this
analysis.

The PCA on the summer 2015 physicochemical data revealed
that these sediments also clustered separately, with Pond1 on one
side of PC2 and Skeleton Lake on the other side (Figure 3B).
Most of the differences between these two sites were driven
by higher [NO−

3 ] in sediments from Pond1 and higher [SO2−
4 ]

in sediments from Skeleton Lake, while pH, [O2], and [Cl−]
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covaried. However, the top 1 cm surface sediments from Pond1
were highly influential in the PCA because of their higher pH
and [O2] than in other samples (Figure 3B, Table S2). This higher
pH and [O2] could reflect the influence of the incoming Lake
Hazen waters into Pond1, which tend to be higher in pH and O2,
especially in the summer under the direct influence of the glacial
inflows. It is possible that this difference in the scaling of the sites
along the PCA reflects different water sources between Pond1 and
Skeleton Lake.

Unlike with the spring 2014/2015 data, the summer 2015 data
showed no significant correlations between the physicochemical
distances of the samples, and either phylogenetic data or
functional predictions (bacterial and archaeal; all Bonferroni-
corrected P > 0.05). This indicates that the measured
physicochemical variability does not explain differences in
community structures among samples. Unknown variables, such
as redox potential, might be influencing the community assembly
at these sites. Furthermore, the two sites in this data set
have similar physicochemistry throughout each sediment profile,
which probably reduces discriminatory power for this analysis.

Higher Redox Potential and Lower Sulfide

Concentration Drive Alpha-Diversity
To identify the drivers of alpha-diversity at Lake Hazen, we
fitted random forest models to our data (Touw et al., 2013).
Based on Simpson’s dominance, diversity in the spring 2014/2015

sediment samples was best predicted by a model including
all physicochemical variables (in order of importance: [H2S],
overlying water depth, redox potential, site, lake, pH, sediment
depth, [O2], and year; pseudo-R2 = 0.72). These results are
consistent with our expectations, as H2S can be highly toxic
to microbial communities (Hoppe et al., 1990; Brouwer and
Murphy, 1995). Water depth was the second most important
variable explaining alpha-diversity (Figure 4A). The shallow
Lake Hazen sediments at Snowgoose Bay had the highest
diversity (Figure 4B, Figure S1; Table S1), which might be driven
by high heterogeneity of the sediments, including steep [H2S] and
[O2] gradients. The Snowgoose Bay site is also under the direct
influence of two glacial river outlets, which might contribute
to the heterogeneity through increased delivery of nutrients
and inorganic matter. Our observations are consistent with
previous findings of the positive relationship between sediment
heterogeneity and alpha-diversity (Lozupone and Knight, 2007).
Redox potential, the third most important continuous variable,
also had positive relationship with predicted diversity. The effect
was similar in magnitude to [H2S] and was expected since sulfate
reducers are active at low redox potentials. This is consistent with
previous studies showing that microbial communities can react
quickly to changes in redox potential, changing from aerobic
chemoheterotrophy to anaerobic respiration and fermentation
(DeAngelis et al., 2010). Finally, we identified pH as a driver
of alpha-diversity: since non-extremophilic bacteria need to

FIGURE 4 | Partial dependence of predicted Simpson’s dominance on continuous and categorical variables of the random forest model with the smallest prediction

error, for each of the data sets. Spring 2014/2015 with universal primers (A) 6 continuous variables; (B) three categorical variables. (C) Summer 2015 with archaeal

primers (two continuous variables). (D) Summer 2015 with bacterial primers (two continuous variables).
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maintain an optimal intracellular pH of around 7.5 (Booth, 1985),
the subsistence of a more diverse community at this pH might be
facilitated.

Again, the summer 2015 data set differed from spring
2014/2015 data set, as the best model only included sediment
depth and pH as the most important variables for both archaeal
(pseudo-R2 = 0.53) and bacterial data (pseudo-R2 = 0.32).
However, direct comparisons between the spring 2014/2015 data
and summer 2015 data sets are difficult, since different sites were
sampled, and different geochemical variables were measured.
Archaeal and bacterial alpha-diversity in the summer 2015 data
set were highest in the deepest sediments, with a discrete increase
at the sediment surface (Figures 4C,D). The increase in diversity
might be caused by higher diversity of organisms with obligate
aerobic (at the surface sediments) or anaerobic metabolisms
(at deeper sediments). Unfortunately, no reliable data could be
obtained for [H2S] or redox potential in these samples because
of broken microsensors. Here, pH also seemed to be a factor
explaining diversity both for archaea and bacteria, but diversity
predictions might be driven only by a few outliers at the extremes
of sediment depth.

Communities Cluster Phylogenetically by pH and

Display Similar Functional Predictions
To independently support these predictions based on random
forests, we performed a tSNE cluster analysis on the spring
2014/2015 samples. These samples clustered mostly by individual

sediment core for both full phylogenetic data (Figure 5A)
and for data including only the 25% of OTUs that could
be functionally predicted (Figure 5B). The tSNE analysis of
functionally predicted data identified only two clusters, one
per lake (Figure 5C). This shows that phylogenetically distinct
sediment communities in Lake Hazen have similar functional
predictions. Furthermore, Lake Hazen sediments clustered
invariably separate from Skeleton Lake sediments in all of these
analyses. Random forest classification of the clustering patterns
identified pH as the most important predictor for clustering
both in the full phylogenetic data set (one predictor; OOB
Error= 0%; Figure S11a), and for the functionally mapped OTUs
(seven predictors; OOB Error = 12%; Figure S11b). In the full
phylogenetic data set, the sediment communities also appear to
be more similar to each other over ranges of pH (Figure 4A,
lower panel). [H2S] was the most important predictor to explain
differences between the clusters in the functionally predicted
data (one predictor; OOB Error = 0%; Figure S11c). However,
because we sampled only a single site in Skeleton Lake in spring
2015, it remains uncertain if [H2S] is the only factor affecting
the observed difference in the functionally predicted groups
in the sediments of the two lakes. Furthermore, heterogeneity
of the communities within Skeleton Lake itself could not be
addressed with the clustering analysis due to only a single
core being analyzed. Regardless, all the phylogenetically distinct
communities in Lake Hazen sediments clustered together after
functional prediction.

FIGURE 5 | tSNE analysis of spring 2014/2015 samples. Phylogenetic dissimilarities were measured with DPCoA, and differences in functional predictions with

Bray-Curtis dissimilarity. (A) Phylogenetic data, including only OTUs with >0.01% overall abundance. Partial dependence of cluster number on pH is included for this

data below the t-SNE plot. (B) Phylogenetic data, including only OTUs that were matched to a function (roughly 25% of the full phylogenetic data). (C) Functional

predictions.
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Our results suggest that pH strongly affects phylogenetic
community composition in our samples. Indeed, pH has
previously been shown to be a major determinant of community
composition in similar lake sediments (e.g., Xiong et al.,
2012). Sediment microbial communities might be altered in
the future because climate change related effects can increase
pH in arctic lakes (Kokelj et al., 2005; Mesquita et al.,
2010). We observed that the microbial communities in Lake
Hazen sediments cored at different sites at different times
are phylogenetically distinct from each other and Skeleton
Lake sediments. All the samples from Lake Hazen displayed
similar functional predictions, while remaining distinct from
Skeleton Lake samples. Decoupling between phylogeny and
function of microbial communities has previously been observed,
e.g., in the global ocean microbial communities (Louca et al.,
2016b), and plant-associated environments (Louca et al., 2016a).
However, our results rely solely on the analysis of 16S rRNA
genes, and therefore lack direct evidence about the actual
microbial functioning and activity in the lake sediments. Critical
insights could be gained here by employing metagenomics,
metatranscriptomics, and (ideally) metaproteomics (Louca et al.,
2016a).

Beta-Diversity Is Also Driven by Redox Chemistry

and pH
For the spring 2014/2015 bacterial communities, the centroids
of the clusters found by NMDS ordinations for both lakes and
individual sites were different from each other (Bonferroni-
corrected P < 0.01), but no year effect could be found
(Bonferroni-corrected P > 0.05; Figure 6A). As both spring
2014 and spring 2015 samples were also sequenced using
the same primer set, we analyzed samples from different
years together. The communities in Skeleton Lake sediments
were phylogenetically distinct from Lake Hazen sediments,
and the communities in individual Lake Hazen cores were
also phylogenetically dissimilar to each other. While these
patterns are consistent with the tSNE analysis, they are not
as clear because NMDS preserves pairwise distances instead
of emphasizing them (like tSNE). [H2S], redox potential, and
water depth correlated linearly with phylogenetic distances of
the communities (Bonferroni-corrected P < 0.05; Figure 6A).
Sediment depth was not linearly correlated with the phylogenetic
distances, but the communities at the sediment surface might
be more similar to each other than communities deeper
in the sediment. This can be observed in the grouping of
surface samples together in the middle of the ordination
(Figure 6A). The deepest sediments at John’s Island appeared
quite unique, which might be due to the presence of O2

all the way down to 5 cm below sediment surface, whereas
O2 is not found at any other sites below 1 cm (Figure 1,
Table S1).

Archaeal communities in sediments from Pond1 and
Skeleton Lake (summer 2015) also differed from each other
phylogenetically (Bonferroni-corrected P < 0.01; Figure 6B).
However, [NO−

3 ] was the only physicochemical variable linearly
correlated with phylogenetic differences of the communities
in the samples (Bonferroni-corrected P < 0.05). Similar to

FIGURE 6 | NMDS ordinations of phylogenetic DPCoA distances of the

samples, with significantly correlated physicochemical variables as vectors.

95%-confidence interval for centroids of sample categories (lake, year, and

site, where applicable) is shown with ellipses and sediment depth is overlaid

on the plots as a surface fit. (A) Spring 2014/2015 with universal primers.

(B) Summer 2015 with archaeal primers. (C) Summer 2015 with bacterial

primers.

archaeal communities, bacterial communities in sediments from
Pond1 and Skeleton Lake (summer 2015) were phylogenetically
significantly different from each other (Bonferroni-corrected
P < 0.01; Figure 6C). [NO−

3 ], pH, sediment depth and [Cl−]
correlated linearly with phylogenetic differences between the
samples (Bonferroni-corrected P < 0.05). The communities
in surface sediments of both Pond1 and Skeleton Lake
seemed most dissimilar to the other samples from the same
core.

Altogether, beta-diversity seems to be affected mostly by
[H2S], redox potential and pH. These are the variables that
have surfaced in either the ordination or tSNE analysis for
both spring 2014/2015 and summer 2015 data sets. In addition,
we also observed trends with water depth in spring 2014/2015
data and [NO−

3 ] in the summer 2015 data set. The effects
of [H2S] and redox potential are probably linked to toxicity
of H2S and different availability of electron acceptors in the
changing redox potential, which together alter the community
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composition. Water depth in the spring 2014/2015 data set can
be seen as a proxy for several factors influencing community
structure; the depth of the overlying water column influences
both light availability and sediment dynamics, such as differences
in sedimentation rate and nutrient inputs, resuspension, and
sediment focusing. However, the trends in summer 2015 data
with [NO−

3 ] are questionable, as (i) [NO−
3 ] covaries with

sulfate and sediment depth (deeper sediment horizons have
lower nitrate and higher sulfate; Figure 3B; Table S2), and
(ii) [NO−

3 ] in Pond1 is much higher than in Skeleton Lake
(Table S2).

Taxonomic Group Abundances Vary Along
Physicochemical Gradients
We conducted random forest analyses to discover relationships
between physicochemical gradients and abundances of
taxonomic groups, and our functional predictions (see SI text;
Tables 1, 2; Figures S15–S37). We found an association between
increasing levels of [H2S] and (i) decreasing abundances of
aerobic taxa and functionally predicted aerobic groups (putative
aerobic ammonia oxidizers, aerobic chemoheterotrophs, aerobic
nitrite oxidizers, and predatory/exoparasitic microbes), and
(ii) increasing abundances of functionally predicted sulfate

TABLE 1 | Summary of the regression random forest models for continuous variables.

Before model selection After model selection

Data set Variable Taxonomic level n (predictors) n (predictors) MSPE (95% CI) pseudo-R2

Spring 2014/2015 H2S Class 164 16 132.67 (0.00–267.65) 0.966

Functional mapping 48 7 97.48 (15.62–179.35) 0.961

pH Order 280 8 0.06 (0.03–0.08) 0.875

Functional mapping 48 3 0.07 (0.03–0.10) 0.851

O2 Order 280 3 5.42 (1.37–9.46) 0.560

Functional mapping 48 7 5.99 (2.45–9.53) 0.514

Redox potential Order 280 8 3978.13 (1794.36–6161.90) 0.793

Functional mapping 48 2 5036.48 (2100.30–7972.66) 0.738

Sediment depth Class 164 2 1.10 (0.58–1.63) 0.591

Functional mapping 48 9 1.62 (0.87–2.38) 0.398

Water depth Class 164 2 738.28 (0.00–1484.27) 0.932

Functional mapping 48 3 3121.19 (1611.48–4630.90) 0.711

Summer 2015/Archaea pH Class 13 3 0.04 (0.00–0.11) 0.538

Functional mapping 10 7 0.04 (0.00–0.12) 0.482

O2 Phylum 8 1 0.00 (0.00–0.01) 0.000

Functional mapping 10 2 0.00 (0.00–0.018) −0.145

SO2−
4 Phylum 8 2 77.56 (19.82–135.3) 0.633

Functional mapping 10 2 105.62 (41.37–169.86) 0.500

Sediment depth Order 12 9 0.69 (0.38–1.00) 0.744

Functional mapping 10 2 0.45 (0.17–0.72) 0.833

Cl− Order 12 3 0.01 (0.04–0.16) 0.729

Functional mapping 10 7 0.27 (0.00–0.54) 0.270

NO−
3 Order 12 9 0.04 (0.01–0.06) 0.869

Functional mapping 10 2 0.04 (0.01–0.06) 0.867

Summer 2015/Bacteria pH Class 85 8 0.04 (0.00–0.09) 0.585

Functional mapping 26 4 0.04 (0.00–0.10) 0.518

O2 Phylum 37 1 0.00 (0.00–0.01) 0.000

Functional mapping 26 4 0.00 (0.00–0.01) −0.052

SO2−
4 Class 85 2 79.64 (43.64–115.64) 0.623

Functional mapping 26 3 154.05 (74.19–233.9) 0.271

Sediment depth Class 85 1 0.38 (0.20–0.56) 0.858

Functional mapping 26 5 0.99 (0.59–1.39) 0.631

Cl− Order 113 10 0.11 (0.03–0.19) 0.695

Functional mapping 26 10 0.19 (0.03–0.35) 0.465

NO−
3 Order 113 5 0.03 (0.01–0.04) 0.898

Functional mapping 26 2 0.03 (0.01–0.04) 0.901

Number of predictors (n) is shown before and after stepwise model selection, while Mean Standard Prediction Error (MSPE) and pseudo-R2 are shown after selection.
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TABLE 2 | Summary of the classification random forest models for categorical variables.

Before model selection After model selection

Data set Variable Taxonomic level n (predictors) n (predictors) Cohen’s Kappa OOB Error (%)

Spring 2014/2015 Site Class 164 2 1 0

Functional mapping 48 11 0.9 7.14

Lake Phylum 54 1 1 0

Functional mapping 48 1 1 0

Sampling year Class 164 2 0.91 3.57

Functional mapping 48 3 0.81 7.14

Summer 2015/Archaea Site Phylum 8 3 1 0

Functional mapping 10 1 1 0

Summer 2015/Bacteria Site Phylum 37 1 1 0

Functional mapping 26 3 1 0

Number of predictors (n) is shown before and after stepwise model selection, while Cohen’s Kappa values and Out Of Bag (OOB) error rates are shown after selection.

respirers, methanogens, and cyanobacteria (cyanobacteria are all
photosynthetic and thus mapped to a single group; Figure S15).
Skeleton Lake sediments had much higher [H2S] than Lake
Hazen sediments, but the community differences linked to
[H2S] are not completely explained by differences between the
lakes (Figure S34). [H2S] seems to affect both phylogenetic and
functionally predicted community composition, and climate
change has previously been thought to result in increased
accumulation of sulfur in high arctic lake sediments (Drevnick
et al., 2010). Chemical weathering of sulfate containing minerals
(e.g., gypsum-CaSO4) following glacial melt and/or permafrost
thaw could also increase delivery of SO4 to waterbodies in
the Lake Hazen watershed. Enhanced rates of sulfur cycling
in sediments might change the community structure, which
might affect other geochemical cycles mediated by the sediment
communities.

Taxonomic groups that increased in abundance with
increasing redox potential were aerobic chemoheterotrophs,
such as Acidobacteria (Ward et al., 2009), and obligate
aerobic methylotrophic Betaproteobacteria (Chistoserdova and
Lidstrom, 2013; Figure S18a). In addition, the functionally
predicted group of methanol oxidizers increased in abundance
with increasing redox, which suggests that these organisms
are aerobic (Jenkins et al., 1987). However, putative sulfur
reducers also showed a positive relationship with redox,
which was a surprising result. Most of the taxa mapped with
FAPROTAX to this functional group belong to the uncultured
genus Desulfurellaceae H16, which has been previously detected
in anaerobic bioreactors (Wei et al., 2017). Bacteria from
the family Desulfurellaceae are typically strict anaerobic
sulfur-reducers (Greene, 2014; Florentino et al., 2017), but
here seem to be abundant at sites with high redox potential
(>400mV) and in the presence of oxygen (>4 mgL-1). To the
best of our knowledge, this has not been observed in previous
studies.

In the current study, we identified pH as an important
driver of the sediment microbial community structure and
diversity, similarly to previous studies (see SI text; Xiong et al.,

2012). Random forest analysis showed that the relationships of
taxonomic groups to variation in pH were mostly supportive
of previous observations in lake sediments (see SI text;
Figures S16, S27a; Xiong et al., 2012). We also detected an
increased abundance of Cyanobacteria at higher pH (Figures
S16, S27), which is in accordance to the generation of alkaline
conditions via autotrophic pathways. Similar relationships
between pH and Cyanobacteria in the High Arctic have been
previously observed in lake microbial mats (Lionard et al.,
2012). We also observed a higher abundance of functionally
predicted sulfate respirers and methanogens at lower pH. This is
in accordance with lower pH optimums of these processes (Ferry,
1993; Hao et al., 1996), than the average pH of 7-8 in our samples.

Finally, results from the random forest analysis showed that
abundances of predicted fermenters and intracellular parasites
(most of these are known as Amoebae-ResistantMicrobes; Greub
and Raoult, 2004) increase with water depth (Figure S20b).
The OTUs identified in our analysis included representatives of,
e.g., phylum Chlamydiae (Lory, 2014), and orders Legionnellales
(Garrity et al., 2015) and Rickettsiales (Renvoisé et al., 2011).
The presence of obligate intracellular parasites indicates a higher
abundance of grazing protists, and in the case of Rickettsiales,
of arthropods (Renvoisé et al., 2011) at the deeper sites. These
organisms might together with fermenting microbes contribute
to increased cycling of organic matter and transfer of energy to
higher trophic levels (Lei et al., 2014). The increased abundance
of microbes involved in organic matter cycling suggests increased
delivery of material to the deep basin (i.e., sediment focusing) in
Lake Hazen. Furthermore, the longer duration of ice-free periods
(Latifovic and Pouliot, 2007; Surdu et al., 2016) and increased
runoff (Bliss et al., 2014) seem to have already increased the
sediment, carbon, and nutrient inputs to Lake Hazen (Lehnherr
et al., 2018).

CONCLUSIONS

Despite extreme conditions in the High Arctic, our results
show that lake sediments from this area harbor highly diverse
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microbial communities that vary both in time and space,
but that are mainly shaped by redox and pH. Although the
microbial communities in cores sampled at the three sites in
LakeHazen were phylogenetically distinct, they were functionally
predicted to exhibit similarities. However, such functional
predictions need now to be validated with metagenomics
or metatranscriptomics studies, especially when performed
on undersampled and extreme environments such as Lake
Hazen.

The way such extreme environments will behave in the
context of climate change is unclear. On the one hand,
the predicted functional similarity of the communities in
the backdrop of spatiotemporal microbial heterogeneity could
be interpreted as a sign of resilience. However, as rising
temperatures have both direct and indirect influences on
redox chemistry and pH, the main drivers of microbial
communities identified herein, it is very plausible that the
current community structure could be disrupted under the
climate regime predicted for the Arctic. Future work on Arctic
lake sediments should focus on elucidating the functioning of
the communities, and long-term studies performed throughout
the seasonal regime shifts. As these seasonal shifts drive the
redox chemistry, light and nutrient availability in the lakes,
they might also affect the structure of microbial communities
within.
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