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The accurate determination of soybean pubescence is essential for plant breeding programs and cultivar registration. Currently,
soybean pubescence is classified visually, which is a labor-intensive and time-consuming activity. Additionally, the three classes
of phenotypes (tawny, light tawny, and gray) may be difficult to visually distinguish, especially the light tawny class where
misclassification with tawny frequently occurs. The objectives of this study were to solve both the throughput and accuracy
issues in the plant breeding workflow, develop a set of indices for distinguishing pubescence classes, and test a machine learning
(ML) classification approach. A principal component analysis (PCA) on hyperspectral soybean plot data identified clusters
related to pubescence classes, while a Jeffries-Matusita distance analysis indicated that all bands were important for pubescence
class separability. Aerial images from 2018, 2019, and 2020 were analyzed in this study. A 60-plot test (2019) of genotypes with
known pubescence was used as reference data, while whole-field images from 2018, 2019, and 2020 were used to examine the
broad applicability of the classification methodology. Two indices, a red/blue ratio and blue normalized difference vegetation
index (blue NDVI), were effective at differentiating tawny and gray pubescence types in high-resolution imagery. A ML
approach using a support vector machine (SVM) radial basis function (RBF) classifier was able to differentiate the gray and
tawny types (83.1% accuracy and kappa = 0:740 on a pixel basis) on images where reference training data was present. The
tested indices and ML model did not generalize across years to imagery that did not contain the reference training panel,
indicating limitations of using aerial imagery for pubescence classification in some environmental conditions. High-throughput
classification of gray and tawny pubescence types is possible using aerial imagery, but light tawny soybeans remain difficult to
classify and may require training data from each field season.

1. Introduction

Plant breeding programs rely on phenotypic data generated
from large-scale field trials to make informed decisions on
germplasm advancement. This data is also used in cultivar
registration and for determination of cultivar purity. Soybean
pubescence (or trichome color) is a trait that is visually
assessed, with an observer scoring plants or breeding plots
for the trait class. This trait is expressed only at maturity
when leaves have senesced, as the trichome colors are not vis-
ible when a full canopy cover is present. Soybean pubescence
has three color classes: tawny, light tawny (near-gray), and
gray. While gray and tawny types are visually distinguishable,
the light tawny types are often misclassified due to the subtle
color similarities between them and the other two classes.

The three classes of soybean pubescence are genetically
distinct, with two genes, T and Td, interacting epistatically

to control flavone synthesis [1, 2]. Tawny soybeans are TT
TdTd, light tawny soybeans are TT tdtd, and gray soybeans
are tt TdTd or tt tdtd. The T locus (Glyma.06g202300)
encodes a flavonoid 3′-hydroxylase located on chromosome
6 [2]. The Td locus encodes a R2R3 MYB transcription factor
(Glyma.03g258700) located on chromosome 3 which may
interact with the two copies of flavone synthase II (FNS II-1
and FNS II-2) [1, 3].

Aerial imagery has been successfully deployed to assess a
number of traits in soybean, with publications becoming
more frequent in recent years with the decrease in price for
imaging platforms and increasing availability of analytical
methods to handle the data for plant researchers. Determina-
tion of soybean maturity has been effectively demonstrated
from aerial imagery using several methods: partial least
squares regression [4], random forest supervised machine
learning [5], and convolutional neural networks [6]. Yield
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predictions from time-course imagery show promise for esti-
mating final yield [5], and further work using deep neural
nets continues this trend [7]. Aerial imagery has been used
to assess iron deficiency chlorosis in soybeans [8] and to
model canopy volume [9]. Soybean plot height and other bio-
physical characteristics have also been characterized from
aerial imagery [10–12].

A range of indices is available for plant researchers to apply
to their crops. Several simple band combinations can be used as
simple ratio indices to characterize crop growth and develop-
ment, while in recent years normalized difference indices have
become more common in agricultural applications where they
remain sensitive at lower levels of vegetation than ratio indices
[13]. The blue normalized difference vegetation index (blue
NDVI) has been used in remote sensing applications to charac-
terize plant vegetation and water stress [14]. Custom indices
based on exploratory data could be useful in dissecting traits
not previously characterized with aerial imagery.

Machine learning (ML) is a popular approach to solving
complex data problems, with numerous applications for agri-
cultural research and data [15]. These applications can range
from regression modeling for yield predictions to image anal-
ysis for field segmentation and more. Support vector
machines (SVMs) are a class of reliable and effective ML
methods widely used for classification [16]. Support vector
machines function by defining a hyperplane at the bound-
aries between the classes of training data to generate the class
separation boundaries for generalization [17]. The simplicity
and power of SVMsmake them convenient models for study-
ing agricultural image data.

The objectives of this study were to understand the spec-
tral characteristics of soybean pubescence from hyperspectral
plot data and five-band aerial imagery, identify methodology
to classify soybean pubescence from aerial imagery in an
objective and high-throughput workflow, and assess model
and index performance across growing seasons.

2. Materials and Methods

2.1. Field Trials.A field trial of 60 soybean plots (1:6m × 5m)
with known pubescence (from multiple years of field valida-
tion) was planted at the Elora Research Station alongside the
breeding plots at the University of Guelph (Guelph, ON,
Canada). These plots consisted of 3 replications of 20 geno-
types, which were studied as individual plots. These plots
were imaged in 2019 and referred to as a Reference Test
due to the previous, multiyear verification of pubescence
type. A larger field test (200 genotypes with 2 replications,
referred to as Full Test) was imaged over three growing sea-
sons (2018, 2019, and 2020) at the Elora Research Station
(43° 38′ 27.0456″ N, 80° 24′ 18.6948″ W), comprised of
germplasm from a wide range of breeding activities. Fewer
than 200 genotypes were present in each year, as genotypes
with poor germination were not carried forward to the next
year in the field tests (Table S1 for further plot details).

2.2. Hyperspectral Data Acquisition and Processing. The
pubescence Reference Test plots (2019) were scanned with
a UniSpec-DC Spectral Analysis System (PP Systems, Ames-

bury, MA, USA). Spectral values were captured between
310 nm and 1100nm. The UniSpec-DC has a 3 nm spectral
sampling distance, and the field of view (fov) was 23.5°. With
the mature canopy, these measurements captured both plant
and soil reflectance. Prior to plot measurement, the instrument
was calibrated using a white reference panel (PP systems). Each
plot was scanned twice, first from 1m above the canopy and
second 0.5m above the canopy. The two plot scans were aver-
aged prior to analysis. Spectral data under 344nmwas removed
prior to analysis, due to no reflectance being recorded by the
instrument below this threshold. A principal component analy-
sis (PCA) was performed on the remaining hyperspectral data
in three ways: plot-averaged data, simulated drone bandwidth
from plot-averaged data (blue: 468nm, 471.4nm, 474.7nm,
478nm, and 481.4nm; green: 554.7nm, 558.1nm, 561.4nm,
564.7nm, and 568.1nm; red: 661.1nm, 664.4nm, 667.7nm,
671.1nm, and 674.4nm; red edge: 710.8nm, 714.1nm,
717.4nm, 720.7nm, and 724.1nm; and near-infrared:
836.3nm, 839.6nm, 842.9nm, 846.2nm, and 849.5nm). All
data were standardized before PCA.

2.3. Aerial Image Acquisition and Equipment. Soybean plots
were imaged at R8 (harvest maturity) as they were ready for
machine harvest [18]. The drones and sensors varied over
the three seasons of imaging (Table 1). Flights ranged in height
from 30m to 100m depending on weather conditions and
flown according to manufacturer recommendations (gridded
flight patterns with 75% side overlap distance, clear sky, and
within 2 hours of solar noon and calibrated in Agisoft Meta-
shape using a MicaSense calibration reflectance panel). For
all image captures, a reference reflectance panel (MicaSense
Inc) was captured with the sensor prior to flight for image cal-
ibration. The panel was spectrally flat with known reflectance.

In 2018 and 2019, the drone was a DJI M-210 with a
MicaSense RedEdge3 multispectral camera (MicaSense Inc).
For the 2019 pubescence image, a DJI M-210 was used with
a MicaSense Altum, which primarily differs from the
RedEdge3 in that each monochrome imager has 3 times as
many megapixels. BothMicaSense cameras had the following
band specifications in common: blue (475 nm center with
32 nm bandwidth), green (560 nm center with 27 nm band-
width), red (668 nm center with 14 nm bandwidth), red edge
(717 nm center with 12 nm bandwidth), and near-infrared
(842 nm center with 57 nm bandwidth), with bandwidth
described at full width half max [19] (Table 1). An additional
image was analyzed in 2019 from a MicaSense Altum multi-
spectral camera fitted with a Trimble APX-15-El Direct geor-
eferencing system [20]. In 2020, DJI P4 Multispectral RTK
drones (SZ DJI Technology Co) with included cameras were
used for image capture with the following camera specifica-
tions: blue (450 nm ± 16 nm), green (560 nm ± 16 nm), red
(650 nm ± 16 nm), red edge (730 nm ± 16 nm), and near-
infrared (840 nm ± 26 nm) (Table 1). Several images had a
thermal band (band 6); this band was removed prior to anal-
ysis. Images had varying ground sample distances (GSDs)
depending on the sensors used for image capture and the alti-
tude of the drone. The 2018 image had a pixel size of ~3.9 cm,
the 2019 image had a pixel size of ~2.6 cm, and the 2020
image had a pixel size of ~3.6 cm (Table 1).
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2.4. Orthomosaic Generation and Preprocessing. Image cap-
tures were processed into orthomosaics using Metashape
(Agisoft LLC). The 2018 and 2019 images were georeferenced
using ground control points (GCPs) in the form of white
patio tiles placed throughout the field in the areas of interest
for imaging. These GCPs had their positions captured using a
Trimble AG-342 Global Navigation Satellite Sensor (GNSS)
receiver real-time kinematic (RTK) corrections that provide
cm-level accuracy. Image visualization and georeferencing
were completed using QGIS 3.14 [21]. The 2020 images were
georeferenced using the RTK functionality of the P4 Multi-
spectral drone, so no CGPs were used in the georeferencing
process. All images were projected and exported as UTM
zone 17N. Plots were delineated manually in 2018 images,
as the field was planted with a conventional planter. In
2019 and 2020, plots were delineated using plot positional
data from an RTK-enabled plot planter and georeferenced
aerial images [22].

Soil and nonsoybean vegetation pixels were masked from
each image using an SVM (svmRadial) in the caret package
[23] in R (R [24]). The raster package was used to load and
manipulate image data within R [25]. The soil masks were
applied to the whole-field images, resulting in only soybean
pixels for downstream analysis.

2.5. Index Generation and Testing. The Jeffries-Matusita dis-
tance was calculated for all five image bands as well as a
subset of the three visible image bands to determine
whether the red edge and near-infrared bands improve sep-
arability between pairs of pubescence classes in the Refer-
ence Test 2019 image. The Jeffries-Matusita distance is a
measure of spectral separability that is scaled to provide
values between 0 and 2. A value of 0 indicates the least pos-
sible amount of separability between the spectral signatures
of two classes whereas 2 suggests complete separability.
Smaller separability values correspond with less accurate
classification results [26].

To identify bands important to the color variation from
the imaging data using a separate method, the loadings from
the PCAs on the image data (with soil pixels removed) were
analyzed from the 60 pubescence plots in the Reference Test
Image 2019. From this loading data, it was determined that

the red, blue, and near-infrared (NIR) bands had the best dis-
crimination potential. Thus, several indices were tested
including blue NDVI and ratio of red/blue:

BlueNDVI = NIR − blue
NIR + blue ,

Red/blue = red
blue :

ð1Þ

The average value for each of the listed indices was calcu-
lated for each plot from Reference Test Image in 2019, with
soil removed prior to analysis. A separate analysis was
attempted with soil pixels included, but effectiveness of the
indices was reduced under these conditions and not further
investigated. An ANOVA was conducted to determine
whether each index was able to significantly differentiate
the pubescence classes with a Tukey test to check for signifi-
cant differences between each pair of classes (significant at
p < 0:05). Confidence intervals (CIs) (95%) were calculated
for the class mean of each index to provide guidance for gen-
eralizing these indices to other soybean plots. The midpoint
between each CI was used to generate final index ranges for
each class.

2.6. Machine Learning Pixel Classification. A machine learn-
ing (ML) approach was tested for classifying pubescence
pixels from the soybean plots imaged. The ML was imple-
mented in the caret package [23] in R (R [24]). A support
vector machine (SVM) classifier with a radial basis function
[27] was used for the modeling of soybean pubescence (the
model is further referred to as SVMR). The radial basis func-
tion parameterizes a nonlinear transformation of the data,
allowing a hyperplane to be generated for feature separation
that would not be possible on untransformed data. Several
datasets were tested as training data for the pubescence
modeling, both larger scale including entire sections of each
plot, and targeted, where individual pixels from a few plots
from each pubescence type in the Reference Test 2019 image
were used to train the model [28]. Training was completed
using five separate 10-fold cross-validations. Training data
pixels were randomly split from the testing data during the
repeated cross-validations. The tuning parameter sigma was

Table 1: Sensor and imaging equipment.

2018 and 2019 2020

Drone DJI M-210 DJI P4 Multispectral RTK

Camera
MicaSense RedEdge3 (2018)
MicaSense Altum (2019)

Built-in

Additional equipment Timble APX-15-E1 (2019) N/A

Blue 475 nm ± 16 nm 450 nm ± 16 nm
Green 560 nm ± 13:5 nm 560 nm ± 16 nm
Red 668 nm ± 7nm 650 nm ± 16 nm
Red edge 717 nm ± 6nm 730 nm ± 16 nm
Near-infrared 842 nm ± 28 nm 840 nm ± 26 nm
Ground sample distance 3.9 cm (2018), 2.6 cm (2019) 3.6 cm (2020)
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calculated to be 0.4376546, with a final C value of 512, result-
ing in an accuracy of 83.1% and kappa of 0.740. The trained
model was used to classify the 60-plot pubescence Reference
Image from 2019 and then further applied to the Full Field
images from 2018, 2019, and 2020.

2.7. Testing the Indices andMachine Learning Models. To test
the year-over-year generalization of the models (i.e., model
inference), field images from 2018, 2019, and 2020 from var-
ious sensors and altitudes were analyzed. First, soil was
masked as previously described; then, the various indices
and SVM model were applied to the images without soil
pixels. Plot extraction was conducted as previously described
for the 2019 and 2020 images where precision planter GPS
trip data was available. For 2018 images, plots were manually
delineated. The QGIS zonal statistics tool was used to extract
plot data using the plot outlines [22]. For ML outputs, both
means and majorities were extracted, while for the indices,
a mean per plot was the only statistic extracted from each
plot. Plot statistics were joined to genotyping data to deter-
mine the accuracy of the methods for determining plot
pubescence.

The Full Field images for the three seasons contained up
to 366 plots (per season) for which single nucleotide poly-
morphism (SNP) genotype information was available
(unpublished data from an ongoing PhD project of Cory
Schilling). The SNPs corresponding to the T and Td loci were
extracted from the dataset and used to determine the
expected pubescence class of each plot. The T locus SNP used
was on chromosome 6 at 18,732,972 and within the gene
(Glyma.06g202300) while the Td locus SNP was on chromo-
some 3 at 45,299,226 (Glyma.03g258700) and approximately
1.6 kb upstream of the gene.

3. Results

Soybean pubescence is typically observed from the ground
level, where plant researchers and technicians visually score
the trait as gray, tawny, or light tawny. Distinction between
the tawny and light tawny classes is problematic from the
ground level, where the subtle color differences can be
masked by factors affecting human vision including nonuni-
form light, sun angle, and soil background. To further study

these color differences, aerial images were collected from
mature soybean research fields. From this aerial imagery,
color differences were visible between the research plots
under uniform lighting conditions (Figure 1).

A total of 60 soybean plots with known pubescence were
grown at the Elora Research Station (University of Guelph)
in 2019. These plots were seeded with genotypes which have
been tested in multiple sites and years, in which the pubes-
cence was recorded. These plots were used as the basis for
assessing multiple methods of identifying variation in soy-
bean pubescence color. Of the 60 plots, 24 had gray pubes-
cence, 15 had light tawny pubescence, and 21 had tawny
pubescence.

A first step to studying the variation in pubescence
was to gather plot-averaged hyperspectral data using a
handheld UniSpec-DC reflectance spectrometer (PP Sys-
tems). From the hyperspectral data, a principal component
analysis was conducted, resulting in PC1 accounting for
73.1% of the total variation and PC2 for 23.2% of the total
variation. Linear separation of the three pubescence classes
is identified using the hyperspectral data (Figure 2(a)). To
understand the relationship of this data to a typical 5-band
multispectral aerial image, bands were convolved from the
hyperspectral data to mimic the band equivalent reflec-
tance of the bandwidth and wavelengths present in 5-
band aerial imagery. Using the simulated 5-band data,
PC1 accounted for 85.3% and PC2 for 12.7% of the total
variation, with groupings of the pubescence classes main-
tained in both datasets (Figure 2(b)). To confirm these
trends in aerial image data, 36,039 pixels from the 60-
plot pubescence test were extracted from 5-band aerial
image data. A PCA of this pixel data resulted in 92.5%
of the total variation on PC1 and 5.9% on PC2
(Figure 2(c)). Similar trends were seen as compared to
the plot-averaged hyperspectral and simulated 5-band
data; however, more overlap can be seen especially
between the light tawny and tawny pixels from the image.

Pubescence class separability decreased for all class pairs
when comparing five-band and three-band Jeffries-Matusita
distances across the pubescence class pairs (Table 2). This
result indicates diminished separability, especially between
light tawny and gray. Therefore, all spectral bands were
retained for the classification.

G T G

T G LT

T LT LT

2 m

Figure 1: True color aerial image of soybean plots (Reference Test) at harvest maturity (R8) showing variation for pubescence color on
October 15, 2019, at the Elora Research Station, University of Guelph, Guelph, ON, Canada. G = gray pubescence; LT= light tawny
pubescence; T = tawny pubescence.
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Based on the PCA loading data from both 5-band imag-
ing data (Table S2) and hyperspectral data (data not shown;
similar trend to the 5-band data), the NIR and blue bands
were found to be the most discriminatory in the datasets, so
a blue NDVI was generated. To study the usefulness of an
index approach without near-infrared data, an index of red
over blue was also tested. For each index, soil pixels were
removed from images of the Reference Test 2019 Image.
Each index was calculated in QGIS for the plant pixels
remaining with a final plot average kept for study. For all
three indices, the class averages were significantly different
from each other (ANOVA, p < 0:05) (Figure 3). In all three
indices, the gray plots showed the greatest difference from
the other two classes, while the light tawny and tawny plots
were the least different. All three indices were able to

separate the pubescence classes in the 60-plot pubescence
dataset.

The blue NDVI and red/blue ratio had more overlap
between the CIs for the light tawny and tawny classes, indi-
cating a higher likelihood of misclassification of a plot. From
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Figure 2: Principal component analysis (PCA) for (a) a plot average from 60 soybean plots with known pubescence from hyperspectral data
(344 nm to 1100 nm at ~3 nm intervals) recorded with a UniSpec-DC reflectance spectrometer, (b) same data source as (a) except only
wavelengths similar to a 5-band multispectral image were used, and (c) aerial imaging data from the same 60 plots from a 5-band
multispectral camera, where each datapoint is a single pixel from within a plot of known pubescence. Plots were from the Reference Test
2019 Image at the Elora Research Station at the University of Guelph in 2019; all plots were at harvest maturity (R8).

Table 2: Jeffries-Matusita distance for five-band (B, G, R, RE, and
NIR) and subset three-band (B, G, and R) images to determine the
spectral separability between the pubescence classes in the 60-plot
training image. Higher values suggest better class separability.

Class pair separation 5 bands 3 bands Difference

Tawny:light tawny 1.90333 1.86054 -0.04279

Tawny:gray 1.90956 1.86714 -0.04242

Light tawny:gray 0.78328 0.33899 -0.44429
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the CIs, ranges were developed to classify plots based on the
three tested indices (Table S3). In general, the indices all
appear to be robust in the differentiation of gray
pubescence from the other classes, while the light tawny
and tawny classes may be more difficult to distinguish with
overlapping CIs for all three indices.

A machine learning approach using an SVM classifier
with a radial basis function was tested to classify pixels from
the pubescence images. Instead of relying on statistical cri-
teria for class membership, SVM classifiers exploit geometric
criteria based on maximizing the margin between two classes
[29]. The SVM classifier implemented in this study used the
pairwise classification strategy for multiclass classification.
The parameters were determined analytically where possible

[23] and by grid search where analytical determination was
not possible.

Using the 60-plot Reference Test 2019 Image of the
pubescence test, a range of training data was tested to identify
a model with good fit (Figure 4). The final model chosen was
an SVMwith a radial basis function (for nonlinear separation
of classes) with an overall accuracy of 83.1% and a kappa of
74.0%. The model was trained with 173 pubescence pixels
from the 60-plot pubescence test, 56 gray pixels, 41 light
tawny pixels, and 76 tawny pixels (Figures 4(b) and 4(c)).
The final output of the model was tested as both pixel counts
(Figure 4(d)) and a majority pixel classification per plot
(Figure 4(e)). The gray pubescence could be clearly distin-
guished from the light tawny and tawny pixels in a range of
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Figure 3: Average spectral index values for 60 soybean plots by pubescence type for (a) blue NDVI, (b) pseudocolor plot blue NDVI images,
(c) red/blue index, and (d) pseudocolor plot red/blue images. All groups were significantly different from each other (ANOVA, p < 0:05,
Tukey comparison).
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ML methods, including the chosen SVM model. Light tawny
and tawny were difficult to distinguish in the final method,
where light tawny plots contained an even number of light
tawny and tawny pixels, while tawny plots had a majority
of pixels classified as tawny by the SVMmodel. No gray plots
were misclassified, and gray pixels were uncommon in tawny
and light tawny plots.

The plot genotype data was joined to the image data to
determine the expressed pubescence for each plot in the
three-season images, finding that the 2018 and 2020 indi-
ces did not correspond well with the estimated pubescence
type (Figure 5). The 2019 data (from the same field as the
60-plot pubescence test) showed class distinction, indicat-
ing that the images were not sufficient in 2018 and 2020
to properly distinguish the classes. The red/blue ratio
showed the most distinct separation of classes, though in
all cases, there was overlap in the tails of each of the dis-
tributions. For the ML generalization to the 2018, 2019,
and 2020 field images, a similar trend was observed,
whereas the 2019 image reflected the trained model well,
and the 2018 and 2020 images were not accurately classi-
fied by the SVM (Figure S1).

4. Discussion

A comparison of the hyperspectral to the aerial image data
found that similar trends are present in both datasets. From
the initial analysis of both the hyperspectral and aerial data,
it was determined that the classification of soybean pubes-
cence would be possible from the imagery in a high-
throughput method. The ability to quickly discriminate the
pubescence types is a valuable tool for soybean researchers,
even if the light tawny class is difficult to distinguish from
the other two classes. Based on the pixel-based spectral clas-
sification, the discrimination between tawny and light tawny
is unclear even in ideal circumstances; however, the gray class
is clearly distinguishable from the light tawny and tawny
classes. This can provide a rapid screen for breeding pur-
poses, allowing for resource-intensive manual phenotyping
to be carried out in later-stage field trials when knowledge
of exact pubescence phenotype is desired or required.

The models and indices were established based on data
from the 2019 growing season and generally performed well
on plots from the same image that were not in the training
data. It was determined that they did not generalize well to
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Figure 4: Machine learning classification results from the Reference Test 2019 Image 60-plot pubescence test using a support vector machine
with a radial basis function in the caret package in R. (a) Three soybean plots from Elora Research Station in 2019. (b) Soil removal mask
showing remaining plant pixels for classification. (c) Classified pixels from the ML algorithm with plot outlines showing the true
pubescence of the plot. (d) Pixel counts for 60 pubescence plots from the ML output split by class. (e) Confusion matrix for the 60-plot
pubescence test results by plot pixel majority.
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the 2018 and 2020 late-season imagery. There are several
possibilities that could explain the poor model inference,
including spatial resolution, sensor differences, imagi-
ng/flight conditions, and single-year training data from a
small number of genotypes, which may not represent the
entire range of variation for the pubescence classes. The lack
of robustness for these analyses over multiple field seasons
while using calibrated imagery may limit the application of

these methods to imagery without an internal reference
panel.

Spatial resolution was a concern for capturing enough
pixels for each plant. The images that worked for both the
indices and ML had smaller pixels, meaning that when plant
pixel data was extracted from the full image, the extracted
pixels represented only plant material. This leads to the
hypothesis that low spatial resolution could make
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two plot-mean indices (red/blue and blue NDVI), where each plot had genetic data available to estimate pubescence types (gray, light tawny,
or tawny).
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distinguishing the classes difficult. In the case of the lower
resolution imagery (2018 and 2020), there is a greater chance
that the plant pixels were mixed with soil, as the spatial reso-
lution was not high enough to clearly distinguish soil and
plant pixels [30, 31]. This means that the plant color infor-
mation does not exist alone within the remaining plant pixels
to sufficiently classify the pubescence type. A recommenda-
tion for capturing imagery to classify soybean pubescence
would be to ensure sufficient spatial resolution to obtain pure
plant pixels, for example, flying at a lower altitude than typi-
cally used to capture in-season canopy data to increase spatial
resolution.

Due to field limitations, the pubescence test used for the
training data was only grown in the 2019 growing season.
The genotypes were chosen because of the high confidence
in their pubescence type from multiple years of trials and in
several cases, variety registration. Given that the focus was
on cultivars and experimental genotypes that had such a high
level of scrutiny for their pubescence type, the test size was
limited to 60 entries for which the pubescence data was avail-
able and reliable. The size of the pubescence test could be a
limitation for representing the true variation for each of the
pubescence types. With additional genetic data, it might be
possible to use larger field tests for training data, but concerns
with plot purity increase in large tests for generating model
training data.

A possibility for improved pubescence classification
accuracy and model generalization is the exploration of spa-
tially aware ML models [32]. Several options exist which
could be tested, including spatially aware pixel classifiers,
which would use information from neighbouring pixels to
help improve classification accuracy [33]. Another option
would be to use convolutional neural nets (CNNs) where
entire plot images are used for classification, which was
recently used for estimating soybean maturity [6]. However,
the training data requirements for such a model are much
larger than the SVM classifier used here. An additional ben-
efit for a CNN approach would be that soil context would be
captured whereas it might be confounding the pubescence
color when images are of lower spatial resolution, and a
CNN could also capture variation in linked canopy traits
and spatial distribution of plant pubescence pixels which
are not captured by pixel classification methods. However,
making a CNN generalize well would require diverse training
data from multiple years and locations and a wide range of
germplasm to properly capture the total variation in the
pubescence classes.

An SVM model appears to be appropriate for inference
within an image mosaic from one UAS flight, meaning that
the outlined methodology used here could be applied by
any breeding program provided that plots of training data
of known pubescence types are grown in each field. This is
not an onerous requirement given the need for border and
filler plots within a large research field. A model can be
trained for each image, and pubescence types can be esti-
mated for the entire field. This workflow is much simpler,
faster, and completely objective compared to visual assess-
ment. Even if light tawny types are difficult to distinguish
from tawny types, being able to confidently distinguish gray

from tawny and light tawny is similar in accuracy to current
visual assessment methods, at a much lower cost and higher
throughput while maintaining the model objectively.

An important finding of this work is that a simple red/-
blue ratio works well for gray vs. tawny and light tawny clas-
sification. This could eliminate the need for imagery with red
edge and near-infrared spectral bands to classify pubescence,
which reduces the cost barrier for research programs without
access to 5-band imagery. Again, with the similar previously
described caveats of sufficient spectral resolution, a simple
ratio is easy for non-GIS experts to calculate and generate
pubescence data from large field images.

Ongoing work is required to identify additional effects on
the application of these indices and ML models such as back-
ground, maturity, year, and sensor effects. This work was
conducted on early-maturing soybean genotypes, and there
may be additional interactions in later-season soybeans that
are not captured by the images used here. Ideally, a long-
term trial from various maturities and soil types and with a
range of genetic backgrounds could be used to generate a
more robust model to explain soybean pubescence from
imaging data.

In conclusion, several indices and an SVM model were
tested to characterize soybean pubescence. Both indices were
able to distinguish the gray and tawny pubescence types, and
the SVM model was able to differentiate gray compared to
combined light tawny and tawny. The indices and models
did not generalize across field seasons and imaging platforms
even using calibrated imagery which may limit the applica-
tion of this technique. Further work could expand on the pre-
sented data with additional years, locations, and maturities to
further characterize the variation in pubescence.
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