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Superconductor qubits hamiltonian 
approximations effect on quantum 
state evolution and control
Javad Sharifi

Microwave IQ-mixer controllers are designed for the three approximated Hamiltonians of charge, 
phase and flux qubits and the controllers are exerted both on approximate and precise quantum 
system models. The controlled qubits are for the implementation of the two quantum-gates 
with these three fundamental types of qubits, Quantum NOT-gate and Hadamard-gate. In the 
charge-qubit, for implementation of both gates, in the approximated and precise model, we 
observed different controlled trajectories. But fortunately, applying the controller designed for 
the approximated system over the precise system leads to the passing of the quantum state from 
the desired state sooner that the expected time. Phase-qubit and flux qubit have similar behaviour 
under the control system action. In both of them, the implementation of NOT-gate operation led to 
same trajectories which arrive at final goal state at different times. But in both of those two qubits 
for implementation of Hadamard-gate, desired trajectory and precise trajectory have some angle 
of deviation, then by exerting the approximated design controller to precise system, it caused the 
quantum state to approach the goal state for Hadamard gate implementation, and since the quantum 
state does not completely reach the goal state, we can not obtain very high gate fidelity.

Quantum engineering harnesses the quantum state, estimates and eliminates environmental noise on open 
quantum systems, corrects quantum errors, for the sake of quantum computing. Excellent quantum engineering 
framework researches are carried for quantum computing applications with trapped  ions1,2, spin qubit  control3–5, 
quantum optical control of semiconductor quantum  dots6–8, superconducting  qubits9–12, etc. Among different 
approaches to quantum computers, since superconductor circuits can be fabricated and controled based on the 
current technologies, this has impelled the attention of  researches13–17 and IC makers, IT companies such as 
IBM, Intel, Google, Microsoft, etc to make quantum processor with exceptional computational performance 
with respect to conventional processors. Achieving this goal, the quantum sate of each qubit as fundamental 
building block of quantum computation must be controlled precisely toward the desired state and remain stable 
at that state.

For simulations, the  QuTiP18,  NumPy19,  Matplolib20 Python packages are applied and all of data are from a 
table  at21. At first, we introduce the Hamiltonian of basic superconductor qubits and their approximations, then 
by simulations show that the two systems, rotate along different trajectories on Bloch sphere and with different 
quantum observable expectations, then we endevour to design microwave controller for approximated system 
and show that this control leads to wrong results with respect to desired trajectories. Finally, we design Lyapunov 
control for general charge-phase-flux nonlinear circuit which converges to the desired state. By the Schrödinger 
equation iℏ d

dt |ψ� = H|ψ� and its unitary evolution

then the solution is |ψt� = e
−i
ℏ
Ht |ψ0� = Ut |ψ0� , let X be a hermitian observable, the evolution of observable at 

time t is Xt = U†
t XUt and the mean value of a observable based on density matrix ρt = |ψt��ψt | is �X� = Tr(ρtX) . 

The quantum state on Bloch sphere is |ψ� = cos( 12 θ)|0� + eiφsin( 12 θ)|1� where |0� and |1� are qubit eigenbasis 
or in density matrix form as:

(1)Ut = exp
(−i

ℏ

∫ t

0
H(t)dt

)

OPEN

Electrical and Computer Engineering Department, Qom University of Technology, Qom 37181-46645, Iran. email: 
jv.sharifi@gmail.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-92290-0&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:12791  | https://doi.org/10.1038/s41598-021-92290-0

www.nature.com/scientificreports/

where (x, y, z) = �r = (sin(θ) cos(φ), sin(θ)sin(φ), cos(θ)) is vector on spherical coordinate, in this form the 
quantum system is governed by master equation ρ̇t = i

ℏ
[ρt ,H] . The unitary rotation operator for transition of 

quantum states is

with �σ = σxx̂ + σyŷ + σz ẑ and σx , σy , σz are Pauli matrices and n̂ = nxx̂ + nyŷ + nz ẑ is the rotation axis and 
α = ωqt is rotation angle, ωq is the angular speed of quantum state vector on Bloch sphere.

Superconductor qubits evolution
The fundamental superconductor circuits are depicted in Fig. 1.

Charge qubit or C-JJ circuit precise Hamiltonian  is22: Ĥpre = Ec(N̂ − ng )
2 − EJ cos(φ̂) , in which phase opera-

tor φ̂ and charge operator N̂ = −iℏ ∂

∂φ̂
 satisfy the commutation relation [φ̂, N̂] = iℏ . Ec = (2e)2/2(C + Cg ) are 

the charging energy of one 2e Cooper pair in which e is electron charge,EJ = ℏ

2e Ic is Josephson energy, and Cg 
and Ic are Josephson Junction (JJ) capacitor and Josephson critical current, and ng = 1

2CgVg/e is the voltage-
induced charge on the capacitor C, and it is the control parameter. The approximate Hamiltonian with forth 
order approximation of cosine term and after second quantization is Ĥapp = �ωqa

†a+ β
2 a

†a†aa and resembles 
a Duffing oscillator. The parameters ωq and β are angular frequency in rad/sec and energy in Joule, respectively. 
The number operator and phase operator for qubits are set as N̂ = inzpf (a− a†) and φ̂ = φzpf (a+ a†) where 
nzpf = (ELJ0/32Ec)

1
4 and φzpf = (2Ec/ELJ0)

1
4 are number and phase zero-point-fluctuation and ELJ0 = ℏ

2/(4e2LJ0) . 
For qubits, the creation and annihilation operators are respectively the raising and lowering ladder operators, 
i.e. a† = σ+, a = σ− . By assumption Ec >> EJ the Hamiltonian simplifies  to23: Ĥapp = Ec(

1
2 − ng )σz + 1

2EJσx 
and then the quantum state is evolveed by equation |ψ� = e−

it
ℏ
(Ec(

1
2−ng )σz+ 1

2 EJσx)|ψ0� which by comparison to 
unitary rotation operator, this corresponds to the rotation around an axis on x-z plane on Bloch sphere as the 
simulation results of Fig. 2a confirm it. To obtain the evolution difference for precise Hamiltonian and 

ρt =
1

2

(

1+ z x − iy
x + iy 1− z

)

(2)Urot = Rn̂(α) = e−i α2 n̂.�σ = sin(
α

2
)I − i cos(

α

2
)n̂.�σ

Figure 1.  Basic superconductor qubits: phase qubit (left), flux qubit (middle) and charge qubit (right).

Figure 2.  Charge qubit state transition without external drive voltage Vg = 1mV, Cg = 0.68 fF and 
EJ = 0.018Ec , Ec = 7.55× 10

−23 J: quantum state on Bloch sphere with approximate Hamiltonian (a) and 
precise Hamiltonian (b) and the mean value of sates(c). For simulations,  QuTiP18 and  Matplotlib20 Python 
packages are used.
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approximated Hamiltonin let us compute the precise value of cos(φ̂) for φ̂ = φzpf σx , in this situation with Cayley-
Hamilton theorem, we will obtain cos(φ̂) = cos(φ0)I . Furthermore, for N̂ = nzpf σy the term (N̂ − ng )

2 of precise 
Hamiltonian is (n2g + n2zpf )I − 2nzpgngσy , then the charge-qubit precise Hamiltonain is:

The simulation of state evolution with exact Hamiltonian is shown in Fig. 2b. We mention that for zero deriving 
voltage of charge qubit (JJ-C), the state vector will remain constant to initial state on the surface of Bloch sphere. 
In Fig. 2c, the expectation value of a Pauli matrix , i.e. 〈σx〉 is plotted.

Phase qubit is depicted in right section of Fig. 1 and obeys the  relation22: Ĥpre = EcN̂
2 − EJ cos(φ̂)− ℏ

2e Ig φ̂ 
where Ig is the control current. After some simple calculations, we will obtain the precise Hamiltonian of phase-
qubit as

The approximate Hamiltonian is Ĥapp = − 1
2Ecσz + ( 12EJ − ℏ

2eφzpf Ig )σx . Simulations of phase qubit evolu-
tion both for approximate and precise Hamiltonian is depicted in Fig. 3a,b respectively, which shows the same 
result trajectory; but, the expectation value of quantum observable 〈σx〉 is completely different for the two Ham-
iltonians (Fig. 3c).

Flux qubit  (L-J J )  i s  depic ted  in  middle  of  F ig .   1  and ob e ys  the   re lat ion 22: 
Ĥpre = EcN̂

2 − EJ cos(φ̂)+ 1
2EL(φ̂ − φe)

2 that EL = ℏ
2/(4e2L) and φe is the control parameter and we com-

pute it as:

Approximate Hamiltonian is Ĥapp = − 1
2Ecσz + ( 12EJ − ELφzpf φe)σx . For approximate Hamiltonian, the 

trajectory of quantum state on Bloch sphere rotate around z-axis (Fig. 4a) but trajectory rotation change for 
precise model of Hamiltonian (Fig. 4b) and also the expectation 〈σx〉 of both Hamiltonian is different (Fig. 4c). 
We found from these simulations that approximating the superconducting qubits leads to wrong state evolution 
and considerable error in expectation of quantum observable.

Effect on superconductor qubits control
By the equation of Hamiltonian in previous section, it is figured out that by constant control signal, it is not pos-
sible to control quantum state vector over whole space through rotation of quantum state on three directions; 
for example, by approximate Hamiltonian of charge qubit we can control the rotation of state around z-axis. one 
approach to overcome this shortage is by microwave driving oscillator (Rabi driving)24–27 which is practically 
produced by arbitrary wave generator (AWG).

Charge qubit control Here, we drive the charge qubit by the signal which contains both Rabi drive and 
non-oscillating dc signal to fully control the quantum state on three rotation directions; assume the signal 
as Vg (t) = Vac + Vdc = V0s(t)sin(ωct + �)+ Vg0 which ωc = 2π fc is control signal frequency in rad/sec ( fc 
in Hz), the initial non-rotating frame control Hamiltonian is Ĥc = −Ecngσz then the Hamiltonian of rotat-
ing part is given by Ĥrf = U†

0 kV0s(t)sin(ωct + �)σzU0 where U0 = e−
it
ℏ
( 12 Ecσz+ 1

2 EJσx) = e−
i
2ωz tσz− i

2ωx tσx and 
k = (− 1

2e CgEc) , multiplication in Ĥrf  has sine and cosine terms with frequencies ωc − (ωz − ωx) , ωc + ωz + ωx 
, ωc + ωz − ωx , ωc − ωz − ωx and since for charge qubit ωz >> ωx by rotating wave approximation, only first 
term is held and the other three fast rotating terms and constant offset can be ignored, then the rf-controlled 
Hamiltonian is:

(3)Ĥpre = (Ec(n
2
g + n2zpf )− EJ cos(φzpf ))I − 2Ecnzpgngσy

(4)Ĥpre = (Ecn
2
zpf − EJ cos(φzpf ))I −

ℏ

2e
Igφzpf σx

(5)Ĥpre = (Ecn
2
zpf − EJ cos(φzpf ))I − ELφzpf φeσx

! !

Figure 3.  Phase qubit state evolutiopn(EJ = 3.266× 10
−23 , Ec = 10

−4EJ , φzpf = 0.0398 , Ig = 1 mA): state 
evolution on Bloch Sphere with approximate Hamiltonian (a) and precise Hamiltonian (b) and the mean value 
of sates(c). For simulations,  QuTiP18 and  Matplotlib20 Python packages are used.
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which in this equation δω = ωc − (ωz − ωx) , if we set δω = 0 , only the phase difference between 
radio frequency with frequency ωx plays control role and the rf-controlled Hamiltonian simplifies to 
Ĥrf = 1

8kV0s(t)(Qσx − 2Iσy + Qσz) which I = cos(�), Q = sin(�) , this method is the method of IQ-mixer. To 
increase the control signal degree of freedom, a constant voltage pulse can be added to the microwave rotating 
voltage which leads to the total control propagator operator as:

γ (t) =
∫ t
0 s(t)dt , for simplicity let set s(t) = 1 and then γ (t) = t , hence by comparison of rotation propagator 

of Eq.  (2), it obtains: ωqnx = 1
4ℏkV0Q,ωqny = − 1

2ℏkV0I ,ωqnz = 1
4ℏkV0Q + 2

ℏ
kVg0 then the whole signal 

parameters are: � = tan−1(− 2nx
ny

), V0 = 4ℏωqnx
kQ , Vg0 = ℏωq

2k (nz − nx) . Now, consider the control signal which 
aims at transiting initial quantum state |ψ0� to final quantum state |ψf � at finite time tf  , one approach is to rotate 
the initial vector to final vector around the around the bisector of two unit vectors �r0, �rf  by angle ±π , then:

As a quantum computing instance, for implementation of quantum NOT-gate, we must design quantum 
control signal in such a way that trasfer happens from the state |0� to state |1� and conversely. Then for example 
consider the following initial and final states for NOT implementation: |ψ0� = |0�, |ψf � = |1� , then 
�r0 = (0, 0, 1), �rf = (0, 0,−1) then n̂ = (1, 0, 0) and by α = π , tf = 1nsec, we obtain : � = −π

2  rad , V0 = 8.27µ V 
, Vg0 = 0 V , ωc = 15935468926 rad/sec (or fc = 2.53621GHz). In Fig. 5 the initial state, final state and the two 
trajectories of states on Bloch sphere are depicted both for NOT-gate (left) and Hadamard-gate(right). By design-
ing controller for approximated Hamiltonian charge qubit, the quantum state on approximated system along 
brown-vectors trajectory reachs to final desired state at time tf = 1nsec. But, the result of control signal on this 
actual precise system along blue trajectory reaches to state |ψP� which has significant error from final state; 
however, fortunately, in an earlier time t∗ < tf  along blue-trajectory, the system passes from final state, but for 
final time tf  it reaches to a wrong state |ψP� . It is the fortune of previous researches that had using approximate 
model, becuase despite of the different trajectories in some time in charge qubit, they arrive at the right final 
state. Hence, by some manipulations they had successful achievement to implement the quantum NOT-gate 
based on charge-qubit circuit. However, during the designed final time tf  the actual system state of charge qubit 
pass from desired state |1� and stop at wrong stste. The Hadamard-gate rotate the quantum states |0�, |1� to 
|+� = 1

2 (|0� + |1�), |−� = 1
2 (|0� − |1�) states respectively. For simulations we will consider the case 

|ψ0� = |0�, |ψf � = |+� , then it leads to �r0 = (0, 0, 1), �rf = (1, 0, 0) then n̂ = 1√
2
(1, 0, 1) and V0 = 5.848µ V and 

all the other parameters are the same as NOT-gate implementation. In right of Fig. 5 the simulation results leads 
to same explanation as NOT-gate of charge qubit; hence, based on approximate Hamiltonian of charge qubit, we 
successfullty implemented the NOT and Hadamard gate, the desgined time tf  is not true for precise model and 
earlier than this time in practice; therefore, the control signals must be off. However, we can reach final state for 
quantum gate implementation in different control signal final time but the quantum states trajectories for these 
types of qubits are completely different.

At time tf  the control signal sets to zero, and hence the quantum state remains at the final state, but if 
someone uses the approximate model, the control signal must set off at time t∗ < tf  . To obtain this time, 
an optimization problem must be solved for each quantum-gate implementation. Here we formulate this 

(6)
Ĥrf = 1

8
kV0s(t)(sin(δωt + �)σx − 2 cos(δωt + �)σy

+ sin(δωt + �)σz)

(7)Uc(t) = e
−ik
ℏ

(
V0
8 γ (t)Qσx− V0

4 γ (t)Iσy+(
V0
8 γ (t)Q+Vg0t)σz )

(8)
(

n̂
α

)

=
( �r0+�rf

| �r0+�rf |
±π

)

! !

Figure 4.  Flux qubit state transition: State transition on Bloch sphere with approximate Hamiltonian (Top) and 
precise Hamiltonian (Bottom) and the mean value of sates(c): EJ = 6.017× 10

−23 J , Ec = 1.711× 10
−23 J. For 

simulations,  QuTiP18 and  Matplotlib20 Python packages are used.
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optimization problem; however, we do not solve it, since this is not the aim of this reserach. Based on Eq. (3), 
control Hamiltonian for precise system is Ĥcpre = Ecn

2
g I − 2Ecnzpgngσy and the free unitary propagator is 

U0pre = exp(− i
�
((Ecn

2
zpf )− EJ cos(φzpf ))I) then the RF-Hamiltonian can be computed as Ĥrfpre = U†

0preĤcpreU0pre 
and since the propagator U0pre is diagonal and unitary, then Ĥrfpre = Ĥcpre and this leads to control propagator 
Ucpre = e

− i
�
Ĥrfpre t = e−

i
�
Ĥcpre = e−

i
�
(Ecn

2
g I−2Ecnzpg ngσy)t , then by some calculations and also using the Eq. (2) 

we will obtain:

Then to solve the problem to find the time that quantum state reaches the desired state, based on this final 
control propagator for precise charge-qubit it must be used for evolution of controlled quantum state from initial 
state |ψ0� to final state |ψf � at time t∗ . For example for a NOT-gate let set |ψ0� = |0�, |ψf � = |1� then we must solve 
the quantum state-vector equation Ucpre |0� = |1� for NOT-gate and Ucpre |0� = |+� for Hadamard-gate.

Phase qubit control with the same strategy for phase qubit we can design controller for approximated system, 
for this consider Ĥc = − ℏ

2eφzpf Igσx that as Ig (t) = Iac + Idc = I0s(t)sin(ωct + �)+ Ig0 , the rf-controlled Hamilto-
nian as Ĥrf = U†

0 kI0s(t)sin(ωct + �)σxU0 that here k = − ℏ

2eφzpf  and U0 = e−
it
ℏ
(− 1

2 Ecσz+ 1
2 EJσx) = e

i
2ωz tσz− i

2ωx tσx , 
with similar approach to charge qubit, multiplication Ĥrf  has sine and cosine terms with frequencies 
ωc − (ωx − ωz) , ωc + ωx + ωz , ωc + ωx − ωz , ωc − ωx − ωz and since for phase qubit ωx >> ωz by rotating 
wave approximation, only first term is hold and other three fast rotating terms and constant offset can be ignored 
and setting δω = ωc − (ωx − ωz) = 0 , then the rf-controlled Hamiltonian is:

By adding constant dc current pulse to change the total control propagator operator to:

c o m p a r i n g  t o  r o t a t i o n  p r o p a g a t o r  p a r a m e t e r s  o f  E q .   ( 2 ) ,  i t  o b t a i n s : 
ωqnx = 1

8ℏkI0Q,ωqny = − 1
2ℏkI0I ,ωqnz = − 1

2ℏkI0Q + 2
ℏ
kIg0 then the whole signal parameters are: 

� = tan−1(− 4nx
ny

), I0 = 8ℏωqnx
kQ , Ig0 = ℏωq

2k (nz + 4nx) . For this qubit type � = −π
2  rad, ωc = 31104806366 rad/

sec(or fc = 4.95GHz) in general and for NOT-gate we have the current parameters I0 = 67.7 nA , Ig0 = −16.93 nA 
, and for Hadamard-gate we have current parameters as I0 = 47.88 nA , Ig0 = −14.96nA. Also we set the control 
final time equal to one nano-second. Figure 6 shows the result of simulations for this selection of initial and final 
states. The Left of this figure is for NOT gate and right is for Hadamard gate. For the NOT-gate implementation, 
both desired trajectory(brown) is alonside with precise Hamiltonian trajectory(blue), but in exterting of approxi-
mate based controller to precise system cause that quantum state rotate several around an ellipse and then rest 
at state |ψP� which passes from the desired state at final stop time tf  . To obtain the true time for precise system 
which is under approximate control, similar to charge-qubit the control propagator must be computed and the 
optimization problem must be solved. The right Bloch sphere of this figure is for Hadamard-gate which we found 
that the desired trajectory and precise trajectory had some angle of deviation. in this gate, the precise trajectory 
based on approximate control never touches the desired state |+� but in some time t∗ < tf  comes to the vicinity 
of desired state, in this case also we must optimize a cost fuction based on controlled propagator and find the 
time and as a consequense the relevant state state |ψt∗ � , then we must minimize the lenght of quantum state-vector 
�Verror = Ucpre |ψ0� − |ψf � , and define the cost function J = || �Verror ||2 . This cost function must be optimized over 
time. For each single qubit gate the propagator is the same but the initial and final states differ. Since this opti-
mized state for Hadamard gate is not the same as final desired state; then, the approximate control for phase-qubit 

(9)Ucpre =
(

cos(
2

�
Ecnzpf ng t)I + isin(

2

�
Ecnzpf ngt)σy

)

e−
i
�
Ecn

2
gt

(10)Ĥrf = 1

16
kI0s(t)(Qσx − 4Iσy − 4Qσz)

(11)Uc(t) = e
−ik
ℏ

(
I0
16 γ (t)Qσx−

I0
4 γ (t)Iσy+(− I0

4 γ (t)I+Ig0t)σz )

Figure 5.  Quantum state control of superconductor charge qubit for implementation of quantum NOT-
gate(left) and Hadamard gate(right): |ψ0� is initial state |ψf � is final desired state. Desired trajectory is depicted 
with brown vectors. By exerting the designed controller for approximate system to precise system, quantum state 
vector rotates through blue trajectory and reaches to state |ψP� at tf = 1nsec; however, the quantum state seems 
to reach the desired state (Brown vector, |1� for NOT-gate and |+� for Hadamard-gate) at a earlier time t∗ < tf  . 
For simulations,  QuTiP18 Python package is used.
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for implementation of Hadamard gate can not lead to high gate fidelities. The controlled propagator here by using 
design stategy of charge qubit and by using Eqs. 4 and  2 it will be obtained as:

Flux qubit control The flux qubit approximate Hamiltonian is completely similar to phase qubit 
approximate Hamiltonian with the difference is that control derive is magnetic flux; hence, by considering 
Ĥc = −ELφzpf φeσx that as φe(t) = φac + φdc = φ0s(t)sin(ωct + �)+ φdc , the rf-controlled Hamiltonian as 
Ĥrf = U†

0 kφ0s(t)sin(ωct + �)σxU0 in which U0 = e−
it
ℏ
( 12 Ecσz+ 1

2 EJσx) = e−
i
2ωz tσz− i

2ωx tσx and k = −ELφzpf  , by 
simplification of sine, cosine products, we will have the frequencies ωc − (ωx − ωz) , ωc + ωx + ωz , ωc + ωx − ωz 
, ωc − ωx − ωz and since for flux qubit ωx > ωz by rotating wave approximation, only first term is held and the 
other three fast rotating terms and constant offset can be ignored and setting δω = ωc − (ωx − ωz) = 0 , then 
the rf-controlled Hamiltonian is:

By adding constant dc flux pulse to change the total control propagator operator to:

For flux-qubit � = −π
2  rad, ωc = 32680005991 rad/sec(or fc = 5.2GHz) in general and for NOT-gate we have 

the magnetic flux parameters φ0 = 0.5422 , φdc = −0.1355 , and for Hadamard-gate we have current parameters 
as φ0 = 0.3834 , φdc = −0.1198 . Also we set the control final time equal to one nano-second. Figure 7 shows the 
result of simulations for this selection of initial and final states.

The results based on this qubit simulations for NOT and Hadamard gates are similar to phase qubit and only 
the state rotate a bit faster. Similar to previous qubits, here we also must solve the obtimization problem to obtain 
the time of arriving to desired states for each gate. The controlled propagator to be used for optimization with 
similar stategy to above calculations will be obtained as:

Decoherence effect
The decoherence effect on quantum system can be described by Bloch-Redfield equation for desnity matrix 
 as28,29. The general derivation of Bloch-Redfield master equation can be seen  in30. The Bloch-Redfield master 
equation then is written as:

in which RSE is Bloch-Redfield tensor as a function of the noise-power spectrum S(ω) (i.e. quantum system-
environment (SE)) and quantum system operator A through which the environment interacts with the quantum 
system. δ is a constant term. In this study, we consider the ohmic spectrum as: S(ω = 0) = γ , S(ω > 0) = γω

4π  
that γ is a dimensionless constant. We set γ = 0.5 and δ = 0.4π , A = σz . The effect of decoherence on evolution 
of those three types of qubits with ohmic spectrum is depicted in Fig. 8. As we found, the decoherence effect on 

(12)Ucpre = cos(
1

2e
φzpf Ig t)I + isin(

1

2e
φzpf Iet)σx

(13)Ĥrf = 1

16
kφ0s(t)(Qσx − 4Iσy − 4Qσz)

(14)Uc(t) = e
−ik
ℏ

(
φ0
16 γ (t)Qσx−

φ0
4 γ (t)Iσy+(− φ0

4 γ (t)I+φdct)σz )

(15)Ucpre = cos(
1

�
ELφzpf φet)I + isin(

1

�
ELφzpfφet)σx

(16)
d

dt
ρS(t) = −iωρS(t)+

∑

E

RSEρE(t)

Figure 6.  Quantum state control of superconductor phase qubit for implementation of quantum NOT-gate(left) 
and Hadamard gate(right): |ψ0� is initial state, |ψf � is final desired state. Desired trajectory is depicted in brown. 
Exerting the designed controller to main system move through blue trajectory and reaches to state |ψP� . For 
Not-gate, through blue trajectory the quantum state pass from desired state |0� at some time t∗ < tf  and for 
Hadamrd gate at some other time the quantum state through blue trajectory passes from a vicinity of desired 
state |+� . For simulations,  QuTiP18 Python package is used.
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phase qubit has the same result both for precise and approximate Hamiltonian. About charge and flux qubits, 
the decoherence effect on precise system is completely different with respect to approximate system that has 
more regular effect. However, the modern control methods can compensate the decoherence effect and lead to 
good performance of approximate or precise system but the design for each case can be different. This is the 
reason why many reserchers use the approximate system and guide the qubit toward desired quantum state but 
with more control effort and different designs. The controller design for compensation of decoherence is out of 
scope of this research.

Figure 7.  Quantum state control of superconductor flux qubit for implementation of quantum NOT-gate(left) 
and Hadamard gate(right): |ψ0� is initial state |ψf � is final desired state. Desired trajectory is depicted in brown. 
Exerting the designed controller to main system moves through blue trajectory and reachs state |ψP� . For Not-
gate, through blue trajectory the quantum state pass from desired state |0� at some time t∗ < tf  and for Hadamrd 
gate at some other time the quantum state through blue trajectory passes from a vicinity of the desired state |+� . 
For simulations,  QuTiP18 Python package is used.

Figure 8.  Decohrerence effect on evolution of fundamental superconductor qubits:charge qubit precise 
Hamiltonian (top-left), charge qubit approximate Hamiltonian (botton-left), phase qubit precise Hamiltonian 
(top-middle), phase qubit approximate Hamiltonian (botton-middle), flux qubit precise Hamiltonian (top-right) 
and flux qubit approximate Hamiltonian (top-right). Simulation of charge and flux qubits are carried for ten-
thousand points and the phase qubits needs to be simulated with around ten-million point to show soft plots. 
Simulations are for one nanosecond. For simulations,  QuTiP18 Python package is used.
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Lyapunov superconductor qubit control
Let us compute the master equation for a charge-phase-flux qubit (parallel L-JJ-C circuit) for analysis and control 
purpose, the general controlled Hamiltonian is:

let in first formulation get all of control signals in this charge-phase-flux qubit, by using 
ng = 1

2Cg/eV(t),φe = φ(t), Ig = I(t) , and with φ̂ = φzpf σx , N̂ = nzpf σy , after computing the master equation, 
the following bi-linear differential equations arise:

It was found by this equation that in absence of external voltage, current or flux, the system always remains 
at initial state. Also, it is clear that for full control of states, it only needs control voltage V(t) and one of the flux 
or current signal. Let us set the external control flux signal be zero and controlling the system based on V(t), I(t). 
Equilibrium state is a state at which without control signals, system relaxes. For this system, all points are an 
equilibrium state. A control method for general quantum nonlinear systems is the Lyapunov  function4,31,32. In 
Lyapunov method, we must find a positive definite scalar function and control signals must be selected such that 
the time derivative of Lyapunov function be negative definite, in this situation, it guarantes that the initial state 
stabilizes toward a desired state. Let (xf , yf , zf ) be the final state and �e = (xt − xf , yt − yf , zt − zf ) be the error 
between state and final state, define the Lyapunov function as Euclidean norm of error γ (�e) = 1

2 |�e|2 , hence: 
γ̇ (�e) = �̇e�eT = ẋt(xt − xf )+ ẏt(yt − yf )+ żt(zt − zf ) , then by this and Eq. (18) and setting φt = 0 , it obtains: 
γ̇ (�e) = − 1

2eℏnzpf EcCgV(t)(xtzf − xf zt)− φzpf
e I(t)(yf zt − ytzf ) , then by selecting the linear control voltage as 

V(t) = 2αeℏ
Ecnzpf Cg

(xtzf − xf zt) and linear control current as I(t) = βe
φzpf

(yf zt − ytzf ) for dimentionless α1,α2 > 0 
then γ̇ (�e) = −α1(xtzf − xf zt)

2 − α2(yf zt − ytzf )
2 < 0 and the L-C-JJ qubit state will converge to final state and 

stabilizes. Simulation for initial state �r0 = (4/9,−8/9,−1/9) and final desired state �rf = (0, 0, 1) is depicted in 
Fig. 9a. This simulation has 20000 samples and dt = 1µsec, α1 = 1

5α2 = 1× 1010 . As it is figured out from 
Fig. 9b, the voltage control is of order µ v and the current control has order of nA. I mention that Lyapunov 
control guarantees to reach to desired state; however, it does not consider the control performance criteria. Hence 
for this aim the other control methods such as quantum optimal control or quantum reinforcement learning 
control can be developed.
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