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The dimorphic fungal pathogen Histoplasma capsulatum is the most frequent cause of
clinically significant fungal pneumonia in humans. H. capsulatum virulence is achieved, in
part, through diverse and dynamic alterations to the fungal cell surface. Surface compo-
nents associated with H. capsulatum pathogenicity include carbohydrates, lipids, proteins,
and melanins. Here, we describe the various structures comprising the cell surface of H.
capsulatum that have been associated with virulence and discuss their involvement in the
pathobiology of disease.
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INTRODUCTION
Histoplasma capsulatum variety capsulatum (Hc) is the causative
agent of classical histoplasmosis (Meloan, 1952; Kwon-Chung,
1972, 1975; Bradsher, 1996) and the fungus has a worldwide dis-
tribution. The fungus is heterothallic and compatible (+) and
(−) mating types unite to form the ascomycetous perfect stage
designated Ajellomyces capsulatus.

Hc is a dimorphic fungal pathogen with two distinct mor-
phological forms, filamentous and yeast, depending on a variety
of nutritional factors and temperature (Maresca and Kobayashi,
1989). Hc is found in nature primarily as a saprophytic mold, and
exists in soils enriched with organic nitrogen sources, like animal
excrements (Emmons, 1950, 1956a,b; Zeidberg et al., 1952; Alteras,
1966; Emmons et al., 1966; Disalvo et al., 1970; Smith, 1971a,b).
Additionally, the fungus can grow as a mold when cultured on lab-
oratory mediums at less than 35˚C. The mold form is composed
by hyaline septate hyphae that are 1–2.5 μm diameter. Moreover,
hyphae produce two different hyaline asexual reproduction struc-
tures. Macroconidia are large, thick-walled, round,and 7–15 μm in
diameter, typically tuberculate, knobby, or with short cylindrical
projections, although they occasionally may be smooth. Micro-
conidia are smooth-walled spherical, pyriform, or cigar shaped,
ranging in size from 2 to 6 μm in diameter (Edwards et al., 1960;
Pine, 1960; Berliner, 1973; Garrison and Boyd, 1977). In contrast,
the pathogenic single, budding yeast-like form is predominately
isolated from infected tissue specimens and occurs when the

microbe is grown at ≥37˚C on specific media (Smith, 1971a,b; Hay,
1992). Hc var. capsulatum are generally small yeast cells (2–4 μm
in length), thick-walled and ovoid with a narrow base at the smaller
end, whereas variants found predominantly in Africa (Hc variety
duboisii) produced larger yeast cells (8–15 μm in length).

Infection typically occurs after disturbances in the environ-
ment which results in aerosolization of fungal propagules with
subsequent inhalation of microconidia or hyphal fragments by
a susceptible host (Guimaraes et al., 2006). Histoplasmosis is not
generally associated with person to person spread of disease. How-
ever, vertical transmission was once observed in a human neonate
(Kwon-Chung and Bennett, 1992). Rarely, histoplasmosis can be
acquired by cutaneous inoculation of the fungus.

Histoplasmosis is a cosmopolitan fungal infection with areas
of high endemicity. However, patients are usually unaware of their
potential exposure (Wheat, 2003). Generally, the environmental
conditions present in areas of high endemicity are a moderate cli-
mate with a relatively constant humidity (Maresca and Kobayashi,
1989). Endemic regions in North America are located in the Mid-
western and Southeastern parts of the United States (USA), espe-
cially the Mississippi, Ohio, and Missouri river valleys, where 80%
of the resident population has been shown to react to histoplasmin
by skin testing (Ajello, 1971; Goodwin and Des Prez, 1978; Wheat,
1997). It is estimated that Hc is responsible for approximately half
a million new human infections in the USA each year, making it
the most prevalent pulmonary fungal pathogen (Cano and Hajjeh,
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2001). In Latin America, the most prevalent areas of endemicity are
present within Brazil, Venezuela, Ecuador, Paraguay, Uruguay, and
Argentina (Borelli, 1970; Wheat, 1997, 2001). In Brazil, endemic
areas are located in the Midwestern and Southeastern portions of
the country (Zancope-Oliveira et al., 2005; Guimaraes et al., 2006),
where the prevalence ranges from 4.4 to 63.1% and 3.0 to 93.2%,
respectively (Londero and Ramos, 1978; Zancope-Oliveira et al.,
2005; Guimaraes et al., 2006).

Exposure to Hc is exceedingly common for persons living
within areas of high endemicity (Wheat and Kauffman, 2003).
The clinical manifestations of disease range from asymptomatic
infection or a mild influenza-like illness to a disseminated sepsis
form that may involve virtually any tissue (Meloan, 1952; Csil-
lag and Wermer, 1956; Goodwin and Des Prez, 1978; Wheat, 1994;
Bradsher, 1996). These manifestations depend mainly on the mag-
nitude of exposure (i.e., the number of fungal particles inhaled),
the immunological status of the host, and the virulence of the
infective strain, indicating that environmental and genetic factors
regulate the manifestation of disease (Goodwin et al., 1981; Kauff-
man, 2007). The vast majority of infected persons have either no
symptoms or a very mild illness that is never recognized as being
histoplasmosis (Wheat et al., 2007). In fact, 95–99% of the primary
infections are not recognized in immunologically normal hosts
in endemic areas (Saliba and Beatty, 1960; Isbister et al., 1976;
Goodwin et al., 1981). Although the majority of symptomatic
infections follow primary exposures to Hc, reactivation of latent
infection can result in significant disease, particularly in the setting
of immunosuppression, such as individuals chronically receiving
steroids or patients on chemotherapy (Kauffman, 2007). Further-
more, reactivation disease can be developed in liver transplant
recipients with disease originating from latent infections in the
transplanted organs (Limaye et al., 2000). Additionally, reactiva-
tion has increasingly occurred in patients receiving anti-cytokine
therapies, especially inhibitors of gamma interferon (INF-γ) and
tumor necrosis factor alpha (TNF-α; Deepe, 2005; Deepe et al.,
2005; Scheckelhoff and Deepe, 2005). Individuals with advanced
HIV disease are also at significant risk for severe infection due to
primary disease or reactivation of latent lesions, and disseminated
disease occurs in 95% of individuals with AIDS (Wheat, 1996).
Additionally, in the setting of severe immunocompromised, Hc
strains previously considered avirulent have been able to cause
fatal disease (Davies et al., 1978; Wheat et al., 1990).

Hc is a model dimorphic pathogen for the study of invasive
mycotic diseases. After inhalation, the fungal propagules reach the
terminal bronchioles of the lung and deposits in alveoli, undergo-
ing conversion to the pathogenic yeast form (Couto et al., 1994;
Allendoerfer et al., 1997). As a facultative intracellular parasite, the
interaction of Hc with macrophage cells is a critical component of
the host response to infection (Newman, 2005) and is a complex
and obscure phenomenon. Hc yeasts also have critical interactions
with inflammatory neutrophils, and with dendritic cells (DCs) in
the lung and other organs. Indeed, recent evidence suggests that
DCs can restrict the differentiation of conidia into yeast (Newman,
2005; Newman et al., 2011) and may be the key antigen-presenting
cells that initiate cell-mediated immunity (Deepe et al., 2008). Hc
yeast cells must survive and/or subvert the hostile anti-microbial
environmental within phagocytes (Allendoerfer et al., 1997),
including fungicidal mechanisms dependent on hydrogen

peroxide and products of the nitric oxide synthase (NOS) path-
way (Eissenberg and Goldman, 1987). Yeast cells actively inhibit
phagolysosomal fusion, thereby preventing exposure to the acidic
hydrolytic enzymes of the lysosomes. Hc also prohibits accumula-
tion of vacuolar ATPase, which is important for proton accumula-
tion in phagosomes, and the fungus can actively alkalinize phago-
somal pH to 6.5 (Strasser et al., 1999). Within the phagocytes, yeast
may travel to hilar and mediastinal lymph nodes where they can
gain access to the blood circulation for dissemination to various
organs, such as liver and spleen (Wheat and Kauffman, 2003).

YEAST CELL SURFACE
The components of the yeast surface are the main interface of Hc
to communicate with its environment and to interact with cells of
the immune system. In particular, Hc yeast display several surface
molecules involved in entry and survival within the host (Figures 1
and 2). The cell wall is essential to diverse aspects of Hc biology
and pathogenicity (Table 1). As discussed, uptake of Hc yeast by
macrophages provides a protected environment for yeast growth
and replication. However, in promoting its phagocytosis, Hc must
also subvert or avoid activating macrophage antifungal defenses.

CELL WALL CARBOHYDRATES
The cell wall is composed of about 80% of saccharides in dry
weight (Bernard and Latg, 2001). The monosaccharide compo-
sition consists in glucose (Glc), which is the most abundant
monosaccharide in filamentous and yeast cell wall, followed by
mannose (Man), and galactose (Gal). Structurally, the sugars form
a rigid polysaccharide structure that varies in composition ratios
depending on the chemotype of the strain (Reiss, 1977; Reiss et al.,
1977). Although different glycans comprise the structure; some
fluctuations can occur in certain isolates from a single chemotype,
such as shown with a major fibrillar chitin skeleton component, α-
1,3-glucan, β-1,3-glucan, and soluble galactomannan (Kanetsuna
et al., 1974).

The yeast and mycelia phases of Hc contain different chitin fib-
ril arrangements within their cell walls (Kanetsuna, 1981). These
structures are the foundation of the dynamic immunoreactive
construction that comprises the Hc cell wall.

The α and β-glucans present in the cell wall also change during
morphogenesis and have different biological roles (Domer et al.,
1967; Domer, 1971). At room temperature, the production of β-
glucan is favored, resulting in increased amounts of this glucans
which is predominant in the fungal mycelial phase. Also, induction
of 3-glucanase activity promotes a decrease of cell wall rigid-
ity, resulting in elongation or budding (2, 3). The β-1,3-glucan
consists of a linear β-1,3-glucosyl-linked backbone with β-1,6-
glucosyl-linked side chains that vary in length and distribution,
while forming a complex tertiary structure stabilized by inter-
chain hydrogen bonding (Kanetsuna et al., 1974). This structure is
antigenic and participates in the modulation of the host immune
response (Gorocica et al., 2009).

A shift to 37˚C favors α-1,3-glucan synthesis and low β-
1,3-glucan synthetic activity during yeast growth. During phase
transition from mycelia to yeast, the synthesis of α-glucans
increases rapidly (Kanetsuna et al., 1972; Kanetsuna, 1981) and
this effect is strictly dependent on temperature, with a lower syn-
thesis at 20 than 37˚C. Hc α-glucan contains α-1,3-glucosyl linear
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FIGURE 1 | Biosynthesis of important cell wall components of Hc.

FIGURE 2 | Schematic model showing the composition of the Hc cell wall.

residues and topographically overlaps the β-glucan surrounding
this last polymer in the yeast cell wall and it is considered relevant
for Hc yeast virulence (Klimpel and Goldman, 1988; Rappleye
et al., 2004).

Based on the α-1,3-glucan content of the yeast cell wall, Hc
is classified as chemotype I or II (Domer et al., 1967; Domer,
1971). A strain is classified as chemotype I when the α-1,3-glucan
is absent and it the fibers are entirely β-linked (Davis et al.,

1977). A chemotype II cell wall contains a mixture of α and β-1,
3-glucans.

Chitin
The major cell wall component is an inner layer of chitin, a
polysaccharide composed by polymers of glucans and β-1,4-N -
acetyl-glucosamine (GlcNAc) residues (Kanetsuna et al., 1974).
The chitin fibrils are considered to be the skeleton of the cell
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Table 1 | Components of Hc cell surface and their role in pathogenicity/virulence.

Surface component Role in virulence/pathogenicity

SURFACE CARBOHYDRATES

Chitin Maintenance of cell wall integrity and rigidity, as well as in resisting the extracellular environment (Ruiz-Herrera and Osorio,

1974); immunomodulatory; and immunosuppressing molecule recognized by dectin-1 (Mora-Montes et al., 2011) inducing

activation of anti-microbial activities of macrophages and PBMCs, (Rementeria et al., 1997; Mora-Montes et al., 2011); bind

diverse products in supernatant, such as polysaccharides such as Cryptococcus neoformans capsule or self-proteins like

YPS3 (Bohse and Woods, 2005).

β-1,3-glucan Major constituent of the cell wall of the filamentous phase of Hc (Davis et al., 1977); promotes inflammatory cell recruit-

ment and production of pro-inflammatory cytokines including TNF-α (Figueiredo et al., 1993; Medeiros et al., 1999, 2004;

Anjos et al., 2002). Dectin-1 and DC-SIGN (CD209) are receptors for β-1,3-glucan polymers (Brown, 2006).

α-1,3-glucan Presence correlated with virulence (Kugler et al., 2000; Rappleye et al., 2007); regulates yeast proliferation inside host

phagocytes (Kugler et al., 2000) by protecting the yeast within phagolysosomes (Eissenberg and Goldman, 1991), result-

ing in a state called intracellular latency (Eissenberg et al., 1996, 1997); Hc displaying α-1,3-glucans can persist for several

weeks inside these cells and induce the formation of granulomas, which result in chronic infected tissues (Klimpel and

Goldman, 1988); loss of α-1,3-glucan impaired Hc yeast proliferation within macrophages killing of cultured macrophages

(Rappleye et al., 2004); in vivo, loss of α-1,3-glucan resulted in reduction in lung colonization (Marion et al., 2006); subverts

the host immune mechanisms of recognition of cell wall components and contributes to yeast survival. By blocking the

innate recognition of the fungal PAMP β-1,3-glucan by its PRR dectin-1 receptor on host phagocytes (Rappleye et al., 2007).

Gallactomannan Involved in DTH with inhibition of macrophage migration factor release (Azuma et al., 1974; Reiss et al., 1974). In Paracoc-

cidioides brasiliensis, it appears to be involved in the protection against its own serine-thiol protease, an enzyme associated

with pathogen dissemination through the extracellular matrix (Matsuo et al., 2006).

Lectin-like components Binds to a 68 KDa galactosylated surface molecule (mainly β-anomer) on murine macrophages (Taylor et al., 1998; Duarte-

Escalante et al., 2003), and participates in macrophage activation, and regulation of phagocytosis (Maldonado et al., 1998).

Also involved in agglutination of human erythrocytes (Taylor et al., 2004).

Mannoproteins Highly antigenic and can lead to dendritic cell maturation and activation with pro-inflammatory cytokine production, (Pietrella

et al., 2006). Also involved in host tissue adherence (Ross, 2002).

LIPIDS

Ceramide monohexoside Expressed in almost all fungal species (Barreto-Bergter et al., 2004); found in the mycelia and yeast phases of Hc (Barr

and Lester, 1984; Barr et al., 1984) and appears to be required for fungal survival (Dickson and Lester, 1999).

Extracellular vesicles Carry lipids, proteins, polysaccharides, and pigment-like structures involved in diverse processes including metabolism,

cell recycling, signaling, and virulence (Yoneda and Doering, 2006; Rodrigues et al., 2007, 2008a; Albuquerque et al., 2008;

Vallejo et al., 2011); some proteins found in Hc vesicles are pathogenic determinants and/or are involved in host–pathogen

interactions. Hc extracellular vesicle may function as a “virulence bag,” since virulence factors are concentrated within

them and these molecules can modulate the host–pathogen interaction and immune response (Albuquerque et al., 2008;

Rodrigues et al., 2008b; Casadevall et al., 2009; Oliveira et al., 2010).

PROTEINS

Hsp60 Major ligand that mediates attachment of Hc to macrophage/monocyte CR3 integrin (CD11b/CD18; Long et al., 2003),

resulting in phagocytosis (Long et al., 2003; Habich et al., 2006); it is also an immunogenic molecule, being a potential

target for passive immunization therapy (Guimaraes et al., 2009, 2011a); contributes with cell wall changes that allow the

pathogen to survive under stress conditions (Shaner et al., 2008); interacts with a large diversity proteins in both cyto-

plasmic and cell wall fractions, participating as a key regulator of several cellular processes, including amino acid, protein,

lipid, and carbohydrate metabolism, cell signaling, replication, and expression of virulence associated proteins (Guimaraes

et al., 2011c).

Hsp70 Recombinant Hsp70 elicits a cutaneous delayed-type hypersensitive response in mice; however, vaccination with Hsp70

did not confer protection against Hc infection (Allendoerfer et al., 1996); Hsp70 is highly expressed by the fungus when

undergoing transition from mycelium-to-yeast (Kamei et al., 1992) and has its peak of expression at 37˚C (Shearer et al.,

1987). Hsp70 synthesis increases soon after heat shock (Lambowitz et al., 1983; Shearer et al., 1987) and we demonstrated

more interactions between Hsp70 and Hsp60 at elevated temperatures.

M antigen Major diagnostic antigen of Hc as it elicits intense humoral and cellular immune responses (Hamilton et al., 1990; Deepe,

1994; Deepe and Durose, 1995; Hamilton, 1998; Zancopé-Oliveira et al., 1999; Guimaraes et al., 2006). Its cell surface

localization makes the M antigen the most important catalase for detoxification of host derived peroxides, protecting the

fungus against oxidative stress, and also makes this protein accessible to host immune cells and antibody (Guimaraes

et al., 2008).

(Continued)
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Table 1 | Continued

Surface component Role in virulence/pathogenicity

H antigen Involved in nutrient acquisition (Woodward and Wiseman, 1982) or modulation of cell wall architecture (Kruse and Cole,

1992; Deepe and Durose, 1995; Akiyama et al., 1998; Fisher et al., 1999; Fisher and Woods, 2000); vaccination with H

antigen protected mice in a pulmonary histoplasmosis model (Deepe and Gibbons, 2001) associated with production of

IFN-γ, GM-CSF, IL-4, and IL-10 by splenocytes and in parallel, there was major expansion of CD4+ or CD8+ cells in spleens

of mice (Deepe and Gibbons, 2001).

H2B Important in cell–cell signaling and modulation of the immunoresponse by the fungus (Nosanchuk et al., 2003); mAbs

againt this protein enhanced levels of IL-4, IL-6, and IFN-gamma in the lungs of infected mice. The mAbs increased phago-

cytosis of yeast by J774.16 cells through a CR3-dependent process and uptake of the opsonized yeast cells was associated

with yeast cell growth inhibition and killing (Nosanchuk et al., 2003; Nosanchuk, 2005). The altered intracellular fate of the

opsonized Hc yeast was characterized by significantly enchanced macrophage phagosome activation and maturation and

also a reduced ability of the organism to regulate the phagosomal pH. Opsonization also increased antigen processing and

reduced negative PD-1/PDL-1 co-stimulation in macrophages, resulting in more-efficient T-cell activation (Shi et al., 2008).

YPS3 YPS3 is able to bind chitin and it is linked to Hc virulence in vivo and associated with increased fungal burden in

phagocyte-rich tissues, such spleen and liver (Bohse and Woods, 2007b).

Melanin Hence, Hc cell wall melanin protects the fungus from a myriad of insults and the polymeric nature of the pigment enhances

its structural strength. It protects against extremes in temperatures, radiation, and predation in the environment, free rad-

icals, defensins, and other toxic responses within a host. Melanization of Hc protects the fungus against chemotherapy

with amphotericin B or echinocandins (van Duin et al., 2002; Gomez and Nosanchuk, 2003).

wall, playing a structural role in maintaining cell wall integrity
and rigidity, as well as in resisting the extracellular environment
(Ruiz-Herrera and Osorio, 1974). The chitin layer is attached to
the non-reducing end of the outer β-1,3-glucan chain by a β-1,4
linkage (Mol and Wessels, 1987), and as for the number of chitin-
β-1,3-glucan linkages compared to the total number of linkages in
the cell wall, the ratio is about one chitin–glucan bond per 8,000
hexose units. Experiments with appropriate mutants lacking such
linkage, have shown that their cell wall are weaker and more prone
to damage (Bulawa et al., 1995).

The immunoreactivity of Hc chitin with host cells has not
been formally investigated. Nevertheless, several chitin-binding
proteins had been described, such as RegIIIg (HIP/PAP), a C-type
lectin expressed in the neutrophil-like Paneth cells of the small
intestine (Cash et al., 2006), and FIBCD1, a calcium-dependent
acetyl group-binding receptor that is also expressed in the gas-
trointestinal tract (Schlosser et al., 2009). The cells of the immune
system seem to use dectin-1 to recognize Candida albicans (Mora-
Montes et al., 2011) through chitin, but in Hc, the role of chitin
in the interaction with the components of the immune system
is unclear. However, it is possible that chitin functions as an
immunomodulatory molecule, immunosuppressing, or activating
anti-microbial activities of macrophages and PBMCs, as described
in C. albicans (Rementeria et al., 1997; Mora-Montes et al., 2011).
Intriguingly, Hc chitin can bind diverse products in supernatant,
such as polysaccharides from the capsule of Cryptococcus neo-
formans or self-proteins like YPS3 (Bohse and Woods, 2005),
described later in this essay. Hence, chitin plays diverse roles in
interacting with host cells and diverse compounds in the local
environment.

β-1,3-glucan
Surrounding chitin, there is a layer comprised of glucans polymers
linked by a β-1,3 linkage. This polymer is a major constituent

of the cell wall of the filamentous phase of Hc and in chemo-
type I Hc yeasts, where the glycan layer is entirely β-linked (Davis
et al., 1977). Some biological functions have been attributed to
the β-1,3-glucan, such as promotion of inflammatory cell recruit-
ment to the site of infection and production of pro-inflammatory
cytokines including TNF-α (Figueiredo et al., 1993; Medeiros et al.,
1999, 2004; Anjos et al., 2002). Intriguingly, β-glucans possess
many of the characteristics attributed to PAMPs and are known
to be potent triggers of innate immunity (Brown, 2006). Dectin-1
and DC-SIGN (CD209) are receptors for β-1,3-glucan polymers
(Brown, 2006). Dectin-1, a non-classical C-type lectin major non-
opsonic β-glucan receptor, was one of the first PRRs identified that
can mediate its own signaling or act synergistically with Toll-like
receptors (TLR) to initiate specific responses to infectious agents.
Dectin-1 has been shown to mediate inflammatory responses to
fungi and facilitate pathogen clearance (Steele et al., 2005). Detec-
tion of glycosylated fungal components by this receptor occurs
in DCs, neutrophils, natural killer, and subsets of T cells and
can result in the induction of cellular responses, including ligand
uptake by phagocytosis and endocytosis, DC maturation, respira-
tory burst, and synthesis of a number cytokines, including TNF,
IL-10, IL-2, IL-23, and IL-6 as well as chemokines like CXCL2
(Brown, 2006; Dennehy and Brown, 2007). DC-SIGN, another
C-type lectin involved in recognition of β-glucans, is expressed
primarily by DCs (Koppel et al., 2005) and has been proposed to
mediate engulfment of certain fungi (Cambi et al., 2003; Koppel
et al., 2005; Serrano-Gomez et al., 2005).

Due to its immunogenicity and predominance in cell wall, β-
glucans have been studied as a potential target for vaccination.
In fact, a vaccine based on glucan-laminarin conjugate with the
recombinant diphtheria toxoid CRM197 (Lam-CRM197) recently
tested was able to induce a protective immunity against different
pathogenic fungi, such as C. albicans and A. fumigates in vivo
(Torosantucci et al., 2005; Bromuro et al., 2010). Limitation of
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β-glucan exposure is one mechanism shaping the overall patho-
genic potential of different medically important fungi including
Hc. However, several membrane components, such as CR3 can
interact with β-glucan (Kataoka et al., 2002). Consequently, the
abrogation of the host immune response by blocking Dectin-1
may be circumvented by other β-glucan receptors during natural
host interactions. However, certain Hc pathogenic strains mask
β-glucan by an outer α-1,3-glucan layer.

α-1,3-glucan
Morphological transition from filamentous to yeast phase mod-
ifies the biosynthesis of the glucans pool, with the production
of the α-1,3-glucan, which is a specific attribute of the Hc yeast
phase (Kanetsuna et al., 1974; Klimpel and Goldman, 1988). α-
1,3-Glucan is also common to most medically important fungi,
including all the other dimorphic pathogenic species. However,
the cell walls of Hc chemotype I strains lack the α-1,3-glucan
polymer, but contain more chitin and less glucan than chemo-
type II (Domer et al., 1967; Domer, 1971). Some strains of Hc
spontaneously produce variants lacking α-1,3-glucan that display
reduced virulence (Kugler et al., 2000; Rappleye et al., 2007). Such
phenomena can also be induced by successive laboratory pas-
sages of the Hc yeast (Klimpel and Goldman, 1988; Hogan and
Klein, 1994). In other dimorphic fungi, spontaneous loss of α-
1,3-glucan also correlates with reduced virulence, indicating this
may be a conserved mechanism of fungal pathogenicity (Klimpel
and Goldman, 1988; Hogan and Klein, 1994). In general, several
studies have demonstrated that virulent Hc strains contain up to
1,000-fold more α-1,3-glucan than avirulent strains.

Most recently, the importance of α-1,3-glucan in chemotype II
Hc virulence was examined in spontaneous mutants, and by RNA
interference and traditional allelic replacement of the gene that
encodes for α-1,3-Glucansynthase (ags1; Rappleye et al., 2007).
Loss of α-1,3-glucan does not impair growth of Hc in vitro. How-
ever, the loss significantly impaired the proliferation of the yeast
in macrophages in vitro and these yeast were less able to kill cul-
tured macrophages (Rappleye et al., 2004). In an in vivo model,
loss of α-1,3-glucan resulted in a substantial reduction in lung
colonization, suggesting that α-1,3-glucan might be a virulence
determinant designed specifically for survival and replication in
murine respiratory infection models (Marion et al., 2006).

The regulation of α-1,3-glucan occurs upstream AGS-1, by the
function of the amy1 and ugp1 gene products, respectively, an
α-1,4-amylase involved in the synthesis of α-1,3-glucan (Marion
et al., 2006) and an UTP-glucose-1-phosphate uridylyltransferase
that synthesizes UDP-glucose monomers. As observed with AGS-
1, loss of AMY1 and UGP1 function reduces the virulence of Hc,
with attenuation of yeast to grow within or kill macrophages, and
a reduced capacity to colonize murine lungs (Marion et al., 2006).

However, the exact mechanism for how α-1,3-glucans alters
Hc pathogenesis remains poorly understood and, to date, there
is no identified receptor to Hc cell wall α-1,3-glucans. In a
Pseudallescheria boydii model, this carbohydrate seems to be
important in phagocytic internalization, which stimulates the
secretion of inflammatory cytokines trough the involvement of
TLR2, CD14, and MyD88 (Bittencourt et al., 2006). As described
above, the explanation for their modifying effect on virulence

may primarily be due to their influence in the host–pathogen
interactions achieved by subverting the host immune mechanisms
of recognition of cell wall components and contributing to yeast
survival. As the α-1,3-glucans are expressed as the most exter-
nal cell wall layer, they block innate recognition of the fungal
β-1,3-glucan by dectin-1 receptor on host phagocytes (Rappleye
et al., 2007). Blockage of this receptor suppresses the production
of pro-inflammatory cytokine TNF-α, consisting in an important
virulence mechanism for Hc, but it also helps explain mechanis-
tically the higher native pathogenicity of dimorphic fungi. Yeasts
which also lack α-1,3-glucan have reduced capacity to cause signif-
icant disease. Consistent with this hypothesis, the parasitic forms
of the dimorphic fungal pathogens each possess α-1,3-glucan and
can cause disease even in the face of normal host immune func-
tion. However, this does not explain how chemotype I strains
maintain virulence in the absence of α-1,3-glucans. Additional
functions have been attributed to α-1,3-glucans, such regulation
of yeast proliferation inside host phagocytes (Kugler et al., 2000) by
protecting the yeast within phagolysosomes (Eissenberg and Gold-
man, 1991), thus resulting in a state called intracellular latency
(Eissenberg et al., 1996, 1997). Hc displaying α-1,3-glucans can
persist for several weeks inside these cells and induce the forma-
tion of granulomas, which result in chronically infected tissues
(Klimpel and Goldman, 1988).

Galactomannans
Hc galactomannan–protein complexes have antigenic activities,
and can induce delayed-type hypersensitivity (DHT) in guinea
pigs with inhibition of macrophage migration factor release
(Azuma et al., 1974; Reiss et al., 1974). It is noteworthy that fungal
galactomannan complexes in the related dimorphic fungus Para-
coccidioides brasiliensis appear to be involved in the protection
of the organism against its own serine-thiol protease, an enzyme
associated with pathogen dissemination through the extracellular
matrix (Matsuo et al., 2006).

Lectin-like components
Interactions between carbohydrates and lectins are considered the
basis of recognition of target particles by phagocytes (Sharon,
1984). The expression of lectins by pathogenic microorganisms
has been correlated to the organism attachment and invasion to
host tissues (Mendes-Giannini et al., 2000; Singh et al., 2011).
Interestingly, Hc has components with lectin activity on the yeast
surface that can bind to surface molecules on murine macrophages
(Taylor et al., 1998; Duarte-Escalante et al., 2003). It has been
shown that a lectin-like molecule plays a role in the bind-
ing to macrophage surface proteins suggesting that the specific
receptor for histoplasmin components on macrophage could be
an oligosaccharide–protein complex containing galactose (mainly
β-anomer) as determinant, since enzymatic cleavage of galacto-
syl residues or a galactose N -acetyl-d-galactosamine compound
reduced this interaction (Maldonado et al., 1994, 1998; Taylor
et al., 1998). The macrophage surface ligand is a 68 kDa protein
and seems to participate in macrophage activation and regulation
of phagocytosis (Maldonado et al., 1998; Taylor et al., 1998). Hc
also has the ability to bind and agglutinate human erythrocytes
using this lectin-like component (Taylor et al., 2004).
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Hc also expresses a 50 kDa lectin that recognizes sialic acid
residues on laminin, a key component of the membrane base-
ment protein (Mcmahon et al., 1995) and might function as a
possible mechanism for dissemination or is involved in cell–cell
interactions.

Other cell wall associated carbohydrates
Several additional carbohydrates contribute to the composition of
the Hc cell wall. Mannans and mannosylated proteins are found in
the cell wall of Hc and several fungi, and their importance has been
best described in C. albicans (Lipke and Ovalle,1998; Pietrella et al.,
2008). These mannoproteins are highly antigenic and can lead
to DCs maturation and activation followed by pro-inflammatory
cytokine production, which drives a protective T-cell response
(Pietrella et al., 2006). In addition, mannans have been implicated
in host tissue adherence (Ross, 2002).

CELL WALL LIPIDS
Lipids have recently emerged as important bioactive molecules in
fungi in addition to being critical structural components of cellu-
lar membranes. Several structurally and functionally distinct lipids
have been characterized in fungi. Based on simple extractions with
organic solvents and determination of the total lipid content in Hc
cell wall fractions, earlier reports have shown that it corresponded
to 3–10% of the cell wall dry weight (Macwilliam, 1970; Cox and
Best, 1972). For example, ceramide monohexoside (CMHs) con-
sists of a lipid (ceramide) moiety linked to a single sugar residue.
This molecule is the simplest glycosphingolipid of eukaryotic cells
and it is expressed in almost all fungal species (Barreto-Bergter
et al., 2004). In C. neoformans, glucosylceramide has been shown
to be cell wall associated and concentrates at specific sites during
cell division (Rodrigues et al., 2000). Additionally, antibodies to
glucosylceramide have been shown to inhibit C. neoformans and F.
pedrosoi growth and budding (Rodrigues et al., 2000; Nimrichter
et al., 2004), block mycelium formation in the plant pathogen
Colletotrichum gloeosporioides (Da Silva et al., 2004), interfere
with filamentation in P. boydii, and inhibit germ-tube forma-
tion in C. albicans (Pinto et al., 2002). CMHs components have
been identified in neutral lipids extracted from both filamentous
and yeast Hc (Toledo et al., 2001a). Indirect immunofluorescence
using an IgG2a monoclonal antibody (mAb) to glucosylceramide,
termed MEST-2, labeled the surface of Hc yeast suggesting a cell
wall/membrane localization of this molecule (Toledo et al., 2001b).
In Hc, the significance of this molecule has not been elucidated.
However, the glycosylinositol phosphorylceramides found in the
mycelia and yeast phases of Hc (Barr and Lester, 1984; Barr et al.,
1984) appears to be required for fungal survival (Dickson and
Lester, 1999).

EXTRACELLULAR VESICLES
Macromolecules need to be transferred from the intracellular to
the extracellular space through the rigid, complex, and dense cell
wall environment.

Recently, Hc extracellular vesicles composed by a lipid bilayer
have been described and appear to be secreted through and are
present at least transiently in the cell wall (Albuquerque et al.,
2008). Using transmission electron microscopy, biochemistry,
proteomics, and lipidomics analysis, we and other investigators

have described the vesicular transport in fungal pathogens (Yoneda
and Doering, 2006; Rodrigues et al., 2007, 2008a; Albuquerque
et al., 2008; Vallejo et al., 2011), including C. neoformans, C. albi-
cans, C. parapsilosis, Sporothrix schenckii, Saccharomyces cerevisiae,
P. brasiliensis, and Hc. The cellular origin of the extracellular vesi-
cles remains unknown but there is evidence for the participation of
different pathways of cellular traffic in vesicle biogenesis (Oliveira
et al., 2010). Remarkably, morphological and biochemical features
indicate that they are similar to mammalian exosomes (Rodrigues
et al., 2008b; Casadevall et al., 2009).

Compositional analysis of Hc vesicles have revealed a very
diverse pool of molecules. The lipid content included common
components of biological membranes that can be involved in
immune response, such as phosphatidylcholine, phosphatidyl-
ethanolamine, and phosphatidylserine (Gilbreath et al., 1986; Ara-
maki, 2000; Hoffmann et al., 2005; Albuquerque et al., 2008).
In addition, 206 proteins were identified in Hc vesicles with a
broad range of functions, such chaperones (Hsp30, Hsp70, and
Hsp60), superoxide dismutase, catalase B, signal transduction
proteins, vesicle formation, cell wall and cytoskeleton regula-
tion, cell growth, and sugar, lipid, and amino acid metabolism
(Albuquerque et al., 2008).

Hence, some proteins found in Hc vesicles are pathogenic deter-
minants and/or are involved in host–pathogen interactions, so,
hypothetically, the concentration of these molecules could pro-
vide an efficient release mechanism of virulence factors into host
tissues and during infection could directly mediate host cell dam-
age (Rodrigues et al., 2008b; Casadevall et al., 2009; Oliveira et al.,
2010). In conclusion, Hc extracellular vesicle may function as “vir-
ulence bags,” since virulence factors are concentrated within them
and these molecules can modulate the host–pathogen interaction
(Rodrigues et al., 2008b; Casadevall et al., 2009; Oliveira et al.,
2010). In accord with this hypothesis, proteins extracted from Hc
vesicles reacted with immune sera from patients with histoplas-
mosis, showing that vesicles can modulate the immune response
(Albuquerque et al., 2008).

CELL WALL PROTEINS
The dynamic nature of the cell wall of Hc includes the chang-
ing composition of several proteins that participate in sens-
ing the environment, modifying host–pathogen interactions, and
defending the fungus against oxidative stress.

Heat shock proteins
Heat shock proteins (Hsps) are among the most evolutionary
highly conserved proteins across all species (Lindquist, 1986).
Hsps are essential for maintaining cellular functions, playing cru-
cial roles in protein folding/unfolding, preventing aggregation
of nascent polypeptides and toxicity by facilitating protein fold-
ing, directing assembly and disassembly of protein complexes,
coordinating translocation/sorting of newly synthesized proteins
into correct intracellular target compartments, degradation of
aged/damaged proteins via the proteasome, regulating cell cycle
and signaling, and also protecting cells against apoptosis (Li and
Srivastava, 2004; Saibil, 2008). As a key component of the heat
shock response, Hsp expression is markedly upregulated when a
cell is exposed to challenging conditions (e.g., high temperature,
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oxidative stress, radiation, inflammation, exposure to toxins, star-
vation, hypoxia, nitrogen deficiency, or water deprivation; Wu,
1995).

Hsp60
A Hsp of 60 kDa (Hsp60) has been identified on the surface of
Hc, as well as within the cell and within vesicles. Hsp60 can be
visualized as clusters on the cell wall by immunogold electron
microscopy (Long et al., 2003). It appears to be the major lig-
and that mediates attachment of Hc to macrophage/monocyte
CR3 integrin (CD11b/CD18; Long et al., 2003), resulting in
phagocytosis (Long et al., 2003; Habich et al., 2006). Interest-
ingly, a study of seven different Hsp60 species from microbes
and mammals revealed that all proteins bound the CR3 recep-
tor, although using different binding sites, and all elicited an
inflammatory response in mouse macrophages (Habich et al.,
2003). This implies the existence of distinct receptor structures
responsible for Hsp60 binding and for Hsp60-induced release
of pro-inflammatory mediators. In addition, the interaction of
Hsp60 with immune cells exhibits immunoregulatory properties,
controlling innate, and adaptive immune reactions (Habich and
Burkart, 2007). Besides the interaction of Hsp60 from Hc with
CR3 receptor complex on the cell surface of macrophages (Long
et al., 2003), this protein could be interacting with other critical
macrophages surface proteins, regulating the effector functions
of these cells, or even exerting other important chaperonin-like
functions that modify the pathogenesis of Hc (Guimaraes et al.,
2011c).

Hsp60 from Hc is also an immunogenic molecule and has
been described as a potential target for passive immunization ther-
apy (Guimaraes et al., 2009, 2011a). Vaccination with Hc Hsp60
induces protection in a lethal murine infection model. The deple-
tion of CD4+ cells during vaccination completely abolishes this
protective effect (Gomez et al., 1995; Deepe and Gibbons, 2002).
However, studies in the expressive phase of vaccination show that
the elimination of CD4(+) or CD8(+) cells does not significantly
modify fungal recovery from organs of infected animals or survival
from a lethal challenge. Passive immunization with antibodies to
Hsp60 offered protection against Hc, as mice treated with IgG1 or
IgG2a mAbs to Hsp60 have significantly prolonged survival, with
a reduction in the pulmonary and splenic CFUs after a week and
a decrease up to 2.5 logs of yeast numbers in the lungs at 2 weeks
(Guimaraes et al., 2009, 2011b).

Hsp60 expression levels are strain and temperature depen-
dent, with an expression peak between 34 and 37˚C (Shearer
et al., 1987). The mechanism by which the heat shock response
to environmental stressors occurs has not been fully elucidated.
However, some evidence suggests that an increase in damaged
or abnormal proteins activate Hsps (Santoro, 2000). Our group
has shown that Hsp60 levels increase in response to tempera-
ture stress in both cytoplasm and cell wall subcellular fractions
(Guimaraes et al., 2011c). However, Hsp60 cell wall levels was not
significantly changed during heat shock, suggesting that in the
conditions tested Hsp60 had a constitutive and regulatory func-
tion in the cell, orchestrating traffic of proteins to the cell surface
where it is present at levels close to saturation, independent of
overall expression in the cell.

The capacity of the Hsp60 to interact and work as a carrier mol-
ecule suggests innumerous regulatory functions of these proteins.
Differential interactions have been dissected in both cytoplasmic
and cell wall, and we identified common and unique interactions
within each subcellular compartment (Guimaraes et al., 2011c).
The interactome reveals that Hc Hsp60 engages nuclear chaper-
ones, small chaperones,and Hsp90 families. Temperature increases
interactions between Hsp60 and Hsp70 in the cell wall. Further-
more, cell wall Hsp60 more broadly interacts with enzymes related
to carbohydrate metabolism, suggesting a trafficking function of
Hsp60 related to enhanced energy acquisition under stress con-
ditions. Additionally, Hsp60 apparently contributes with cell wall
changes that allow the pathogen to survive under stress conditions
(Shaner et al., 2008). Hence, this protein participates as a key reg-
ulator of diverse cellular processes, including amino acid, protein,
lipid, and carbohydrate metabolism, cell signaling, replication, and
expression of virulence associated proteins.

Hsp70
Hsp70 is a putative chaperone secreted by Hc to the extracellular
milieu, probably within vesicles (Albuquerque et al., 2008), but
also found on the cellular surface of the fungus (Gomez et al.,
1992, 1997; Lopes et al., 2010). Little is known about the function
of this protein in Hc. Recombinant Hc Hsp70 elicits a cutaneous
delayed-type hypersensitive response in mice. However, vaccina-
tion with Hsp70 did not confer protection against Hc infection
(Allendoerfer et al., 1996). Hc Hsps, such as Hsp70 and Hsp82
(an Hsp recently associated with virulence, albeit by unknown
mechanisms (Edwards et al., 2011), display a similar expression
pattern to Hsp60 (Caruso et al., 1987; Minchiotti et al., 1992).
Hsp70 is highly expressed by the fungus when undergoing tran-
sition from mycelium-to-yeast (Kamei et al., 1992) and it is also
strain and temperature dependent, having its peak of expression
at 37˚C (Shearer et al., 1987). Hsp70 synthesis increases soon
after heat shock (Lambowitz et al., 1983; Shearer et al., 1987) and
we demonstrated more interactions between Hsp70 and Hsp60
at elevated temperatures. Thus, Hc Hsp70 interacts with Hsp60,
in various cellular compartments, and might communicate with
other intracellular chaperones, composing a heat shock regulon
complex.

M antigen
The M antigen is the major diagnostic antigen of Hc as elicits
intense humoral and cellular immune responses (Hamilton et al.,
1990; Deepe, 1994; Deepe and Durose, 1995; Hamilton, 1998;
Zancopé-Oliveira et al., 1999; Guimaraes et al., 2006). Antibod-
ies to M antigen appear soon after infection and, importantly,
antibodies to M antigen can indicate prior exposure, acute disease
or a chronic progressive disease. The M precipitin reaction can
persist for up to 3 years after disease resolution and people who
have never had contact with Hc can become reactive after skin
testing with histoplasmin (Klite, 1965; Kaufman, 1992).

Based on its amino acid sequence and cross reactivity of mAbs
raised against the M antigen with other fungal catalases, the M pro-
tein has been characterized as a B catalase (Hamilton et al., 1990;
Zancopé-Oliveira et al., 1999). The M antigen has been detected
in cell-free extracts and in solution after permeabilizing Hc yeast,
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suggesting that the M antigen is a secreted enzyme (Howard, 1983).
Hc expresses two other catalases, CatP, and CatA, both located
intracellularly, and all of these proteins are involved in detoxifi-
cation of reactive oxygen species generated by fungal metabolism
and respiration (Johnson et al., 2002).

Our group sought to further characterize the M antigen
and confirm its catalase activity. Initially, we constructed a 3-
D rendering by homology modeling, and found structures and
domains that closely resembled characterized catalases. Specific
mAbs against recombinant M antigen labeled the yeast cell sur-
face of Hc and provided a single band in immunoblots using
cell wall/membrane preparations. Hence, these mAbs further con-
firmed the cell surface location of the M antigen. Additionally, we
demonstrated that the majority of catalase activity was concen-
trated in fungal surface preparations. The localization of the M
antigen to the cell surface makes the M antigen the most important
catalase for detoxification of host derived peroxides, protecting the
fungus against oxidative stress, and also makes this protein acces-
sible to host immune cells and antibody (Guimaraes et al., 2008).
However, its importance during establishment of infection and as
a vaccine candidate awaits characterization.

H antigen
The H antigen has been described as a secreted component of
histoplasmin, the most important immunodiagnostic reagent of
Hc obtained from culture supernatant of the filamentous culture
of the fungus (Ehrhard and Pine, 1972a,b; Zancope-Oliveira et al.,
1994; Guimaraes et al., 2006). This antigen consistently reacts with
sera from histoplasmosis patient, and antibodies to the H antigen
may be detected 1–2 years after the resolution of acute disease.
Antibodies to the H antigen usually disappear more quickly than
the anti-M antibodies (Davies, 1986). The H precipitin rarely is
detected after HMIN skin testing.

Although this protein has been extensively studied as an
immunodiagnostic reagent for more than 50 years, its biological
function has not been precisely elucidated. The deduced amino
acid sequence of the H gene displays homology to secreted fungal
β-glucosidases and has a molecular weight from 108 to 120 kDa.
However, recombinant protein expressed in a prokaryotic host
(Fisher et al., 1999) did not demonstrate β-glucosidase enzymatic
activity, probably due to incorrect folding and altered protein
structure. Subsequently, expression in the native organism has
resulted in production of a full-size, glycosylated H antigen with
functional β-glucosidase activity (Fisher et al., 1999). Potential
biological activities for this enzyme include nutrient acquisition
(by the breakdown of environmental cellulosic or carbohydrate
substrates to acquire glucose; Woodward and Wiseman, 1982) or
modulation of cell wall architecture (Deepe and Durose, 1995;
Fisher et al., 1999; Fisher and Woods, 2000; by the breakdown
of cell wall polymers and carbohydrates; Kruse and Cole, 1992;
Akiyama et al., 1998).

Recombinant H antigen can stimulate splenocytes from mice
immunized with viable yeast or with antigen suspended in adju-
vant (Deepe and Durose, 1995; Deepe and Gibbons, 2001). How-
ever, despite stimulating a cell-mediated immune response, vac-
cination with the antigen was not able to protect against either a
lethal or a sub-lethal intravenous inoculum of yeast (Deepe and

Durose, 1995). Interestingly, vaccination with H antigen protected
mice in a pulmonary histoplasmosis model (Deepe and Gibbons,
2001). The protective immunization was associated with pro-
duction of IFN-γ, granulocyte-macrophage colony-stimulating
factor (GM-CSF), interleukin-4 (IL-4), and interleukin-10 (IL-
10) by splenocytes and in parallel, there was major expansion of
CD4+ or CD8+ cells in spleens of mice (Deepe and Gibbons,
2001).

Histone 2B
Histones are proteins commonly associated with DNA and have
high conserved structure and functions. Although they are clas-
sically located in the nucleus, cell surface histones have been
described in both eukaryotic and prokaryotic organisms. His-
tones have been described in the plasma membrane of leukocytes
(Rekvig et al., 1987), T cells (functioning as proteoglycan recep-
tors; Ojcius et al., 1991; Khan et al., 1998), B cells (Mecheri et al.,
1993), and a human lung carcinoma cell line (as an adhesin to
the extracellular matrix; Bilozur and Biswas, 1990). A histone 2B
of Mycobacterium leprae can be located on the bacterial cell sur-
face and this expressed protein facilitates invasion of Schwann
cells (Shimoji et al., 1999; De Melo Marques et al., 2000) by
binding laminin on peripheral nerves (Pessolani et al., 1993; De
Melo Marques et al., 2000). Similarly Mycobacterium smegma-
tis binds to laminin on human pneumocytes and macrophages
through a histone-like protein located on its surface (Pethe et al.,
2001). We have described a histone 2B-like protein of 17-kDa
antigen expressed on the surface of Hc, and it is speculated
that the protein is important in cell–cell signaling and modula-
tion of the immune response by the fungus (Nosanchuk et al.,
2003).

Administration of mAbs that bind histone 2B-like protein on
the surface of Hc has been shown to reduce fungal burden, decrease
pulmonary inflammation, and prolong survival in a murine infec-
tion model (Nosanchuk, 2005). The protective response mediated
by these mAbs was associated with enhanced levels of IL-4, IL-
6, and IFN-γ in the lungs of infected mice. The mAbs increased
phagocytosis of yeast by J774.16 cells through a CR3-dependent
process and uptake of the opsonized yeast was associated with yeast
growth inhibition and killing (Nosanchuk et al., 2003; Nosanchuk,
2005). The altered intracellular fate of the opsonized Hc yeast
was characterized by significantly enhanced macrophage phago-
some activation and maturation and also a reduced ability of
the organism to regulate the phagosomal pH. Opsonization also
increased antigen processing and reduced negative PD-1/PDL-1
co-stimulation in macrophages, resulting in more-efficient T-cell
activation (Shi et al., 2008).

YPS3
YPS3 is both resident in the cell wall and released in significant
quantities into the culture medium during growth of Hc. This
protein is expressed only by the pathogenic yeast phase in vitro
or infecting tissues (Bohse and Woods, 2005). The yps3 locus is
present in all the strains of Hc, but protein production seems to be
limited to the North American restriction fragment length poly-
morphism class 2/NAm 2 group of strains (Bohse and Woods,
2007b). These strains have the highest virulence among all the
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Hc isolates and the expression of Yps3 is likely associated with
increased virulence (Bohse and Woods, 2005). The Yps3 protein
in the NAm 2 strains has an average length of 137 amino acids.
However, intragenic hypervariable region of tandem repeats in
the yps3 gene might result in different size fluctuation or protein
isoforms among Hc strains (Bohse and Woods, 2007a). Another
important feature of this protein is the presence of an N-terminal
secretion signal sequence (Bohse and Woods, 2005). As this pro-
tein is secreted by the yeast, it binds to the polysaccharide chitin
and becomes exposed on the cell wall.

Intriguingly, silencing of the YPS3 transcript did not result in
any detectable phenotypic differences in vitro (Bohse and Woods,
2007b). Silenced yeast displayed normal growth at 37˚C and simi-
lar virulence to wild-type yeasts in co-cultures with a RAW 264.7
murine macrophage-like cell line. However, in an in vivo murine
infection model, silenced yeast caused significantly less disease
than wild-type yeast. Reductions in fungal burden were partic-
ularly evident in phagocyte-rich tissues, such spleen and liver.
Hence, YPS3 is clearly linked to Hc virulence in vivo.

MELANIN
Many pathogenic fungi produce the enigmatic polymer pigment
melanin in their cell wall (Nosanchuk and Casadevall, 2006).
Hc is also able to synthesize melanin, on both conidia and
yeast (Nosanchuk et al., 2002). Melanins are negatively charged,
hydrophobic pigments of high molecular weight, formed by the
oxidative polymerization of exogenous phenolic and/or indolic
compounds. Since Hc conidia synthesize melanin in the absence
of exogenous phenolic substrate, it is probable that conidia are
melanized in the environment (Nosanchuk et al., 2002). Thus,
melanization may protect the conidia from environmental insults,
such as damage by solar UV radiation, extreme temperatures and

chemical (heavy metals and oxidizing agents Nosanchuk et al.,
2002) and also predation in the environment, against free radicals,
defensins, and other toxic responses within a host. Melanization
reduces Hc susceptibility to host defense mechanisms and antifun-
gal drugs (Van Duin et al., 2002; Taborda et al., 2008). Moreover,
melanization of Hc protects the fungus against chemotherapy
with amphotericin B or echinocandins (Van Duin et al., 2002;
Gomez and Nosanchuk, 2003). Hence, Hc cell wall melanin pro-
tects the fungus from a myriad of insults and the polymeric nature
of the pigment enhances its structural strength. Moreover, yeast
melanization appears to play important roles in virulence and
pathogenicity.

CONCLUSION
The fungal cell wall is fundamentally the structure that interacts
with environmental and host milieus. A current model for the
Hc cell wall is presented on the Figure 2. It provides structural
support, varying from flexible to a rigid structure, and protects
the cell against environmental stressors and host anti-microbial
effectors mechanisms. Many fungal antigens are conserved among
phylogenetically related species and many that are associated with
virulence can be found on their cell walls. Hence, common targets
could be used to induce protection against different fungal species
described (Casadevall and Pirofski, 2007). Although approaches to
developing protective responses vary from vaccination with cells
or recombinant antigens to passive protection with mAbs, coor-
dinating knowledge across the fungal pathogens may lead to new,
more effective means for combating potentially lethal mycoses.
In this survey of Hc surface structures, we demonstrate the func-
tion of diverse antigens in regulating Hc biology and discuss the
current knowledge base from which we can build upon in future
investigations.
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