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Identifying organs within histology images is a fundamental and non-trivial step in toxicological digital pathology
workflows as multiple organs often appear on the same whole slide image (WSI). Previous works in automated tissue
classification have investigated the use of single magnifications, and demonstrated limitations when attempting to
identify small and contiguous organs at low magnifications. In order to overcome these shortcomings, we present a
multi-magnification convolutional neural network (CNN), calledMMO-Net, which employs context and cellular detail
from different magnifications to facilitate the recognition of complex organs. Across N=320 WSI from 3 contract re-
search organization (CRO) laboratories, we demonstrate state-of-the-art organ detection and segmentation perfor-
mance of 7 rat organs with and without lesions: liver, kidney, thyroid gland, parathyroid gland, urinary bladder,
salivary gland, and mandibular lymph node (AUROC=0.99–1.0 for all organs, Dice≥0.9 except parathyroid
(0.73)). Evaluation takes place at both inter- and intra CRO levels, suggesting strong generalizability performance.
Results are qualitatively reviewed using visualization masks to ensure separation of organs in close proximity
(e.g., thyroid vs parathyroid glands). MMO-Net thus offers organ localization that serves as a potential quality control
tool to validate WSI metadata and as a preprocessing step for subsequent organ-specific artificial intelligence (AI) use
cases. To facilitate research in this area, all associated WSI and metadata used for this study are being made freely
available, forming a first of its kind dataset for public use.
Introduction

To advance development of drugs to cure and treat diseases, millions of
histology slides are evaluated by toxicologic pathologists to assess safety of
candidate therapeutic compounds prior to advancement into clinical trials.
A preclinical study may include approximately 20–30 different organs for
the evaluation of toxic effects of a given therapeutic compound. Given the
large number of organs that are usually evaluated, it is a common practice
to embed several organs within the same paraffin tissue block to save mate-
rial and manual effort during tissue processing.1 As a result, there is a need
to identify where and what organs are present in the slide and compare
them against the expected organs to identify any discordance. Organs
may be absent for a number of reasons, including: (1) insufficiently deep
sectioning in the paraffin block, or (2) unexpected deviations from the
study plan (e.g., tissues lost during processing). As a result, it becomes
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attractive to develop an automatic method for organ identification that de-
tects and delineates the organs present in the WSI as a quality control (QC)
step of the provided metadata while further enabling the development of
organ-specific AI tools.

With the development of whole slide imaging technologies for digitiza-
tion of glass slides, this workflow stands to be improved via the employ-
ment of machine and deep learning-based tools. Previously, in the
toxicological pathology space, a set of deep learning (DL) models termed
HistoNet were trained at single magnifications for identification of normal
rat tissues and organs,2 showing good performance for some tissues, while
noting their limited ability to differentiate morphologically similar tissues,
as well as small and contiguous tissues. As discussed by Hoefling et al.,2

organ detection is non-trivial as some organs are small, anatomically con-
nected, or embedded within other organs, thus forming one single contigu-
ous tissue island (e.g., thyroid and parathyroid glands or lymph nodes and
witzerland.
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salivary glands). Pathologists address this challenge by examining informa-
tion that is obtained from a combination of high and low magnifications
during histological evaluations, thus balancing fine-grained and contextual
visual information. Using a comparable computational technique, previous
works in the clinical space demonstrate the advantages of using multiple
magnifications combined in one single algorithm.3–7

When deploying such tools in the real-world settings, there is the addi-
tional challenge that these whole slide images (WSI) can originate from
multiple sites, and thus show diminished model performance as a result
of preanalytical variability. This variability can originate from protocol dif-
ferences between contract research organization (CRO) laboratories relat-
ing to: (1) different tissue processing methods, (2) staining protocols, (3)
sectioning thickness, or (4) digital image acquisition devices.8,9 Despite
the existence of computer vision techniques for color normalization and
augmentation to try to overcome these challenges,10,11 training and validat-
ing algorithms with heterogeneous sources of images appears to help in
developing more robust and generalizable models.

Building on these works, we have constructed a preclinically deploy-
able multi-head DL approach (MMO-Net) which uses as input a combina-
tion of magnifications of the same region to provide both context and
detail. Furthermore, in line with the intended use case, we include organs
with histopathological findings (i.e., lesions), as this is a common con-
founder in preclinical studies. These findings can be very heterogeneous
and responsible for marked morphological deviations from a normal tis-
sue, increasing the complexity of the classification task and thus warrant
dedicated consideration.

In summary, our main contributions are the following:

● WepresentMMO-Net, an organ identification network thatmakes use of
multiple magnifications simultaneously to recognize complex organs.

● We identify 7 rat organs (liver, kidney, thyroid gland, parathyroid gland,
urinary bladder, salivary glands, and mandibular lymph node) with and
without histopathologicalfindings by spatially detecting and delineating
the organs in a WSI through segmentation masks.

● We built and are now publicly releasing a first-of-its-kind multi-centric
dataset consisting of 320 WSI from 3 laboratories digitized across 2
scanners, containing over 20 different rat organs from control and
treated animals.

● Weperformed an inter/intra laboratory study design tomimic real-world
workflows of identifying organs in toxicological pathology. We aim to
deploy this tool in our facility to enable automatic organmetadata valida-
tion and subsequent organ-specific tool invocation in our production
environment.
Materials and methods

Dataset and annotations

Nine preclinical rat studies with tissue processing performed at three
different CRO laboratories (Lab A, B, and C) were selected. All studies
Table 1
Multicentric study set.

Study Laboratory Format

Study 1 Lab A ndpi
Study 2 Lab A ndpi
Study 3 Lab A ndpi
Study 4 Lab B ndpi
Study 5 Lab B svs
Study 6 Lab C ndpi
Study 7 Lab C ndpi
Study 8 Lab C svs
Study 9 Lab C svs

Liver (L), salivary glands (SG),mandibular lymph node (LN), kidney (K), urinary bladder
originate from Hamamatsu and Aperio scanners, respectively. The dash symbol (-) repre
ative class (9 in total), 2 WSIs/study were used.

2

were performed in Wistar Han rats except for study 3, performed in
Sprague-Dawley rats. All experimental procedures were in accordance
with the respective Swiss regulations and approved by the Cantonal Ethical
Committee for Animal Research. The WSIs for this study contain organs
with andwithout histopathological findings, and include scans fromHama-
matsu (ndpi) and Aperio (svs) scanners (Table 1). Studies were selected to
intentionally include significant staining variations to help develop and val-
idate algorithms more applicable to our real-world setting (Table 1 and
Fig. 1). The associated metadata of the organs included in eachWSI are ob-
tained from internal protocols that specify how the different organs are
grouped per WSI.

The resulting dataset consists of N=320 WSI containing: liver, kidney,
thyroid gland, parathyroid gland, urinary bladder, salivary gland, mandib-
ular lymph node, and others (negative class) (see Table 2). Liver and kidney
were selected due to their critical relevance in preclinical safety assess-
ments. Organs frequently embedded with them were additionally selected,
including submandibular lymphnodes and salivary glands (embeddedwith
liver), and urinary bladder (embedded with the kidneys). The thyroid and
parathyroid glands were also included as a use case to evaluate detection
of small organs in close proximity. In addition, to aid in the positive selec-
tion for desired organs, various confounding organs from 9 organs sets
were included as negative class for training the models (class “other”): ad-
renal glands, aorta, and ureters; lung and heart; stomach and intestine; skel-
etal muscle, sciatic nerve, mammary gland and skin; prostate and seminal
vesicles; testis and epididymis; eye and harderian glands; bone with bone
marrow; and spinal cord.

Slides with histopathological findings were included for 3 organs
(Fig. S1): liver, kidney, and thyroid gland. For these organs, if multiple con-
comitant lesions were present, the maximum lesion severity grade was con-
sidered as the organ severity grade label (see Supplemental Section 1 for
additional details). Additional information with the histopathological find-
ings can be found together with the WSI at https://doi.org/10.7303/
syn30282632.12

The 7 target organs were annotated by a pathologist using HALO® v3.2
software (Indica Labs). Coarse annotations were drawn for organs which
are clearly separated by background, while for touching organs, amore pre-
cise boundary delineationwas performed. All annotations are exported into
.xml files for subsequent data processing.
Overview of the Multi-Magnification Organ Network

A flowchart of our approach is presented in Fig. 2 demonstrating how
MMO-Net makes use of multiple magnifications simultaneously to mimic
pathologist behavior during organ identification. We construct DL models
per organ (one versus all) to easily enable individual model refinement
and inclusion of additional organs during deployment without having to
re-train and re-validate a more sophisticated multi-class classifier. Valida-
tion of the associated WSI metadata is performed after converting the clas-
sification tile predictions into segmentation masks for organ localization in
the WSI space.
Stain profile Organs (n° of WSI)

Profile 1 L (7), K (7), L-SG-LN (3), K-UB (3)
Profile 1 L-SG-LN (10), K-UB (10), T-PT (10), NC (18)
Profile 1 L (10), K (10)
Profile 2 L-SG-LN (10), K-UB (10), T-PT (10), NC (18)
Profile 2 L-SG-LN (10), K-UB (10), T-PT (10), NC (18)
Profile 1 L (10), K (10)
Profile 1 L-SG-LN (10), K-UB (10), T-PT (10), NC (18)
Profile 3 L (10), K (10)
Profile 3 L-SG-LN (10), K-UB (10), T-PT (10), NC (18)

(UB), thyroid (T) and parathyroid (PT) glands. Negative class (NC). ndpi and svsfiles
sents organs that are grouped in the same tissue block. For each organ set in the neg-

https://doi.org/10.7303/syn30282632
https://doi.org/10.7303/syn30282632


Fig. 1. Staining variability across studies, with examples of the annotations performed. Study 2 (stain profile 1), Laboratory A (A, B, C); study 5 (stain profile 2), Laboratory B
(D, E, F); study 9 (stain profile 3), Laboratory C (G, H, I). Liver, salivary glands, mandibular lymph node (A, D, G), kidney and urinary bladder (B, E, H), thyroid and
parathyroid glands with trachea and esophagus (C, F, I).

Table 2
Total number of WSI used in the study.

Organ N° Studies N° Laboratories N° WSIs

Liver 9 3 90
Salivary gland, lymph node 6 3 53
Kidney 9 3 90
Urinary bladder 6 3 53
Thyroid, parathyroid 5 3 50
Other organs (Negative class) 5 3 90

These WSI originating from different laboratories, and reflect the real scenario of
source variability. In total, 320 WSI were used in this study. See Table 1 for more
details.
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WSI pre‐processing

Before model training, preprocessing steps consisted of: (1) identifying
the tissue in the WSI (foreground extraction), (2) masking the tissue areas
with the annotations made by the pathologist, and (3) generating, on
tissue-detected areas only, the coordinates of multi-magnification tiles hav-
ing the same centroid, termed tile sets (see Fig. S2).

During training, tile sets of size 224×224 pixels were dynamically ex-
tracted from the WSI at: (1) 1.25x (≈ 7.987 microns per pixel [mpp]) pro-
viding overall context and (2) 5x (≈ 1.997mpp) to provide finer histologic
details. Further details in Supplemental Section 2.

Multi-Magnification Organ Network

DenseNet-121 was chosen as the backbone CNN forMMO-Net due to its
proven feature use efficiency and significantly reduced number of
parameters.13,14

A visual representation ofMMO-Net can be seen in Fig. 2 panel 2, where
simultaneous dedicated networks learn organ feature representations from
our “tile sets”. Subsequently, these dual magnification feature representa-
tions are concatenated in a fully connected layer followed by a final
Softmax layer to output probability scores. For experimental comparison,
3

DenseNet-121s were trained individually at both 1.25x and 5x. Implemen-
tation of the CNNs was done in the PyTorch framework using OpenSlide to
read the WSIs and extract the image tiles. Training details are specified in
Supplemental Section 3.

WSI organ mask generation

Once individual organ models are trained, WSI tile sets are passed
through the models to produce the associated WSI organ segmentation
mask (Fig. 2 panel 3). Organ maps are created by selecting, per pixel, the
organ class with the highest SoftMax value (see Supplemental Section 4
for more information).

Assessment metrics

Classification performance
The performance of the organ classification models was assessed with

the Area Under the Receiver Operating Characteristics curve (AUROC).15

A perfect model will have a value of 1.0, and a random model will have a
value of 0.5.

Segmentation performance
To quantitatively assess the segmentation performance, the Dice Simi-

larity Coefficient (DSC) was used to measure the overlap between the gen-
erated predicted organ masks and the ground truth. It is calculated as
follows: DSC ¼ 2�TP

2�TPþFPþFN where TP refers to true positives, FP to false pos-
itives, and FN to false negatives.

Experimental design

The N= 320WSIs were divided into train, validation, and test sets, en-
suring each WSI is contained only in one of the splits. The training set is
used to learn the feature representations of each class and is used in
updating the CNN model weights. The validation set is data used to evalu-
ate model performance during training that does not contribute to model
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learning, but instead helps identify which epoch’s model weights to employ
during testing. Lastly, the test set is used to assess the generalizability of our
models to unseen data.

Experiment 1: Evaluate laboratory generalizability performance
The first experiment aims to assess MMO-Net’s generalizability when

testing data originates from a laboratory not employed during training,
i.e., its ability to recognize organs despite changes in scanners and stain
variations.

Here laboratory cross-validation was performed such that one labora-
tory is sequentially excluded from the training set to act as the held-out un-
seen test set. Validation subsets are created per organ by taking 10% of the
training data and stratifying by severity grades when possible. A visual
representation of the splits can be seen in Fig. S3.

Results are presented averaging the 3 splits by laboratory per organ (in-
cluding the standard deviation), and comparing them between the models
trained at individual magnifications (1.25x, 5x, and MMO-Net at 1.25x &
5x), resulting in 63 trained binary models (7 organs x 3 laboratory-splits x
3 CNN approaches).

Experiment 2: Evaluate generalizability in real-world translatable use case
This experiment aims to build the most robust model possible by inte-

grating data from all sites, with the intent that this model is to be deployed
into our production environment.
4

Here the laboratories data is commingled before dividing into 70%–
10%–20% for training, validation, and test splits, respectively. Stratifica-
tion is performed by lesion severity gradeswhen lesion information is avail-
able and by laboratory otherwise (see Fig. S4 for additional details).

In total, 7 binary organ-models are compared with 3 networks: 2
DenseNet-121 trained individually at 1.25x and 5x, along with a single
MMO-Net trained simultaneously at 1.25x & 5x, resulting in a total of 21
models.

Experiment 3: QC WSI metadata and timing evaluation
To validate the suitability of MMO-net to act as a QC tool for validating

WSI metadata: per WSI, the organ metadata information is compared with
detected organs and considered correct only if all organs are present. A QC
score is produced by computing the Positive Predictive Value (PPV), for all
folds in Experiment 1 and the test split from Experiment 2. Lastly, the com-
putation time needed to process each slide is recorded to determine suit-
ability for a high-throughput preclinical environment.

Results

Experiment 1: Evaluate laboratory generalizability performance

The classification results when holding out a single laboratory as a test
show excellent performance for all magnifications in all experiments
(upper section in Table 3). When quantitatively evaluating segmentation



Table 3
Model AUROC values (tile-level) per organ.

Experiment Magnification Kidney Liver Lymph node Para- thyroid Salivary glands Thyroid Urinary bladder

Splits by lab (Experiment 1)
1.25x 0.9933 ± 0.0058 1.0 ± 0.000 0.9967 ± 0.0058 0.9967 ± 0.0058 0.9967 ± 0.0058 0.9933 ± 0.0116 0.9967 ± 0.0058
5x 0.99 ± 0.01 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.9967 ± 0.0058 0.9967 ± 0.0058 0.9933 ± 0.0058
1.25-5x 0.9967 ± 0.0058 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.9933 ± 0.0058 0.9933 ± 0.0115 1.0 ± 0.0

Split by severity (Experiment 2)
1.25x 1.0 1.0 1.0 1.0 1.0 1.0 1.0
5x 0.99 1.0 1.0 1.0 1.0 1.0 0.99
1.25-5x 1.0 1.0 1.0 1.0 1.0 1.0 1.0

For the experiment “Splits by laboratory”, the 3 splits results (Laboratory A, B, andC) are averaged per organ andmagnification, reporting additionally the standard deviation
(−/+ SD). In the column “Magnification”, 1.25x and 5x refers to DenseNet-121 models trained with the respective single magnifications while “1.25x & 5x” refers to our
proposed model MMO-Net trained with both magnifications.
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results (Fig. 3A), DSC values show similar behavior for all held-out labora-
tories. Among the 7 organs, the largest difference is observed for the para-
thyroid gland, with a DSC of nearly zero at 1.25x (likely due to its small size
at this magnification) and a DSC > 0.7 at 5x and 1.25x & 5x. In the same
manner, the thyroid gland models showed an improvement of ~0.1 from
a DSC of ~0.8 (1.25x) to ~0.9 (5x and 1.25x & 5x) (Fig. 3A).

Results showed that despite having lesions in the liver, kidney, and thy-
roid gland, MMO-net is able to identify them correctly with a DSC > 0.9
(Fig. 3A - 1.25x& 5x and Fig. 4). Focusing on the parathyroid gland, a chal-
lenging organ due to its small size, MMO-net is still able to identify it con-
sistently (see Table 3) but due to the tile size selected, its boundaries are
less refined.
Fig. 3. Macro (global) Dice Similarity Coefficient (DSC) values per organ for the
organ segmentation masks for experiment 1 and 2. ‘1.25x’ and ‘5x’ refer to
DenseNet-121 models trained with those single magnifications while ‘1.25x & 5x’
refers to our proposed model MMO-Net trained with both magnifications. Bar
values in figure A represent the average of the 3 test splits (Laboratory A, B, and
C). “Other” refers to other organs in the negative class.

5

Fig. 5 provides a comparison between the ground truth and the 3 CNN
models for the 7 target organs. The most notable difference can be seen in
the first row with the parathyroid gland being completely undetected at
1.25x. For liver and kidney, models performed well, while for salivary
gland and urinary bladder, there are small differences visible between all
models.

Further, visual inspection helped identify situations where our models
performed poorly (Fig. 6). These situations were observed in cases of severe
lesions which greatly altered tissue architecture, like marked thyroid follicu-
lar hyperplasia (Fig. 6-1). For test set Laboratory C, we observed slightly re-
duced DSC values for the urinary bladder (Fig. 3A), and visual inspection
showed that some slides employed uncommon sectioning orientations for
this organ, potentially impacting our generalizability performance (Fig. 6-2).
Experiment 2: Evaluate generalizability in real-world translatable use case

The quantitative results for Experiment 2 showed very similar results to
Experiment 1, with excellent classification performance for all magnifica-
tions (bottom section in Table 3). The segmentation results were also very
similar to Experiment 1 (Fig. 3B), showing again for the parathyroid
gland a DSC > 0.7 at 5x and 1.25x & 5x compared with a DSC = 0.01 at
1.25x. Similarly, the thyroid results compared to Experiment 1 showed an
improvement of ~0.1 from a DSC of 0.81 (1.25x) to ~0.9 (5x and 1.25x
& 5x) (Fig. 3B).

As with Experiment 1 (Fig. 5-1), visual inspection of the masks also re-
vealed that for small organs like the parathyroid, 1.25x is not sufficient for
segmentation. Similarly, our models performed poorly in WSI containing
lacrimal glands together with salivary glands (Fig. 6-3). This misclassifica-
tion occurred in both experiments, likely due to the fact that both glands
look alike at both magnifications despite being 2 different organs.
Experiment 3: Performance of QC metadata validation

In Experiment 1, the QC scores for the laboratories cross-validation
were 1.0, 0.9896, and 1.0 (Lab A, B, and C as test set, respectively), indicat-
ing very strong performance. Importantly, it was determined that the lower
QC score of Laboratory B was in fact a result of incorrect metadata and not
poor performance of the model. In this context, a WSI was predicted by our
model as not having a mandibular lymph node, while the metadata sug-
gested it was present. Upon manual review, our pathologist confirmed it
was in fact an error in metadata, and that our approach was able to spot
this discrepancy.

This same WSI was again part of the test set for Experiment 2, wherein
again it negatively affected the QC score (0.9844), yet would have success-
fully been flagged for manual review.

On average MMO-net takes approximately 330 s, which includes pass-
ing each WSI through the 7 organ models (30 s/model) and computing its
segmentationmask (115 s). Although already suitable for our environment,
it is imagined that in subsequent versions this could be highly parallelized
reducing the overall time to less than 2 min.



Fig. 4. Example masks from our proposed MMO-Net (1.25x & 5x) models. Experiment 1A (Split by Laboratory A; images A, D, G); Experiment 1B (Split by Laboratory B;
images B, E, H); Experiment 2 (split by lesion severity, images C, F, I). A–C, Segmentation masks from the negative class (A, stomach and intestine; B, eyes and harderian
glands; C, testis and epididymis). D–F, Segmentation masks from target organs (D, kidneys and urinary bladder; E, thyroid and parathyroid glands with esophagus and
trachea; F, liver, salivary gland and mandibular lymph node). G–I, H&E stains of the frames depicted in images D, E, and F, respectively, show that organs with lesions
are also identified. G, kidney with tubular necrosis and mineralization. H, thyroid gland with follicular cell hypertrophy. I, liver with sinusoidal congestion and
hepatocellular necrosis. The bottom legend shows the mapping color representation used for the organ masks.
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Discussion

Organ identification with multiple magnifications (MMO-Net)

In this work,we have presented an organ identification network (MMO-
Net) that makes use of multiple magnifications to simultaneously learn
larger contextual information and finer morphological features.

With the use of 2 relatively low magnification levels (1.25x & 5x),
MMO-net successfully recognized the 7 rat organs evaluated in this study.
For comparison, models trained with low single magnification (1.25x)
struggled to identify small organs like the parathyroid glands, demonstrat-
ing how detrimental suboptimal magnification selection can be. Similar is-
sueswith the thyroid and parathyroid glandswere encountered byHoefling
et al.,2 where they showed higher numbers of misclassifications occur at
lower magnifications (8.064 mpp ≈ 1.25x and 2.016 mpp ≈ 5x) versus
higher ones (0.504 mpp ≈ 20x). As observed in our and other studies,2,6

the need for higher or lower magnifications depends on a number of factors
(e.g., organ size, contact with adjacent organs, and tissue complexity),
which can be challenging to balance within a single magnification. To
that end, others have investigated multi-magnification approaches, en-
abling improved performance in classification, segmentation, and lesion
detection tasks.4,5,7 Taken together, while attempting to balance context
versus fine-grained detail in a single magnification is challenging, our re-
sults as well as those of others previously published suggest this can be
averted by employing a multi-magnification approach.
6

For long-term sustainability, one-vs-all models were chosen so that in
our production environment, organ models can be dynamically invoked
if: (1) theWSImetadata is known a priori or (2) if identification of a specific
organ is of interest. This approach has the added benefit of greater flexibil-
ity, as additional organ models can easily be dynamically added, and spe-
cific models can be individually improved if needed without requiring
revalidation of all classes. Although not required here given the strong per-
formance of individual models, as the number of additional organs grows, a
secondary classifier (e.g., random forest)may be needed to learn how to ap-
propriately weight the pre-softmax values from the individual models to
produce a more robust final organ prediction.
Lesions

Identification of organs despite the presence of lesions is critical for tox-
icologic pathology workflows. Experiment 1 showed that MMO-net is capa-
ble of distinguishing organs independent of laboratory origin (Table 3,
Fig. 3), but showed slightly diminished performance when generalizing to
severe lesions. This is not unexpected as a lesion may heavily alter tissue
morphology (e.g., extensive lytic necrosis). Consequently, when controlling
for lesion severity during training, as done in Experiment 2, MMO-Net
yielded a perfect DSC ~ 1.0 for liver and kidney organs, and a still notably
improved DSC of 0.9 for thyroid glands (Fig. 3). As expected, MMO-Net ap-
peared to heavily benefit from being exposed to wider lesion severity and



Fig. 6. Examples of individual cases where our models perform poorly. Row 1, Split by Laboratory C, Thyroid is not identified in this specific case due to severe follicular
hyperplasia. Row 2, Split by Laboratory C, Urinary bladder is not identified, likely due to uncommon orientation of the section and/or levels of inflation of the organ.
Row 3, Split by severity, Lacrimal gland was present in this particular slide together with the salivary glands, and some regions of the lacrimal gland are incorrectly
identified as salivary gland with the 1.25x & 5x model. Images on column D are H&E stains from the regions with a white frame depicted in figures from column A at
40x (1D) and 10x (2D and 3D)magnifications. (Note that the color code of the annotations on the left does not follow the color code for themasks at the bottom of thefigure).

Fig. 5. ExampleWSI organ masks from the models trained at different magnifications in comparison with the ground-truth annotations. Row 1, test set split by Laboratory B
(experiment 1). Rows 2 and 3, test set split by lesion severity (experiment 2). Note that for small organs like the parathyroid (arrows), 1.25x is not sufficient. For color legend
see Fig. 4.
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variety during training, suggesting that obtaining training data similar to
real-world data distributions is critical for model generalizability.

Other works identifying tissue/organs using DL approaches focused on
normal histology,2,16 with no published applications to tissues with
lesions. Although Hoefling et al.2 suggested that normal tissue classifi-
cation could be applied to lesion detection, a formal approach has yet
to be published. Segmentation of specific lesion types per organ by
Kuklyte et al.6 showed that a reliable lesion detection and quantifica-
tion depends on several factors including organ, type, and grading of
the lesion together with magnification used. Hence, our work aims to
benefit the toxicological pathology community by merging these con-
cepts into one single approach.

An additional benefit ofmodels likeMMO-Net that can spatially localize
organs, is that downstream applications for organ-specific lesion detection
may be directly employed without requiring manual annotations of those
organs or building additional preprocessing steps. For example, evaluating
hepatocellular and follicular cell hypertrophy in rats,17,18 or even in human
clinical settings,19,20 would expect to be benefited by MMO-Net.19,20

Visual organ representations

Although Hoefling et al.2 focused on embedding and tile-level valida-
tions for research and comparative histology purposes, a systematic ap-
proach for translating these results into the WSI level outputs needed for
pathologist review was not mentioned. MMO-Net provides this functional-
ity, resulting in a multi-colored mask delineating boundaries of the various
organs. This map further enables the localized execution of downstream
organ-specific tools, facilitating improved workflow efficiencies. MMO-
Net additionally provides the needed dynamic flexibility of selecting, or
adding, magnifications which can modulate the level of segmentation spec-
ificity required, regardless of organ size.

Quality control

Experiment 3 demonstrated that via these organ masks, it becomes pos-
sible to validate concordance of WSI metadata with organ WSI presence
(Fig. 2 panel 4). This QC is critical for large-scale deployment, by drawing
reviewer effort to only those few slides in question. As a by-product, this
feedback is anticipated to help in long-term refinement of these models as
challenging WSI are identified and incorporated.

Runtime considerations

Runtime per WSI is determined by the number of organmodels chosen,
and available computational architecture. For WSI whose metadata is
known in advance, the most efficient configuration would be to perform in-
ference with only the expected organ models. Any unlabeled tissue would
be flagged and either manually reviewed or evaluated by all available
models to determine its type. MMO-Net also affords the opportunity to
parallelize output generation across a cluster, such that different GPUs
could be assigned to different models, reducing overall computational
time in a linear relationship with GPU availability. Although organ mask
generation is one of the most computationally expensive parts of MMO-
Net (115 s/WSI), we believe its performance could further be optimized,
but remained out of scope for this proof of concept. Regardless, the current
implementation ofMMO-Net, with a single non-parallelized GPU approach,
yields results within a timeframe deemed suitable for active usage and de-
ployment.

Limitations and future work

Due to the nature of the mask generation approach, the boundary
where organs intersect often appears block-shaped (Fig. 4). While still
suitable in most cases, some uses may require higher pixel-level preci-
sion. For pixel-level boundaries, semantic segmentation approaches are
ideal4,6,7 but require laborious pixel-wise annotations and a larger
8

amount of training data.21–23 An alternative approach for providing
this specificity may be to combine superpixels with deep learning24,25

hoping to benefit from superpixels’ more nuanced detection of organ/
tissue boundaries.

For future work, we plan to:

● Perform a more thorough validation of MMO-Net via production usage
on incoming large-scale cohorts, appreciating this study represents a
small fraction of the volume seen in a preclinical setting.

● Focus on incorporating additional organs and animalmodels, enabling a
more complete rollout across all our workflows.

Data release

The data release from this study includes WSI with associated metadata
(study identification, organs, laboratory number,file format, color variations,
severity grade label as well as the histopathological findings). Additionally,
organ annotations and training–testing splits are available to help replication,
benchmarking, and extension efforts.

The nature of this unique multi-site-scanner-organ dataset not only
reflects, for thefirst time publicly available, real-world toxicological pathol-
ogy studies, but also can enable additional experiments regarding color/
stain normalization11,26 and impact of batch effects.8,27 Furthermore, the
severity grades and histopathological findings could serve as a reference
dataset for lesion detection/segmentation6 and aid in the building of
models for normal vs abnormal tissue identification.

Conclusions

Our results show that it is possible to automatically identify a diverse set
of organs from preclinical studies, including not only normal organs but
also organs with lesions. With our MMO-Net network, we benefit from
feature extraction at multiple magnifications, which provide complemen-
tary information at both context and structural detail levels. This work
establishes a solid base for the identification of organs inWSI with intended
usage as a first step for downstream AI-driven organ-specific models. This
approach is now being deployed in our production environment for
real-world evaluation. In addition, we are releasing the totality of our
dataset to provide new opportunities for further algorithm development
and validation.

Data availability

The dataset can be found at https://doi.org/10.7303/syn30282632.12

It contains the associated metadata, organ annotations and train-testing
splits as referred in subsection Experimental Design from Materials and
Methods.
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