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Abstract

Objectives. GCA is a large vessel vasculitis in which metabolically active immune cells play an important role.

GCA diagnosis is based on CRP/ESR and temporal artery biopsies (TABs), in combination with 18F-fluorodeoxyglu-

cose ([18F]FDG)-PET/CT relying on enhanced glucose uptake by glycolytic macrophages. Here, we studied circulat-

ing Pyruvate Kinase M2 (PKM2), a glycolytic enzyme, as a possible systemic marker of vessel wall inflammation in

GCA.

Methods. Immunohistochemical detection of PKM2 was performed on inflamed (n¼ 12) and non-inflamed (n¼ 4)

TABs from GCA patients and non-GCA (n¼ 9) patients. Dimeric PKM2 levels were assessed in plasma of GCA

patients (n¼ 44), age-matched healthy controls (n¼41), metastatic melanoma patients (n¼ 7) and infection controls

(n¼11). CRP, ESR and macrophage markers calprotectin and YKL-40 were correlated with plasma PKM2 levels.

To detect the cellular source of plasma PKM2 in tissue, double IF staining was performed on inflamed GCA TABs.

[18F]FDG-PET scans of 23 GCA patients were analysed and maximum standard uptake values and target to back-

ground ratios were calculated.

Results. PKM2 is abundantly expressed in TABs of GCA patients. Dimeric PKM2 plasma levels were elevated in

GCA and correlated with CRP, ESR, calprotectin and YKL-40 levels. Elevated plasma PKM2 levels were downmo-

dulated by glucocorticoid treatment. PKM2 was detected in both macrophages and T cells at the site of vascular

inflammation. Circulating PKM2 levels correlated with average target to background ratios PET scores.

Conclusion. Elevated plasma PKM2 levels reflect active vessel inflammation in GCA and may assist in disease

diagnosis and in disease monitoring.
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Introduction

GCA is the most common type of vasculitis, affecting

large- and medium-sized blood vessels. Systemic

markers of inflammation such as IL-6 and CRP are

known to be elevated in the blood of patients with GCA,

and the IL-6 receptor blocker tocilizumab is the first tar-

geted prednisolone-sparing treatment in GCA patients

[1, 2]. The gold standard for the diagnosis in patients

with suspected GCA is the presence of vascular
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inflammatory infiltrates, mainly CD4 T cells, macro-

phages and multinucleated giant cells, in temporal artery

biopsies (TABs). However, TABs have limited sensitivity.

The 18F-fluorodeoxyglucose ([18F]FDG)-PET scan is

emerging as a more sensitive diagnostic imaging tool in

GCA [3]. This technique relies on high glucose uptake

by active immune and resident cells in vessel wall tis-

sue. To identify new biomarkers for early detection of

vessel wall inflammation in GCA diagnosis, we focussed

on the relation between cell metabolism and inflamma-

tory signatures in GCA.

In resting immune cells, glycolysis and the tricarboxyl-

ic acid cycle are in balance. However, upon activation,

the energy demands of immune cells increase and a

metabolic switch to aerobic glycolysis is induced. This is

also known as the Warburg effect, which supports im-

mune cell proliferation and immune function. Pyruvate

Kinase M2 (PKM2) is a glycolytic enzyme involved in the

last step of glycolysis. Emerging evidence indicates

non-canonical functions of PKM2 in immune cells, where

it can act as an immunomodulatory protein kinase and

transcription factor [4–7].

PKM2 is allosterically regulated and can exist in a tetra-

meric and a dimeric form. The tetrameric form has a high

affinity for binding phosphoenolpyruvate. It acts as an en-

zyme kinase and transfers a phosphate group from phos-

phoenolpyruvate to adenosine diphosphate, thereby

generating pyruvate and adenosine triphosphate. The di-

meric form of PKM2 has a lower affinity for phosphoenol-

pyruvate and is, therefore, less active in the glycolysis

pathway than tetrameric PKM2. Various mechanisms such

as metabolic intermediates or post-translational modifica-

tions favour the dimerization of PKM2 [8]. Dimeric PKM2

was first detected in the circulation of cancer patients.

Different non-glycolytic functions of dimeric PKM2 have

been characterized, especially in tumour cells and in the

promotion of inflammatory responses, due to its protein

kinase activity [6, 7, 9]. Dimeric PKM2 contributes to cyto-

kine production and chronic tissue inflammation via phos-

phorylating STAT3 and STAT1 [10–12]. Dimeric PKM2 can

also act as a transcription factor, translocating to the nu-

cleus to regulate gene expression. In activated macro-

phages, transcriptional activity of dimeric PKM2 promotes

pro-inflammatory signalling via HIF-1a, IL-1b and glycolytic

enzymes [13–15].

So far, the role of the glycolytic enzyme PKM2 in GCA

pathogenesis has not been investigated. In our study,

we aimed to investigate systemic and local expression

of PKM2 as an immune metabolic marker of vascular in-

flammation in GCA and to define its cellular source.

Methods

Patient sample collection and characteristics

Newly diagnosed GCA patients were prospectively fol-

lowed according to a fixed study protocol. All GCA

patients started treatment with glucocorticoids (GCs),

according to the British Society for Rheumatology

guidelines with a starting dose of 40–60 mg/day [16].

GCs were tapered by 10 mg every 2–3 weeks to 20 mg/

day as long as there were no clinical signs and symp-

toms of disease activity and guided by CRP and ESR

levels. For the PKM2 ELISA, samples of GCA (n¼ 44) at

baseline, and at 6 weeks (n¼ 32) and 1 year (n¼ 31) of

follow-up were selected for this study. All baseline sam-

ples were collected before treatment. As a reference, we

included plasma samples of age-matched healthy con-

trols (n¼ 41). Metastatic melanoma (n¼7) patients [17]

were included as positive controls. Hospitalized infection

control (n¼ 11) patients diagnosed with pneumonia or a

urinary tract infection were included as inflammation

controls.

For histological examination, inflamed (n¼12) and

non-inflamed TABs (n¼ 4) of GCA patients and TABs

from GCA negative (non-GCA) patients (n¼9) were

stained for PKM2. The non-inflamed TABs are from

patients suspected of having GCA who had aclinical

diagnosis of GCA with negative histology. Written

informed consent was obtained from all study partici-

pants. All procedures were in compliance with the dec-

laration of Helsinki. The study was approved by the

institutional review board of the University Medical

Center Groningen (UMCG) (METc2012/375 for healthy

controls, METc2011.388 for melanoma and METc2010/

222 for GCA patients). Baseline characteristics of the

study groups and details of included patient samples

per analysis/assay can be found in Table 1 and supple-

mentary Tables S1 and S2, available at Rheumatology

online, respectively.

Immunohistochemistry and IF staining

Formalin-fixed, paraffin-embedded negative and positive

TABs from GCA and non-GCA patients were deparaffi-

nized. Next, antigen retrieval was performed and en-

dogenous hydrogen peroxidase was blocked followed by

incubation with a PKM2-specific antibody recognizing the

monomeric, dimeric and tetrameric form of PKM2 (pH 6,

1:400, Cell Signalling and Technology, Leiden, The

Netherlands) or with anti-IL-1b (1:100, pH9, Abcam,

Cambridge, UK). Isotype control for PKM2 staining was

included (supplementary Fig. S1A, available at

Rheumatology online). Slides were stained with a second-

ary antibody for 1 h at room temperature (RT). After de-

tection of peroxidase activity with 3,30-diaminobenzidine,

slides were counterstained with haematoxylin. Tissue

stainings for calprotectin (pH9, 1:100, DAKO, Santa Clara,

CA, USA) and YKL-40 (pH 9, 1:40, R&D Systems,

Minneapolis, MN, USA) were essentially performed as

described [18]. CD68 staining (Ventana Medical Systems,

Oro Valley, AZ, USA) was performed on the Ventana

Benchmark platform by a pathologist.

In order to identify co-localization of PKM2 with cell-

specific markers, we performed IF double stainings. After

antigen retrieval at pH9, slides were incubated for 1 h at

RT with primary antibodies against PKM2 (1:100, Cell

Signalling Technology, Danvers, USA), CD3 (1:25, DAKO)

and CD68 (1:50, DAKO, Santa Clara, CA, USA). Next,
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slides were stained for 1 h (RT) with secondary antibod-

ies. Lastly, fluorescence-labelled tertiary antibody was

added and incubated for 1 h (RT). To block autofluores-

cence, the Vector TrueVIEW auto-fluorescence quenching

kit (SP-8400, Vector Laboratories, Burlingame, CA, USA)

was used according to the manufacturer’s protocol. DAPI

was used for nuclear conunterstain. Sections stained

were scanned using a Nanozoomer Digital Pathology

Scanner (NDP Scan U10074–01, Hamamatsu Photonics

K.K., Shizuoka, Japan). The single stainings are depicted

in supplementary Fig. S1B (available at Rheumatology

online) demonstrating no bleed-through between chan-

nels. Antibody reagents and experimental details are

shown in supplementary Table S3, available at

Rheumatology online.

Percentages of positive cells in scanned tissues were

scored with automated imaging software, QPath

(University of Edinburgh, Edinburgh, UK) [19]. IF stain-

ings were visualized with the LSM780, AxioObserver

(Carl Zeiss BV, Breda, The Netherlands) confocal mi-

croscopy, and images were analysed using Zen Lite

(Carl Zeiss BV, Breda, The Netherlands) software.

Laboratory measurements

Blood samples were drawn at the rheumatology and

clinical immunology outpatient clinic of the UMCG.

Blood serum and plasma were stored at –20�C until

use. Plasma PKM2 levels of patients and controls were

assessed using the ScheBoVR M2-PKTM EDTA Plasma

Test, Giessen, Germany according to the manufacturer’s

instructions. Notably, the ScheBo kit specifically detects

the dimeric form of PKM2 [20, 21]. Serum IL-6 levels

(n¼38) at baseline were measured by Human IL-6 High

Sensitivity Magnetic Luminex Performance Assay (R&D

Systems, Minneapolis, MN, USA). To investigate associ-

ations between plasma PKM2 levels and macrophage

markers, we relied on previously published concentra-

tions of calprotectin (n¼42) and YKL-40 (n¼36) in the

same patients [18]. Details of laboratory measurements

are shown in supplementary Tables S2–S4, available at

Rheumatology online.

High-sensitive CRP and ESR were assessed in the

context of standard medical care. CRP levels were

determined using the Cobas 8000 modular analyser

(Roche, Basel, Switzerland). ESR (Westergren method)

was determined by the XN-9000 (Sysmex, Kobe,

Japan).

FDG-PET/CT assessment

Twenty-nine GCA patients underwent [18F]FDG-PET/

low-dose CT (LDCT) scan examination. Patients who

had taken GC for >3 days at the time of the FDG-PET/

CT scan were excluded from analysis [22]. Also, patients

were excluded when plasma sample collection and PET/

CT were >14 days apart. Furthermore, patients with

FDG-PET/LDCT images not meeting the EARL criteria

were excluded [23, 24]. After exclusion, a total of 23

newly diagnosed GCA patients were included for

[18F]FDG-PET uptake analysis.

[18F]FDG-PET/CT scans that were performed before

May 2018 were analysed by Biograph mCT camera sys-

tem (Siemens Healthineers, Erlangen, Germany) while the

Biograph Vision camera system (Siemens Healthineers,

Erlangen, Germany) was used for scans after May 2018.

Prior to i.v. [18F]FDG injection (3 MBq/kg), patients fasted

at least 6 h and imaging was performed 1 h after injection.

TABLE 1 Baseline characteristics of healthy controls, GCA, melanoma and infection control patient groups

Characteristics HCs GCA Melanoma INF

N 41 44 7 11

Age, years, median
(range)

73 (58–96) 70 (52–89) 73 (51–82) 77 (55–93)

Female, n (%) 25 (59) 31 (70) 5 (71) 3 (27)*
GCA diagnosis (TAB/

PET-CT/both), n
NA 13/21/8 NA NA

GCA symptoms (cra-
nial/systemic/
combined), n

NA 15/12/17 NA NA

Fulfilled ACR
criteria, n (%)

NA 31 (70) NA NA

Ischaemic ocular
involvement, n (%)

NA 21 (47) NA NA

Claudication, n (%) NA 9 (20) NA NA
Six-week follow-up,

median, days
(range)

NA 42 (25–65) NA NA

One-year follow-up,
median, days
(range)

NA 380 (332–442) NA NA

HC: healthy control; INF: infection control; NA: not applicable; TAB: temporal artery biopsy. *P<0.01.
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[18F]FDG PET images were obtained within 2–3 min per

bed position in three-dimensional setting. Images were

reconstructed using a time-of-flight iterative reconstruction

method (three iterations; 21 subsets) with point-spread-

function correction [23]. Images were corrected for random

coincidences, scatter and attenuation (CT-based), and

were smoothed with a Gaussian filter of 6.5 mm in full-

width at half-maximum. [18F]FDG-PET data from GCA

patients were acquired from head to proximal femur or

from head to feet.

FDG uptake was assessed visually in the subclavian

arteries, common carotid arteries, ascending aorta, aortic

arc, descending aorta and abdominal aorta. A visual

score was performed by grading the FDG uptake in the

arteries compared with uptake in the liver on a 0–3 scale

where 0 ¼ no visible uptake, 1 ¼ uptake was lower than

liver uptake, 2 ¼ uptake equals liver uptake and 3 ¼ up-

take is higher than liver uptake. A total PET Vascular

Activity Score (PETVAS) was calculated for each patient

by summation of the visual scores of all artery segments,

with a maximum of 27 [25]. [18F]FDG uptake in the tem-

poral arteries, maxillary arteries, occipital arteries, verte-

bral arteries, subclavian arteries, axillary arteries, carotid

arteries, ascending aorta, aortic arch and descending

aorta were assessed by maximum standardized uptake

value (SUVmax). SUVmax scores for each patient were

corrected for patient weight and injected radiotracer

dose. Target-to-background ratio (TBR) was calculated

using the mean standardized uptake value (SUVmean) of

the superior caval vein as background.

For measurements, in-house developed software based

on the syngo.via Frontier development kit (Siemens

Healthineers, Erlangen, Germany) was used. For segmen-

tation, volume of interest contours were manually drawn

around arterial segments without including surrounding

tissue. The SUVmax for all arteries and SUVmean of su-

perior caval vein was measured. The maximal and the

average value of SUVmax (maximal SUVmax, average

SUVmax) and TBR (maximal TBR, average TBR) for all ar-

terial segments were used for analysis.

Statistical analysis

Statistical differences by Mann–Whitney U test between

two groups are shown only if the Kruskal–Wallis test

showed significant differences between the study

groups (three or more groups). Fisher’s exact test was

used for comparing sex differences between study

groups. Follow-up patient samples were analysed by

Wilcoxon signed rank test. Spearman’s rank test was

used for correlation analyses. Graphs and statistical

analysis were established with Graphpad Prism 8.

Results

PKM2 expression detected at the site of vascular
inflammation in GCA

Tissue expression of PKM2 was investigated by immu-

nohistochemistry in TAB of GCA and suspected GCA

patients. For this purpose, a PKM2-specific antibody

recognizing all forms of PKM2 was used. Sections of

inflamed and non-inflamed TABs from GCA patients

were stained and compared with TABs from non-GCA

patients (Fig. 1A). Histological analysis revealed an

abundant PKM2 expression in infiltrates as well as in

resident cells such as vascular smooth muscle cells and

endothelial cells in inflamed GCA TABs (Fig. 1A, supple-

mentary Fig. S2, available at Rheumatology online).

Quantitative scoring of the adventitia, media and intima

vessel wall layers revealed that both inflamed and non-

inflamed TABs of GCA patients showed higher percen-

tages of PKM2 expressing cells than TABs of non-GCA

patients (Fig. 1B). PKM2 staining scores were signifi-

cantly higher in inflamed GCA TAB than in non-GCA and

non-inflamed GCA TABs. In the intima, the percentage

of PKM2-positive cells in non-inflamed GCA TABs was

higher than in non-GCA TABs.

Systemic levels of PKM2 are elevated in GCA
patients at baseline but decrease upon treatment

To analyse circulating PKM2 plasma levels in GCA

patients, we performed an ELISA detecting dimeric

PKM2. Samples from melanoma patients were included

as positive control [20, 21, 26–28]. Infection controls

were added as inflammation controls. A significant ele-

vation of plasma PKM2 was detected in baseline sam-

ples of treatment-naı̈ve GCA patients. Plasma PKM2

levels were also significantly elevated in infection con-

trols, indicating that plasma PKM2 levels indeed associ-

ate with inflammation (Fig. 2A). To determine the effect

of treatment on plasma PKM2 expression, dimeric

PKM2 plasma levels at 6 weeks and 1 year after treat-

ment were measured and compared with their baseline

levels. A significant decrease of plasma PKM2 levels

was observed upon treatment (Fig. 2B).

PKM2 plasma levels correlate with inflammation and
macrophage activation markers in GCA patients at
baseline

Plasma PKM2 levels correlated with systemic markers

of inflammation such as CRP (r¼0.42, P¼ 0.005), ESR

(r¼ 0.362, P¼ 0.016) and IL-6 (r¼ 0.564, P¼ 0.0003)

(Fig. 3A). Beside inflammation markers, PKM2 levels

correlated with YKL-40 and calprotectin, markers of

macrophage activation, previously found to be elevated

in GCA [18]. Plasma PKM2 levels correlated weakly with

serum levels of calprotectin (r¼0.379, P¼0.013) and

YKL-40 (r¼0.376, P¼ 0.023), both of which were also

readily detected in vascular lesions (Fig. 3B). Additional

immunohistochemical staining for calprotectin, and YKL-

40 confirmed that tissue PKM2 expression was detected

in macrophage-rich areas (Fig. 3C).

Previously, it was shown that lipopolysaccharide

(LPS)-activated macrophages express dimeric PKM2

and that transcription of HIF-1a regulated genes such as

IL-1b increases [29]. Thus, we investigated the expres-

sion of IL-1b in TABs of GCA patients. Histological
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FIG. 1 Elevated PKM2 expression in temporal artery biopsies of GCA patients.

(A) Representative images of immunohistochemical staining of PKM2 in non-GCA, non-inflamed GCA and inflamed

GCA TABs (left to right). (B) Quantification of PKM2 expression in non-GCA, non-inflamed GCA and inflamed GCA

TABs by Qpath imaging software. Statistical differences by Mann–Whitney U test (A) between groups are displayed

only if Kruskal–Wallis testing was significant. Non-GCA TABs, n¼9; non-inflamed GCA TABs, n¼4; inflamed GCA

TAB, n¼12. ****P<0.0001, **P< 0.001, *P<0.05. PKM2: Pyruvate Kinase M2; TAB: temporal artery biopsy.

FIG. 2 Plasma PKM2 levels at baseline in GCA patients and modulation of plasma PKM2 by treatment.

The Mann–Whitney U test (A) and Wilcoxon tests (B) were used for statistical analysis. Median with minimum and

maximum values are shown (A, B). Statistical differences by Mann–Whitney U (A) between groups are displayed only

if Kruskal–Wallis testing was significant. ****P<0.0001, **P< 0.01, ns¼ not significant. HC: healthy control; INF: infec-

tion controls; PKM2: Pyruvate Kinase M2.
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examination of the tissues showed that PKM2 and IL-1b
are indeed expressed in macrophage-rich areas (supple-

mentary Fig. S3, available at Rheumatology online).

Macrophages and T cells express PKM2 in GCA

As tumour cells can release dimeric PKM2 into the

circulation [26, 30], we hypothesized that abundant

PKM2 expression by glycolytic cells in the inflamed

vessel may underlie the elevated plasma PKM2 levels

in GCA. As T cells and macrophages are regarded as

key contributors to vessel wall inflammation in GCA,

we focussed on PKM2 expression by these cell types

in the GCA vascular lesions. The IF data show PKM2

expression in areas with infiltrated T cells and macro-

phages (Fig. 4). Taken together, the data suggest

FIG. 3 Dimeric PKM2 levels correlate with inflammation and macrophage markers

Association of plasma PKM2 with (A) CRP (n¼44), ESR (n¼ 44), IL-6 (n¼38) and (B) calprotectin (n¼ 44) and YKL-

40 (n¼36) at baseline in GCA patients. r, Spearman’s rank correlation coefficient and P-values are indicated in the

graphs. (C) Representative images showing immunohistochemistry detection of CD68 (upper left), PKM2 (upper right)

and macrophage products calprotectin (lower left) and YKL-40 (lower right) in GCA temporal artery biopsy. PKM2:

Pyruvate Kinase M2.
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that metabolically active (glycolytic) macrophages and

T cells in vasculitis tissue express PKM2 and may

thus contribute to the elevated PKM2 plasma levels in

GCA.

Plasma PKM2 levels correlate with average TBR on
PET

Considering the function of PKM2 in glycolysis, we

investigated the utility of systemic PKM2 as a marker for

blood vessel inflammation. Inflammation burden was

measured by PETVAS, TBR and maximum SUVmax in

treatment-naı̈ve GCA patients at baseline having been

diagnosed with FDG/PET [31]. PETVAS scores were not

associated with PKM2 or any of the systemic inflamma-

tion markers (CRP and ESR) (Fig. 5A). However, quanti-

fied FDG vessel uptake in GCA patients was correlated

with plasma PKM2 and serum CRP levels and ESR.

Average TBR correlated with PKM2 (r¼ 0.492,

P¼0.023) but not with CRP (r¼0.301, P¼ 0.185) and

ESR (r¼ 0.274, P¼0.228), while maximum TBR corre-

lated with CRP (r¼ 0.528, P¼ 0.015) and ESR (r¼ 0.440,

P¼0.046) but not with PKM2 (Fig. 5B and C). After ex-

clusion of three patients with C-GCA only, PKM2

remained associated with average TBR and CRP with

maximum TBR in LV/Combi-GCA patients (n¼20) re-

spectively. The association between average TBR and

plasma PKM2 levels suggests that PKM2 is a possible

systemic marker of vessel inflammation in GCA.

Discussion

Our main finding is that the glycolytic enzyme PKM2 is

expressed at the site of vascular inflammation in GCA

and that dimeric PKM2 may have utility as a marker of

vessel inflammation. One of the hallmarks of tumour

cells facilitating their proliferation is their capacity to shift

their metabolism to aerobic glycolysis, the so-called

Warburg effect. During inflammation, activated immune

cells display a similar metabolic profile to tumour cells.

Immunometabolism in autoimmune inflammatory condi-

tions has gained much interest and is emerging as a

field of intense study as it may provide novel targets for

therapy [32–35].

Pyruvate Kinase (PK) is a glycolytic enzyme that catal-

yses the rate-limiting step in glycolysis. PK has four iso-

forms L, R, M1 and M2. The PKM2 isoform is mainly

expressed in rapidly proliferating, differentiating cells

[36, 37]. In line with this, elevated PKM2 levels were

detected in the circulation of various cancer patients

and proposed as a possible diagnostic and prognostic

biomarker [20, 21, 26–28, 38]. In LPS-stimulated macro-

phages, PKM2 was revealed as a critical determinant of

the Warburg effect [29]. In RA, increased PKM2 expres-

sion was reported [39]. In arthritic rats, upregulated

PKM2 expression was shown to be involved in macro-

phage activation via STAT1 signalling [11]. Moreover, in

experimental autoimmune encephalomyelitis increased

expression of PKM2 was found to be a regulator of

Th17 cells differentiation and inflammation by interaction

with STAT3 enhancing its activity [40]. Previous studies

FIG. 4 IF reveals PKM2 expression in macrophages and T cells in temporal artery biopsy from a GCA patient

From left to right stainings for: DAPI: blue; PKM2: red; CD3/CD68: green. Regions of interest are shown in white

boxed areas and magnified in the lower right corner. T cell (upper panel) and macrophage (lower panel) areas. PKM2:

Pyruvate Kinase M2.
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demonstrated that the JAK-STAT pathway in GCA con-

tributes to the disease’s pathogenesis, and blockade of

this pathway was shown to be beneficial in GCA treat-

ment [41–43]. Here, we first showed a clear increase in

expression of PKM2 in inflamed TABs of GCA patients

compared with non-GCA patients. The abundant PKM2

expression in inflamed TAB can be explained by infiltra-

tion and differentiation of metabolically active immune

cells. PKM2 can exist as either a monomer, dimer or

tetramer in the cell. The monomeric PKM2 is inactive

but upon tetramerization, PKM2 gains high enzymatic

activity while dimeric PKM2 is largely responsible for the

non-canonical, pro-inflammatory functions of PKM2 [36,

37]. In plasma of GCA patients, we found dimeric PKM2

levels were elevated when compared with age-matched

healthy individuals. Elevated PKM2 levels in infection

controls indicate that PKM2 is not specific for GCA (or

melanoma) but rather associates with glycolytic inflam-

matory processes. The modulation of plasma PKM2

levels upon GC treatment suggests that circulating

PKM2 reflects disease activity.

At baseline, plasma PKM2 expression correlated with

CRP and ESR and also with levels of macrophage prod-

ucts calprotectin and YKL-40 which were previously

identified by us as markers of vessel inflammation in

GCA [18]. Furthermore, others demonstrated that dimer-

ic PKM2 regulates HIF-1a genes and induces IL-1b as a

determinant of the Warburg effect in macrophages dur-

ing inflammation [29]. Our histological examination

showed PKM2 expression in macrophage-rich areas

where calprotectin, YKL-40 and IL-1b seem to be co-

expressed. This may suggest a link between PKM2 and

metabolically active, pro-inflammatory macrophages in

GCA pathogenesis.

As GCA is a granulomatous disease with important

roles for both T cells and macrophages at the site of

vascular inflammation, we hypothesized that these cells

would be the source of local and systemic PKM2

FIG. 5 Correlation of plasma PKM2, CRP and ESR with PETVAS, average and maximal target to background ratio

scores

Correlation of plasma PKM2, CRP and ESR with (A) PETVAS, and (B) average and (C) maximal target to background

ratio scores. r, Spearman’s rank correlation coefficient and P-values are indicated in the graphs. PETVAS: PET

Vascular Activity Score; PKM2: Pyruvate Kinase M2; TBR: target to background ratio.
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expression. Although the assay we used for plasma

PKM2 specifically detects the dimeric form, PKM2 ex-

pression in the tissue may reflect the tetrameric, dimeric

and even the monomeric form of PKM2 as the antibody

used does not discriminate between the different forms.

Our data revealed that pro-inflammatory T cells and

macrophages express PKM2 at the site of inflammation,

which is in line with previous studies [11, 29, 40, 44, 45].

Given that the dimeric form of PKM2 translocates to the

nucleus to exert its non-canonical effects [36, 37], nu-

clear expression of PKM2 in T cells and macrophages is

a notion to be further studied in GCA.

The [18F]FDG-PET/CT technique is based on glucose

uptake by inflammatory glycolytic cells and is now used

as a sensitive diagnostic tool in GCA [31, 46, 47].

Interestingly, plasma PKM2 levels correlated with the

calculated average TBR from FDG-PET/CT scans of

GCA patients. Other inflammation markers such as CRP

and ESR did not correlate with average TBR but corre-

lated with maximum TBR. Average TBR, however, is

more representative of the overall systemic vessel in-

flammation than maximum TBR, which represents the

maximum FDG uptake in one vessel of all vessel seg-

ments analysed. These findings thus support the role of

plasma PKM2 as a marker reflecting the extent of vessel

wall inflammation in GCA.

Our study showed tissue expression of the dimeric

form of PKM2 in the nucleus of T cells and macro-

phages. Previous studies revealed that pharmacological

targeting of PKM2 by compounds such as TEPP-46

induces PKM2 tetramerization and thereby suppresses

subsequent pro-inflammatory gene transcription. This

leads to decreased proliferation and cytokine production

in immune cells. Indeed, PKM2 inhibition inhibited the

development of Th1 and Th17 in vitro and suppressed

the development of experimental autoimmune enceph-

alomyelitis in vivo. This provides evidence that pharma-

cological targeting of PKM2 affects the T-cell-mediated

inflammatory response in this model [44]. Furthermore,

Palsson-McDermott et al. showed that in LPS-

stimulated macrophages PKM2 activation (tetrameriza-

tion) by TEPP-46, increases IL-10 production, thereby

activating an anti-inflammatory circuit [29]. PKM2 activa-

tion may thus qualify as an interesting target for treat-

ment in GCA, warranting further investigation.

In conclusion, the identification of biomarkers that

predict and monitor vessel wall inflammation in GCA is

still awaited. Our findings suggest that elevated PKM2

expression in affected arteries of GCA patients, reflect-

ing TBR [18F]FDG-PET uptake, might aid GCA diagnosis

and monitoring of disease activity. Additionally, as non-

canonical functions of PKM2 are associated with vessel

wall inflammation, the pharmacological induction of

tetrameric PKM2 may hold promise for the treatment of

autoimmune inflammatory disorders like GCA.
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