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Background: The role of cellular senescence in the tumor microenvironment of pancreatic cancer (PC) remains unclear, particularly 
regarding its impact on prognosis and immunotherapy outcomes.
Methods: We utilized single-cell sequencing datasets (GSE155698 and GSE154778) for pancreatic cancer from the Gene Expression 
Omnibus (GEO) database and bulk RNA-seq data from the University of California, Santa Cruz (UCSC) and International Cancer 
Genome Consortium (ICGC) repositories, creating three patient cohorts: The Cancer Genome Atlas (TCGA) cohort, PAAD-AU 
cohort, and PAAD-CA cohort. Dimensionality reduction cluster analysis processed the single-cell data, while weighted gene co- 
expression network analysis (WGCNA) and differential expression gene analysis were applied to bulk RNA-seq data. Prognostic 
models were developed using Cox proportional hazards (COX) and least absolute shrinkage and selection operator (LASSO) 
regression, with validation through survival analysis, decision curve analysis, and principal component analysis (PCA). Tumor 
mutation data were analyzed using the “maftools” package, and the immune microenvironment was assessed with TIMER2 data.
Results: We developed a senescence-related (SENR) six-gene prognostic signature for PC, which stratifies patients by risk, with high- 
risk groups showing poorer prognoses. This model also offers predictive insights into tumor mutations and immune microenvironment 
characteristics. Caveolin-1 (CAV1) emerged as a significant prognostic biomarker, with functional validation showing its role in 
promoting cancer cell proliferation and migration, highlighting its potential as a therapeutic target.
Conclusion: This study provides a novel senescence-related prognostic tool for PC, enhancing patient stratification for prognosis and 
immunotherapy, and identifies CAV1 as a key gene with clinical significance for targeted interventions.
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Introduction
Pancreatic cancer poses a significant challenge within the field of oncology.1 Due to its subtle onset, aggressive behavior, and 
frequent late-stage detection, it becomes a formidable adversary, causing patients and healthcare providers to grapple with its 
complexities.2–5 Although pancreatic cancer is relatively uncommon, it exhibits a high mortality rate, ranking 12th among 
global cancer cases, with approximately 495,000 new instances and 466,000 annual fatalities.6 Predominantly affecting older 
adults, the majority of diagnoses occur in individuals aged 65 and older.7 Regional variations in incidence are notable, with 
elevated rates in North America and Europe.
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The diagnostic process for pancreatic cancer typically encompasses a combination of imaging tests, including CT 
scans, MRI, and endoscopic ultrasound (EUS), to visualize the pancreas and evaluate tumor size and location.8–10 Blood 
tests, like CA 19–9, may serve as tumor markers.10 Ultimately, confirmation of the diagnosis often necessitates a biopsy, 
obtainable through endoscopic or surgical procedures.11 Treatment modalities for pancreatic cancer hinge on the disease’s 
stage.12 Surgery stands as the primary curative option for localized tumors, yet many cases receive diagnoses at advanced 
stages when surgery is unviable.13 In such scenarios, treatment options encompass chemotherapy, radiation therapy, 
targeted therapy, and immunotherapy.14 Palliative care frequently enters the picture to manage symptoms and enhance the 
quality of life for patients with advanced-stage disease.15 Therefore, addressing the treatment quandary of pancreatic 
cancer underscores the need to devise novel prognostic stratification strategies and explore potential biomarkers within its 
tumor microenvironment.

Cell senescence denotes a condition characterized by a stable and irreversible halt in the cell cycle, resulting in a loss 
of the cell’s capacity for division and replication.16 Dr. Leonard Hayflick initially elucidated this phenomenon during the 
1960s, and it has since become a pivotal concept in the realm of biology, particularly in the context of senescence and 
cancer.17 In the context of tumors, cell senescence carries a dual significance. On one hand, it operates as an initial 
defense mechanism, effectively arresting the proliferation of impaired cells and erecting a barrier against cancer 
development.18 This process, known as oncogene-induced senescence (OIS), thwarts the transformation of normal 
cells into malignant counterparts.19 Conversely, senescent cells present within a tumor can stimulate tumor progression 
by releasing a pro-inflammatory mixture termed the senescence-associated secretory phenotype (SASP). This secretion 
can foster an environment conducive to tumor expansion, angiogenesis, tissue remodeling, and evasion of the immune 
system.20 Consequently, the role of cell senescence within tumors manifests as intricate and context-dependent, exerting 
influence on both tumor suppression and promotion.

In our research, we integrated single-cell sequencing data with bulk transcriptome sequencing data to investigate the 
diversity and expression patterns of genes associated with cell senescence in pancreatic cancer. Additionally, we 
developed a prognostic model that is pertinent to assess the outlook for individuals diagnosed with pancreatic cancer. 
Our study offers valuable insights that can serve as a reference point for early detection and prognosis evaluation in 
pancreatic cancer cases.

Materials and Methods
Single Cell Sequencing Data Download and Processing
The GEO database houses numerous single-cell sequencing datasets. Specifically, we downloaded the single cell sequencing 
datasets GSE155698 and GSE154778, which are related to pancreatic cancer.21,22 GSE155698 comprises 17 tumor samples and 
3 normal tissue samples, while GSE154778 encompasses 16 tumor samples (Supplemental Table 1).21,22 For processing and 
analyzing these single-cell data, we utilized the “Seurat” package, version 4.3.0.1. Quality control measures were implemented as 
follows:Genes expressed in fewer than 3 cells were excluded; Cells with less than 200 gene expressions and those with over 9000 
gene expressions were removed; Cells with mitochondrial gene expression exceeding 15% were excluded; Cells with a total gene 
expression surpassing 200,000 were removed; Samples with fewer than 200 cells were excluded.

To standardize the data, the “NormalizeData” function was employed. Highly variable genes, set at 3000, were 
identified using the “vst” method. The “SCT” method was utilized to integrate samples and eliminate mitochondrial 
genes and cell cycle effects. To reduce data dimensionality, PCA analysis was initially conducted. Subsequently, we 
employed the “tSNE” method with a dimensionality reduction setting of 20. For cell clustering, the “KNN” method was 
employed, setting dimensions to 20, resolution to 0.4, and random. seed to 2023. Cell annotations were based on marker 
genes obtained from previously published pancreatic cancer single-cell sequencing articles. Results of single cell analysis 
were visualized using a “tsne” chart. Additionally, the “Seurat” package’s “FindMarkers” function was used to analyze 
differences between the two groups. In this study, the “PercentageFeatureSet” function was utilized to calculate the cell 
senescence score based on the expression of cell senescence phenotype genes in cells.
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Bulk Transcriptome Data Download and Processing
Three cohorts related to pancreatic cancer were acquired, encompassing not only transcriptome data but also clinical data. The 
TCGA transcriptome data was sourced from the UCSC Xena website (https://xenabrowser.net/).23 Meanwhile, the PAAD-AU 
and PAAD-CA transcriptome data were retrieved from the ICGC website (https://dcc.icgc.org/) (Supplemental Tables 2 and 3). 
To ensure uniformity, all data underwent standardization. Samples that included both transcriptome data and clinical information 
were retained by aligning transcriptome data with clinical data.

Acquisition of Cell Senescence-Related Gene Sets
The 125 cell senescence-related genes were collected in the published article titled “a new gene set identifies senescent 
cells and predicts senescence-associated pathways across tissues”.24

Single Sample Gene Set Enrichment Analysis (ssGSEA)
Based on the difference values obtained through the GSEA R package analysis, the order, arranged from large to small, 
was utilized to depict the fold change pattern of gene set expression between the two groups. Typically, when a gene set 
is enriched towards the top, it indicates up-regulation, while enrichment towards the bottom suggests down-regulation. 
For this analysis, the “clusterProfiler” package was employed, and it utilized the reference gene set “H.ARI.v7.0.entrez. 
GMT” to perform these assessments.

Weighted Co-Expression Network Analysis (WGCNA)
In this research, WGCNA (Weighted Gene Co-Expression Network Analysis) was employed to investigate gene sets 
closely associated with cell senescence phenotypes in pancreatic cancer. The soft threshold was explored across a range, 
specifically from 1 to 10 with a step size of 1, as well as from 12 to 20 with a step size of 2. To determine the appropriate 
soft threshold, the “WGCNA” package’s “pickSoftThreshold” function was utilized. Several parameters were set for the 
analysis: a minimum of 200 genes per module, “deepSplit” was set to 2 for enhanced clustering, and genes were 
organized into modules. To consolidate modules that exhibited similarity, this study applied a cut-off value of 0.3 and 
correlated them with cell senescence phenotypes.

Unsupervised Consistent Cluster Analysis
The “ConsensusClusterPlus” package was used to perform cluster analysis based on the expression pattern of cell senescence 
genes. The maximum cluster number was set to 7, clusterAlg = “hc”, innerLinkage = “average”, finalLinkage = “average”.

Construction of the Prognostic Signature
Within the TCGA cohort, the initial step involved utilizing Univariate COX regression to perform an initial screening of 
prognostic genes, with a significance threshold of p<0.05. Following this, LASSO regression was employed to further 
filter variables and construct a prognostic signature. The “glmnet” R package was utilized for this purpose, and the 
“maxit” parameter was set to 1000. Patients were subsequently categorized into two groups based on the median 
senescence signature risk score (SENRs) values, resulting in a high SENRs group and a low SENRs group. Prognostic 
analysis, decision curve analysis, and PCA (Principal Component Analysis) were then conducted separately for these two 
groups to explore their prognostic implications and assess the decision-making utility of the model.

Validation of the Prognostic Signature
PAAD-AU and PAAD-CA cohorts as validation cohort. Patients were also divided into high SENRs group and low 
SENRs group based on the median SENRs value. In the validation cohort, prognostic analysis, decision curve analysis 
and PCA analysis of high and low SENRs groups were explored.
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Tumor Mutation Analysis
The “maftools” package was used to download mutation data for pancreatic cancer. By matching, samples containing 
both transcriptome and mutation data are retained, and a waterfall map is used to show the mutant landscape.

Immunomicroenvironment Correlation Analysis
We got through TIMER2 website (http://timer.cistrome.org/) to download a variety of methods based on the TCGA data 
to calculate the immune cells infiltrating data, and use the waterfall figure to show results. The expression of immune 
checkpoint genes, tumor necrosis genes, and leukocyte antigen genes was investigated among model groups. The 
“estimate” package was used to calculate the sample immunity score. In this study, the TIDE website was used to 
predict the immunotherapy effect of the sample as well as the TIDE score.

Pseudo-Time Series Analysis
Pseudo-time series analysis is the use of specific algorithms to analyze changes in gene expression during cell 
differentiation state transitions, which in turn place each cell in the appropriate position in the trajectory. In this study, 
the “monocle2” package was used to perform pseudo-time series analysis and explore the changes in the expression of 
specific genes during this differentiation process.

Clinical Correlation Analysis
The “meta” package was used for the integrated analysis. The “rpart” package was used to perform decision curve 
analysis based on patient clinical data and models, and was divided into different groups. In this study, the “regplot” 
package was used to plot nomogram based on patient data. The STRING web site (https://cn.string-db.org/) was used for 
protein interaction analysis.

Cell Lines, Culture Conditions and Cell Transfection
Capan-1 and PANC-1 cells were procured from the Shanghai Institute of Biological Sciences in Shanghai, China. These cells 
were cultured in DMEM (Dulbecco’s Modified Eagle Medium) supplemented with 10% fetal bovine serum (FBS) and 1% 
penicillin-streptomycin solution. All cell cultures were maintained at a temperature of 37°C and in an environment containing 
5% CO2. For transfection, Lipofectamine 3000 from Thermo Fisher Scientific in Waltham, MA, USA was employed. Cells were 
transfected with siRNA (RiboBio, Guangzhou, China) following the manufacturer’s instructions. Three target siRNAs were used 
for CAV1, which included:siCAV1-1: 5’-CCACCTTCACTGTGACGAA-3’; siCAV1-2: 5’-GCACATCTGGGCAGTTGTA-3’ 
siCAV1-3: 5’-GCGACCCTAAACACCCAA-3’. These siRNAs were utilized for gene knockdown experiments.

CCK-8 Assay, Colony Formation Analysis, Migration Assays
These experimental methods have been reported in our previous studies.25

PCR Tests of CAV1 in Clinical Samples
For this study, 8 pancreatic cancer tissues and corresponding adjacent control tissues were obtained. Total RNA 
extraction from cell lines followed the manufacturer’s protocol, employing TRIzol reagents (Invitrogen, CA, USA). 
Subsequently, cDNA synthesis was conducted with the PrimeScript RT Reagent Kit (Takara, Nanjing, China). Real-time 
quantitative PCR (qRT-PCR) was carried out using AceQ Universal SYBR qPCR Master Mix (Vazyme, Nanjing, China). 
The primers utilized in this investigation are detailed below:
Forward primerGGGTGTGGAAACCTCGTCTT
Reverse primerGGTGTAGAGATGTCCCTGCG

Statistical Analysis
The initial step in the prognostic gene screening involved conducting univariate COX analysis. To compare gene expression 
between the two groups of the model, a rank sum test was employed. Prognostic analysis between these two groups was 

https://doi.org/10.2147/JIR.S489985                                                                                                                                                                                                                                    

DovePress                                                                                                                                                 

Journal of Inflammation Research 2024:17 9394

Chen et al                                                                                                                                                            Dovepress

Powered by TCPDF (www.tcpdf.org)

http://timer.cistrome.org/
https://cn.string-db.org/
https://www.dovepress.com
https://www.dovepress.com


executed using the KM (Kaplan-Meier) survival curve method. To analyze the correlation between model values, specifically 
SENRs, and TIDE values, the “spearman” method was applied. The analysis was conducted using R software version 4.0.5, 
with a defined p-value as the significance threshold. A p-value less than 0.05 was considered statistically significant.

Results
Cell Senescence Analysis at the Single-Cell Level
The research process is shown in Figure 1.

Cell senescence phenotypes were investigated at the single-cell level in pancreatic cancer. As shown in Figure 2A–B, 
through quality control and sample integration, a total of 29 tumor and 3 normal samples were retained, and there was 
heterogeneity between tumor and normal samples. As shown in Figure 2C–E, tumor samples were clustered into 19 
clusters, and a total of 11 cell types were annotated according to the expression of cell type marker genes. Subsequently, 
the cell senescence phenotype fraction was quantified in each cell, and this group was divided into High-Senescence 
group and Low-Senescence group according to the median value, as shown in Figure 2F. The High-Senescence group 
was mainly distributed in Monocytes, Macrophages, Granulocytes and Fibroblastes. As shown in Figure 2G, the 10 genes 
closely related to cell senescence are RPS8, RPL11, RPL22, UQCRH, TACSTD2, CAPZB, NFRSR1B,C1QA, MXRA8 
and C1QC. As shown in Figure 2H–L, activation pathways associated with cell senescence in pancreatic cancer include 
Apoptosis, Epithelial Mesenchymal Transition, Hypoxia, Inflammatory Response and TGF Beta. We compared the 

Figure 1 The flow chart.
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expression of senescence related genes in pancreatic cancer with normal tissues at the single-cell level, and the results are 
shown in Figure S1.

To Search for Genes Closely Related to Cell Senescence
In pancreatic cancer, a variety of methods were used in this study to obtain genes associated with cellular senescence. 
First, WGCNA was conducted in the TCGA cohort. As shown in Figure 3A, when the optimal soft threshold is 7, the 
data conforms to the power-law distribution, and Mean connectivity tends to be stable with the increase of the soft 
threshold. As shown in Figure 3B–C, the genes were clustered into 9 non-gray modules, of which the green module was 

Figure 2 Single cell sequencing analysis. (A and B) Quality control and sample integration. (C) All cells were clustered into 19 clusters. (D) Markers for cell clustering. (E) 
Annotation on cell types. (F) All cells were divided into high and low groups according to senescence score. (G) Analysis of differentially expressed genes between high - and 
low-senescence groups, in the form of volcano map. (H–L)GSEA between high and low groups showed that activation pathways associated with cell senescence in 
pancreatic cancer include Apoptosis, Epithelial Mesenchymal Transition, Hypoxia, Inflammatory Response and TGF Beta.
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most associated with the cell senescence phenotype (cor = 0.53 and p <0.05). We further explored the inter-gene 
correlation in the green module, as shown in Figure 3D. There was a positive correlation between Module membership in 
green module and Gene significance for body weight (cor = 0.64 and p <0.05). As shown in Figure 3E–F, patients are 
divided into two clusters according to cell senescence genes, and Cluster2 patients have poor prognosis (p<0.05), as 
shown in Figure 3G. Differential expressed gene analysis was carried out through package DEseq2 and screening criteria 
were set |LogFC| >1 and adjust p-value<0.05. A total of 6300 genes were obtained. As shown in Figure 3H, the 
intersection of 6295 genes related to cell senescence obtained by single-cell analysis, 1441 genes obtained by WGCNA 
analysis, and 6300 genes obtained by differential expressed gene analysis yielded 303 genes closely related to cell 
senescence.

Figure 3 Bulk RNA sequencing analysis. (A–D) Weighted coexpression network analysis(WGCNA). The green module was found to be most significantly associated with 
senescence phenotypes in pancreatic cancer. (E–F) Unsupervised clustering according to cell senescence genes showed that cluster2 had significantly worse prognosis. (G) 
Differential expressed gene analysis. A total of 6300 genes were obtained. (H) The intersection of 6295 genes related to cell senescence obtained by single-cell analysis, 1441 
genes obtained by WGCNA analysis, and 6300 genes obtained by differential expressed gene analysis.
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The Construction and Validation of the Prognostic Model
Starting with the 303 genes identified through the intersection of single-cell analysis, Weighted Gene Co-expression 
Network Analysis (WGCNA), and differential expression analysis, we aimed to narrow down this gene set to those most 
relevant for prognosis. To achieve this, we first conducted univariate Cox regression analysis on the TCGA cohort, 
setting a significance threshold of p < 0.05. This step enabled the selection of genes significantly associated with patient 
survival, thereby refining our set to 21 prognostic genes with a strong correlation to patient outcomes(Figure 4A).

To further ensure the robustness and specificity of our prognostic model, we applied Least Absolute Shrinkage and 
Selection Operator (LASSO) regression on these 21 genes(Figure 4B–C). LASSO regression is particularly useful for 
managing high-dimensional data by reducing the number of variables, effectively eliminating weaker predictors. After 
tuning the regularization parameter (lambda) to an optimal value of 0.05, we obtained a final prognostic model 
comprising six genes: CAV1, BIRC3, DCBLD2, CD109, IL1RAP, and SP100. These six genes were each assigned 
a coefficient, allowing us to construct a risk score that quantifies the patient’s prognosis.

This refined selection process ensured that the model retained only the most predictive genes from the initial 303-gene 
set, improving its predictive accuracy and clinical relevance. As shown in Figure 4D–H, patients with high-risk scores 
based on this model had significantly poorer prognoses (p < 0.05), indicating the model’s potential clinical utility. The 
prediction effect of the model was better than that of other clinical indicators, and patients could benefit more than other 
clinical indicators by taking appropriate clinical measures according to the model. SENRs is a risk factor for patient 
prognosis (p<0.05). This model can distinguish patients well. In order to further verify the accuracy of the model, we also 
conducted analysis in the AU and CA cohort, as shown in Figure 4I–R, SENRs_High group had poor prognosis (p<0.05), 
and the prediction effect of the model was better than that of other clinical indicators. Moreover, patients who took 
appropriate clinical measures according to the model benefited more than other clinical indicators. SENRs were all risk 
factors for patient prognosis (p<0.05), and the model could distinguish patients well.

Mutation and Immune Correlation Analysis
This study further explored the differences in mutation and immune infiltration between the model groups in order to better 
identify patients who are more suitable for immunotherapy. As shown in Figure 5A–B, in the SENRs_Low group, the 
mutation incidence was 74.39%, and the top 5 most mutated genes were KRAS, TP53, SMAD4, CDKN2A and MUC16. In 
the SENRs_High group, the mutation incidence was 90.12%, and the top 5 most mutated genes were KRAS, TP53,CDKN2A 
and TTN. As shown in Figure 5C, patients in SENRs_High group had a higher degree of immune infiltration, such as B cells 
and T cells. As shown in Figure 5D–F, most of the leukocyte antigen genes, immune checkpoint genes, and tumor necrosis 
genes were highly expressed in the SENRs_High group, such as HLA-E, HLA-A, CTLA4,CD86, CXCL10,EIF2A, etc. As 
shown in Figure 5G–J, the immune score(p<0.05), stromal score(p<0.001) and total score(p<0.01) of SENRs_High group 
were higher, while the tumor purity was lower (p<0.01). This may be related to the higher degree of immune cell infiltration 
but also the higher degree of immune escape in the high SENRs group. As shown in Figure 5K, in patients who responded to 
immunotherapy, the model value SENRs was lower(p<0.001). And the TIDE score was higher (p<0.001)was higher in 
SENR_high group, and SENRs was significantly positively correlated with TIDE (cor 0.35 and p< 0.001)(Figure 5L–M). This 
study further explored the activation of the pathway in the SENRs_High group and found that the TGF beta pathway and 
Epithelial Mesenchymal Transition pathway were significantly activated as shown in Figure 5N–O.

Gene Expression Mapping and Pseudo-Time Series Analysis
Subsequently, the expression of the six genes in the model was analyzed in the cell type. As shown in Figure 6A–F, BIRC3 is 
mainly expressed in T cells, CAV1 is mainly expressed in Epithelial cells, Fibroblast cells and Pericyte cells, and CD109 and 
DCBLD2 are mainly expressed in Epithelial cells. IL1RAP is mainly expressed in monocyte and macrophage cells, while 
SP100 is highly expressed in different cells. In this study, the immune cells were screened out and simulated time sequence 
analysis was performed. As shown in Figure 6G–L, cells gradually differentiated from dark blue to light blue, with a total of 
three differentiation states. cluster1 is the main cluster in differentiation state 1, cluster11 and cluster14 are the main cluster in 
differentiation state 2, cluster4 and cluster6 are the main cluster in differentiation state 3. Moreover, monocytes and 

https://doi.org/10.2147/JIR.S489985                                                                                                                                                                                                                                    

DovePress                                                                                                                                                 

Journal of Inflammation Research 2024:17 9398

Chen et al                                                                                                                                                            Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


macrophage are early differentiated, Mast cells and plasma cells are in the middle state, and NK cells, T cells and Dendritic 
cells are late differentiated. The model value SENRs in each cell was calculated according to the model calculation formula. 
As shown in Figure 6K, SENRs_Low was mainly in the early and middle differentiation state, while SENRs_High group was 
mainly in the late differentiation state. As shown in Figure 6L, with the differentiation of immune cells, the expressions of 
BIRC3, CAV1 and DCBLD2 showed a trend of first increasing and then decreasing, SP100 mainly showed an increasing 
trend, while CD109 and IL1RAP mainly showed a decreasing trend.

Figure 4 Construction and validation of the prognostic model. (A) Univariate COX analysis. A total of 21 prognostic genes in the TCGA cohort and PAAD-AU cohort 
were obtained. (B and C)LASSO regression analysis. (D–H)Prognosis validation in the TCGA cohort. The prognosis of patients in SENRs_High group was poor (p<0.05). 
The prediction effect of the model was better than that of other clinical indicators, and patients could benefit more than other clinical indicators by taking appropriate clinical 
measures according to the model. SENRs is a risk factor for patient prognosis (p<0.05). This model can distinguish patients well. (I–M)Prognosis validation in the PAAD-AU 
cohort. (N–R)Prognosis validation in the PAAD-CA cohort.
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Figure 5 Analysis of tumor microenvironment. (A and B) Mutant landscape of SENR_low group and SENR_high group. (C)Different landscape of immune cell infiltration 
between the two groups. (D–F)Differences in the expression of leukocyte antigen genes, immune checkpoint genes, and tumor necrosis genes between the two groups. 
(G–J) the immune score, stromal score and total score of SENRs_High group were higher, while the tumor purity was lower. (K–M)Prediction of response to 
immunotherapy in two groups. (N and O)GSEA in SENRs_High group.(*p<0.05, **p<0.01, ***p<0.001).
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Clinical Correlation Analysis
For clinical guidance, we conducted clinical relevance analysis. As shown in Figure 7A, we found that model values were 
prognostic risk factors in both the three cohorts and the combined data (p<0.05). As shown in Figure 7B–D, patients were 
divided into 3 groups according to the median SENRs value and N stage of the model. Group1 and Group2 corresponded to 
SENRs_Low group, while Group3 corresponded to SENRs_High group. Survival curve analysis suggested that Group3 had 
a worse prognosis than Group1. As shown in Figure 7E, by combining the model values of the patient’s TCGA-FB-A5VM and 
clinical data, the 1, 3 and 5-year mortality of the patient was predicted to be 0.226, 0.676 and 0.787 in the nomogram. In order to 
further verify the accuracy of the prediction results of Nomograph, continuous prognostic ROC curve analysis was performed in 
this study. As shown in Figure 7F, Nomogram predicted the prognosis of patients with AUC fluctuation of 0.75, which was 

Figure 6 Gene expression mapping and pseudo-time series analysis. (A–F) The expression and localization of 6 genes in different cells. (G–L) pseudo-time series analysis of 
immune cells and quasi-temporal analysis of 6 model genes.
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higher than other clinical indicators. In order to further find the core genes among the 6 genes in the model, CAV1 interacts with 
CD109, DCBLD2 and BIRC3, as shown in Figure 7G. Therefore, this study further verified the gene by experiment.

The Function of CAV1 in Pancreatic Cancer Cell Lines Was Verified by Cell 
Experiments
Because CAV1 plays a pivotal role in the protein-protein interaction network of six model genes, we conducted further 
cell line experiments to verify the function of CAV1. Firstly, CAV1 was knockdown with 3 siRNA in pancreatic cancer 
Capan-1 cell lines and PANC-1 cell lines. The results show that the knockdown efficiency of si-CAV1-2 is higher 
(Figure 8A). Then CCK-8 experiment was performed(Figure 8B). The results showed that the activity of Capan-1 and 
PANC-1 cell lines decreased significantly after CAV1 gene knockdown. And Colony formation assay showed that the 

Figure 7 Clinical correlation analysis. (A) The model values were prognostic risk factors in both the three cohorts and the combined data (p<0.05). (B–D)Clinical decision 
analysis. (E and F) Construction and validation of the nomogram. (G)Interaction networks between proteins encoded by model genes.
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proliferation activity of Capan-1 and PANC-1 cell lines decreased significantly after CAV1 gene knockdown(Figure 8C). 
Transwell assay showed that the migration ability of Capan-1 and PANC-1 cell lines decreased significantly after CAV1 
gene knockdown(Figure 8D).

PCR Tests of CAV1 in Clinical Samples
PCR experiments showed that CAV1 was significantly up-regulated in pancreatic cancer tissues compared with adjacent 
normal tissues (Figure 9).

Figure 8 The function of CAV1 gene in pancreatic cancer cell line was verified by cell function assay. (A) CAV1 knockdown with 3 siRNA in pancreatic cancer Capan-1 cell 
lines and PANC-1 cell lines. The results show that the knockdown efficiency of si-CAV1-2 is higher. (B) CCK-8 experiment. The results showed that the activity of Capan-1 
and PANC-1 cell lines decreased significantly after CAV1 gene knockdown. (C) Cloning experiments. The results showed that the proliferation activity of Capan-1 and 
PANC-1 cell lines decreased significantly after CAV1 gene knockdown. (D) Transwell experiment. The results showed that the migration ability of Capan-1 and PANC-1 cell 
lines decreased significantly after CAV1 gene knockdown.(*p<0.05, **p<0.01, ***p<0.001).

Figure 9 PCR test. PCR experiments showed that CAV1 was significantly up-regulated in pancreatic cancer tissues compared with adjacent normal tissues. (***p<0.001).
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Discussion
Our study is the first to explore the significance of cellular senescence through single-cell sequencing analysis and bulk 
transcriptome analysis in pancreatic cancer. Through single-cell sequencing analysis, we can intuitively identify the 
heterogeneity of cell senescence distribution in pancreatic cancer cells. The pathways associated with cell senescence 
such as Apoptosis, Epithelial Mesenchymal Transition, Hypoxia, Inflammatory Response and TGF Beta were also found. 
At the same time, WGCNA was used to explore the gene modules most associated with cellular senescence in pancreatic 
cancer. The green module was found to be highly correlated with cellular senescence. This is not only a way to identify 
gene sets, but also a means to stratify the prognosis of pancreatic cancer patients. With unsupervised clustering, patients 
could be divided into two clusters based on the module genes obtained from WGCNA, with cluster2 having a signifi
cantly worse prognosis. This also provides a reference for us to evaluate the prognosis of pancreatic cancer patients.

The further construction and validation of the prognostic model is more clinical significance. The initial screening of 
these model genes was obtained by the intersection of genes obtained by single-cell sequencing analysis and genes 
obtained by WGCNA, with a total of 303 genes. These genes were double-screened, so their relevance to cellular 
senescence was more pronounced. Further COX and LASSO regression analyses narrowed the gene range further and 
assigned coefficients to each model gene so that the patient’s risk profile could be quantified by the amount of these genes 
expressed. Each group of patients could be divided into a high risk group and a low risk group by median risk value, and 
the high risk group had a significantly worse prognosis. This provides a better method for stratifying the prognosis of 
pancreatic cancer. The subsequent immune correlation analysis and mutation analysis showed the immune landscape and 
mutation landscape of pancreatic cancer, and analyzed the correlation between risk score and immunity and mutation, 
which could provide references for immunotherapy of pancreatic cancer. Overall, the results of our study can provide 
reference for the prognosis assessment and immunotherapy of pancreatic cancer.

At present, some bioinformatics studies have initially revealed the significance of senescence in the tumor micro
environment. Lv et al identified three molecular subgroups of osteosarcoma through differentially expressed age-related 
genes in prognosis. These subgroups have differences in immune invasion, signaling pathway activation, prognosis, and 
drug sensitivity, which can provide considerable references for the diagnosis and treatment of osteosarcoma.26 Yue et al 
constructed senescence-related risk profiles in colorectal cancer, where the high risk score was associated with poorer 
prognosis and positively correlated with the abundance of immune cell infiltration in the tumor microenvironment.27 Hua 
et al constructed a 5-gene senescence-related prognosis signature from high-throughput sequencing data to assess patient 
prognosis in pancreatic cancer.28 However, compared to their results, we used single-cell sequencing data to explore the 
heterogeneity of senescence in pancreatic cancer cells, adding confidence to the data. Moreover, we also used weighted 
coexpression network analysis, which further increased the correlation of the data. Moreover, the prognostic model we 
constructed has a higher AUC value and is more accurate. We also used cell experiments to verify the function of the key 
gene CAV1 in pancreatic cancer cells.

In the realm of molecular biology and cancer research, the caveolin-1 gene, often abbreviated as CAV1, has emerged 
as a key player with profound implications in tumorigenesis and cancer progression.29 CAV1 is a gene that encodes 
a critical structural protein known as caveolin-1, which is primarily associated with the formation and maintenance of 
caveolae, small invaginations of the cell membrane.30 Beyond its structural role, CAV1 has been recognized as a multi
functional molecule involved in various cellular processes, including signal transduction, lipid homeostasis, and cellular 
trafficking. In recent years, an increasing body of evidence has underscored the pivotal role of the CAV1 gene in cancer 
biology, making it a subject of intense investigation and a promising target for cancer therapy. The significance of CAV1 
in pancreatic cancer has been preliminarily elucidated by many studies. Hu et al found that cav-1 in pancreatic cancer 
cells stimulates IGF1R/IR and glycolysis in cancer cells and triggers a malignant state in tumor carriers.31 Yamao et al 
found that in pancreatic cancer, down-regulation of CAV1 in cancer-associated fibroblasts (CAFs) reduced the invasive
ness of PC cells.32 Therefore, CAV1 of CAF may be a new target for the treatment of PC. Our study revealed the 
correlation between CAV1 and senescence in pancreatic cancer, and verified the function of CAV1 through cell 
experiments, providing a potential target for pancreatic cancer.
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A limitation of our study is that our single-cell sequencing data and bulk transcriptome data were obtained from 
public databases, and we lacked sequencing data from the real world. Moreover, our experiments were carried out in cell 
lines, lacking corresponding patient tissues and animal models for verification. We will explore that in the future.
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