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Abstract

Background: Taxonomic bias is a known issue within the field of biology, causing scientific knowledge to be unevenly distributed
across species. However, a systematic quantification of the research interest that the scientific community has allocated to individual
species remains a big data problem. Scalable approaches are needed to integrate biodiversity data sets and bibliometric methods
across large numbers of species. The outputs of these analyses are important for identifying understudied species and directing
future research to fill these gaps.

Findings: In this study, we used the species h-index to quantity the research interest in 7,521 species of mammals. We tested factors
potentially driving species h-index, by using a Bayesian phylogenetic generalized linear mixed model (GLMM). We found that a third of
the mammals had a species h-index of zero, while a select few had inflated research interest. Further, mammals with higher species
h-index had larger body masses; were found in temperate latitudes; had their humans uses documented, including domestication;
and were in lower-risk International Union for Conservation of Nature Red List categories. These results surprisingly suggested that
critically endangered mammals are understudied. A higher interest in domesticated species suggested that human use is a major
driver and focus in mammalian scientific literature.

Conclusions: Our study has demonstrated a scalable workflow and systematically identified understudied species of mammals, as
well as identified the likely drivers of this taxonomic bias in the literature. This case study can become a benchmark for future research
that asks similar biological and meta-research questions for other taxa.
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Introduction
Effective conservation of the earth’s amazing biodiversity requires
sound knowledge of species’ biology and ecology, with the ad-
dition of adequate communication from scientists [1]. However,
such knowledge is often not only missing [2] but also biased. Some
species receive disproportionally more research interest while
others very little, reflected in scientific publications—known as
taxonomic bias [3]. Although taxonomic bias in the scientific lit-
erature is prevalent [4, 5], there has been little effort to rectify the
problem. Even worse, this problem seemed to have become more
extreme in the last few decades [6, 7]. To work toward reducing
the gaps of knowledge in the literature, one first needs to under-
stand what is causing such inequality in research interest among
species.

Many potential drivers exist for taxonomic bias. For instance,
there is a human preference to study and conserve iconic or
“charismatic” taxa, which are usually large mammals such as the
African bush elephant (Loxodonta africana) and black rhinoceros
(Diceros bicornis) [8]. Indeed, large mammalian vertebrates are
overrepresented in the conservation literature [9, 10]. Of rele-
vance, the anthropomorphic stimuli hypothesis posits that hu-
mans are attracted to species that are more phylogenetically re-
lated to us [11]. Such human tendencies likely explain the inflated
research effort toward vertebrate taxa [5]. This hypothesis is also
related to the reason why we have much (bio)medical research,

using rodent model systems such as rats (Rattus norvegicus) and
mice (Mus musculus), because of our shared physiological traits
[12]. Studying species closer to scientists’ proximity [5, 13], where
the animals live in accessible locations, and for economic reasons,
such as agriculture and aquaculture research, can also exacerbate
taxonomic bias in the literature. Consequently, these drivers have
over time created strong unevenness in the taxonomic distribu-
tion of scientific knowledge.

Researchers have investigated such taxonomic bias in the aca-
demic literature, but these studies appeared to have 2 main short-
comings. First, because of the previous difficulties constructing
scalable workflows, the coverage of these studies is often not com-
prehensive. While several studies have quantified species-level
bias among plants [14], mammals [15–18], birds [19], fish [20], and
amphibians [21], respectively, their sample sizes remain no more
than a few hundred species, encompassing only small portions
of species in a given taxonomic group. Until now, only 2 studies
have evaluated species-level taxonomic bias for the thousands of
species and across multiple clades [4, 22]. However, these studies
focused solely on species included on the International Union for
Conservation of Nature (IUCN) Red List, therefore potentially fail-
ing to provide more comprehensive and holistic understanding of
the drivers of taxonomic bias in research.

Second, there are currently no standardized methods to quan-
tify taxonomic bias at the level of individual species. Publication
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count is one of the most commonly used proxies to gauge taxo-
nomic bias [4, 5, 7, 15, 18, 20–24]. However, while the total num-
ber of publications could capture the total research effort on a
given species, it does not capture research interest per se (i.e.,
how much attention from the research community these publi-
cations received). A logical alternative would be to use citation
count [25], as it captures the total research interest. Nonetheless,
high-impact papers can easily inflate this number [26] and give
a false impression that a species is receiving more interest than
in reality. Hirsch’s h-index [26] kills two birds with one stone by
taking into account both the number of publications and num-
ber of citations. So far, there exist only a handful of studies that
have adapted the “species” h-index for measuring and comparing
research interests among different species [14, 16, 17, 19, 27].

This study seeks to quantify the research interest in mammals,
using the species h-index [14, 16, 17, 19]. We introduce a workflow
demonstrating how to obtain species h-index for any species and
how to ask relevant meta-science as well as biological questions
on research interest. As a case study, we choose the class Mam-
malia, which consists of over 7,500, species, since they are one
of the most well-studied taxonomic groups, with extensive data
readily available. Then, we test how our surrogate for research in-
terest, species h-index, could be related to the following 6 poten-
tial drivers: (i) body size, (ii) location of natural habitat, (iii) phylo-
genetic relatedness, (iv) human uses and domestication, (v) IUCN
Red List status, and (vi) general interest (encompassing drivers i–v,
quantified via Google Trends; see below). We outline our hypoth-
esis and rationale for each potential driver in Table 1.

Methods
Data collection and processing
For much of data collection and cleaning as well as all statistical
analyses (see below), we used the R language version 4.0.2 [28] in
the RStudio environment version 1.3.1093 [29]. The source code of
this article can be found on GitHub [30] and the data can be found
on Zenodo [31, 32].

We first collected a list of mammalian species from the Open
Tree of Life (OTL) database [33] using the R package rotl version
3.0.12 [34] to create a complete mammalian species list. We re-
moved subspecies from the list and only kept species with bi-
nomial names, resulting in 6,952 species. Next, we obtained lists
characteristics of mammalian species represented as 7 statisti-
cal surrogates of the 6 potential drivers of research interest (Ta-
ble 1): (i) body mass (n = 5,400; in grams, log10 transformed), (ii)
median latitude of species range (n = 4,721; obtained from cen-
troids of all occurrence records from GBIF (Global Biodiversity In-
formation Facility)), (iii) phylogenetic trees with branch lengths
(n = 5,911 [35]), (iv) IUCN Red List human use categories (n =
1,472; a binary categorical variable where a species was catego-
rized into at least 1 of 19 human uses), (v) Wikipedia list of do-
mesticated species (n = 159; a 3-level categorical variable: domes-
ticated, partially domesticated, and wild), (vi) IUCN Red List sta-
tus (n = 5,584; an ordinary variable with 6 levels: “Least Concern,”
“Near Threatened,” “Vulnerable,” “Endangered,” “Critically Endan-
gered,” and “Extinct in the Wild” excluding “Extinct” and “Data
Deficient”; there was some discrepancy with the IUCN Red List
statuses when filling in missing data in this category; we suspect
this is an issue caused by a mismatch between the data on the
IUCN Red List website and their API (Application Programming
Interface - an API enables the communication between two ap-
plications, in this instance, extracting data from IUCN Red List’s

database using a local computer) through the rredlist R package,
and we suggest using data from the website as the package might
not be regularly maintained), and (vii) Google Trends index (n =
7,521; see Supplementary Fig. S1 for a summary of the data com-
pleteness and data-processing details and see the Supplementary
information). Synonym matching was performed automatically
with rotl::tnrs_match_names(), before combining the categories and
the list from OTL to form 1 data set. Duplicated names were re-
moved using the functions unique() and duplicate(). A total of 7,521
unique species remained on the final species list. We obtained the
Google Trends index after finalizing the list of species names.

Notably, we added higher taxonomic clades to condense the 30
orders to 5 major clades according to molecular tree reconstruc-
tions [35, 36]. These 5 high-lever taxa are (i) Afrotheria, represent-
ing an African lineage, including sea cows and elephants; (ii) Xe-
narthra, representing an American lineage that includes sloths
and armadillos; (iii) Euarchontoglires, representing widely dis-
tributed species such as rodents and primates; (iv) Laurasiatheria,
representing species such as whales, carnivores, and bats; and fi-
nally, (v) Marsupials and Monotremes, representing the noneuthe-
rian mammals. We used these higher taxonomic groupings in vi-
sualizations of the results.

Data sources and species h-index
We extracted the bibliometric records from Scopus (data col-
lection on 28 April 2021) and calculated the h-index of individ-
ual mammal species with the R package specieshindex [37]. The
package connects to the Scopus, Web of Science, and Bielefeld
Academic Search Engine (BASE) literature databases. Using ei-
ther binomial or genus names, the package can count the num-
ber of relevant bibliometric records for each species or genus on
each database and extract them for local processing and anal-
ysis. Bibliometric information that can be extracted include ci-
tation count, publication date, authors, and more. specieshindex
can then calculate the species h-index of individual species ap-
plying Hirsch’s h-index [26]. The h-index is defined as the largest
number of publications (n) cited a minimum of the same num-
ber (n) of times (Supplementary Fig. S2). The h-index in this sce-
nario quantifies the research interest each individual species has
received. The package has also implemented the calculation of
other indices, such as the m-index and h5 index, and plotting
functionality.

We used binomial names in Scopus database searches because
of the ambiguity and lack of common names for uncommon
species. We tackled the issue of species name synonyms by using
the Boolean term “OR” between each synonymous binomial name
(collected from OTL) in the search string. Articles containing bino-
mial names of mammals in their title, abstract, or keywords were
extracted. Since the distribution of h-index was right-skewed with
more species having a lower species h-index, we applied the for-
mula log10(h + 1) for visualization purposes, but we used the orig-
inal count data for modeling (see below).

Imputing missing data
The coverage of data is lower for some predictors (Supplemen-
tary Fig. S1) as a result of synonym matching and cleaning. Since
some data were missing for body mass, latitude, and IUCN Red
List status (Supplementary Fig. S1), we imputed missing values
for 5,497 species that were included in the model, to match the
shorter length of the phylogenetic tree. We used the multiple
imputation approach implemented in the R package mice [38].
Multiple imputation creates multiple sets of imputed values be-
fore aggregating them to create a single set of data [39]. This is
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Table 1: Details of hypotheses

Potential driver Hypothesis and rationale Statistical surrogate Data source

Size of species We predict that higher body masses correlate with higher
species h-index. Larger mammals (i.e., megafaunal species
such as elephants and rhinoceroses) receive more research
interest because they are generally considered more
“charismatic” [8, 46].

Body mass
(transformed with
log10)

Wilman et al. [65]

Location of
natural habitat

We predict that species found in temperate latitudes have
higher species h-index. Mammals near the temperate
zones attract more research interest as more researchers
originate from these areas, such as North America, Europe,
Australia, New Zealand, and southern Africa [5]. Thus,
mammals whose natural habitat are within these regions
are better studied.

Median latitude GBIF [66]

Phylogenetic
relatedness

We predict that there are phylogenetic signals present in
the data set. Mammals that are more phylogenetically
related receive similar species h-index because related
species share similar traits that may influence the
propensity of researchers to study members of a given
clade [67]. Furthermore, species closer to humans will be
overrepresented in species with high h-index values [11].

Branch lengths of
phylogenetic tree

Upham et al. [35]

Human use &
domestication

We predict that mammals with more human uses and
domesticated mammals have higher species h-index. Some
examples of human uses include transportation (e.g.,
horses and elephants), companionship (e.g., cats and dogs),
food products (e.g., sheep and cattle), etc. Lab animals (e.g.,
rabbits and rodents) are likely to receive most research
interest since the main purpose of keeping these animals is
for scientific research [68, 69].

IUCN Red List human
use categories &
Wikipedia list of
domesticated species

IUCN Red List [70] &
Wikipedia [71]

Demography We predict a U-shaped distribution of species h-index,
where species in the “Least Concern” and “Critically
Endangered” categories receive higher species h-index.
Previous studies showed no correlations between the
mammals’ IUCN Red List status and their research interest
[16, 17, 19].

IUCN Red List status IUCN Red List [70];
cleaned with rredlist
[72]

General interest We predict that more general interest correlates with
higher species h-index. Research and general interests are
highly correlated since we tend to be more attracted to
“charismatic” species, such as lions and elephants [46], and
are more willing to donate for their conservation causes
[73], resulting in more research interest.

Google Trends index Google Trends [74];
extracted with
gtrendsR [75]

We predicted that species h-index can be influenced by body sizes, location of natural habitat, phylogeny, human uses and domestication, demography, and general
interest.

preferred over deletions of data records with missing values, as
the latter can result in lowered statistical power and biases in
the parameter estimates [40]. We used binomial name, h-index,
human use, domestication, and Google Trends index to impute
3 variables with missing values (body mass, latitude, and IUCN
Red List status), creating 10 complete data sets for statistical
analyses.

Statistical analysis and phylogenetic
“heritability”
We ran 2 Bayesian phylogenetically controlled Poisson mixed
models with the log link function and the additive dispersion term
[41], implemented in the R package MCMCglmm version 2.33 [42],
and ran using the computation cluster Katana at UNSW Sydney
[43]. The first model followed the predictions stated in the hy-
potheses (Table 1) and used the data set with the sample size
of 5,497 species and 50 identical phylogenetic trees with branch
lengths chosen randomly from Upham et al. [35]. Fifty trees were
selected since it is the minimum number of trees needed to ac-
count for uncertainties in phylogenetic data [44]. The second

model was the same as the first one but with only 5,343 species af-
ter removing domesticated and semi-domesticated species (i.e., 1
less predictor or fixed effect than the first 2 models; see formulae
below). We added this model because (semi-)domesticated species
are likely to have inflated species h-index values that may not be
comparable to those of wild species.

We ran 130,000 iterations for the chain with 30,000 burn-ins,
drawing 1,000 samples from the imputed data in each iteration,
and using a noninformative prior for both fixed and random ef-
fects. To obtain more accurate precision of model estimates, we
repeated the same model for the 10 imputed data sets and 50
phylogenetic trees, resulting in a total of 500 model runs for
each model, respectively. The last 100 of the total 1,000 samples
of each model were extracted for the calculation of the model
results.

In the first model, we used the following predictor variables:
body mass value on log10 scale (continuous), the absolute value
of median latitude (continuous; converted to absolute value for
linear distribution), human use (binomial), domestication (ordi-
nal), IUCN Red List status (ordinal), and Google Trends index on
(log10 + 1) scale (binomial) to model the outcome variable species
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h-index (count), as in the following formula:

h ∼ log10 (Body mass) + ∣∣Latitude
∣∣ + Human use + Domestication

+ IUCN Red List status + (IUCN Red List status)2

+log10 (Google Trends + 1)

The second model is in the following formula (without domes-
tication):

h ∼ log10 (Body mass) + ∣∣Latitude
∣∣ + Human use

+ IUCN Red List status + (IUCN Red List status)2

+log10 (Google Trends + 1)

During our preliminary analysis, we checked for variance in-
flation factor (VIF) to make sure that the regressors were not cor-
related to each other. The VIF values ranged between 1.0 and 1.7
(Supplementary Table S3). Low VIF values meant that the predic-
tor variables are not colinear and will not lead to inflated correla-
tions.

We estimated phylogenetic heritability (H2; [41]) to check for
phylogenetic correlations among species, which is equivalent to
Pagel’s lambda (λ). Values of H2 fall between 0 and 1. The output of
the Bayesian model provided the values needed for H2 calculation
using the following formula, from Nakagawa et al. [45]:

H2 = var (species)

var (species) + var (overdispersion) + ln
(
1 + 1

mean(h)

)

where var(species) and var(overdispersion) are the variance com-
ponents for phylogenetic effects and the additive overdispersion
term, which is equivalent to the residual term in a normal regres-
sion, and mean(h) represents the average h-index values.

Results
General trends of species’ h-index across taxa
We calculated the species h-index for 7,521 species of mammals
in total. A species h-index of 0 was common in mammals with
32.26% (n = 2,426; Supplementary Fig. S4) failing to have even 1
paper cited 1 time (Fig. 1). On the other hand, mammals with a
species h-index of 100 and higher only included 34 species from
across 6 orders (Fig. 1A). The median and mean of the h-index for
all the species were hmedian = 2 and hmean = 7.08, respectively. After
removing domesticated (and semi-domesticated) species from the
data set (remaining n = 7,360), mammals with a h-index of 100 and
higher only included 17 species from Carnivora and Primates (7
and 10 species, respectively; Fig. 1B). The median and mean of the
species h-index without the domesticated mammals are hmedian =
2 and hmean = 6.16, respectively.

There were also pronounced shifts in research interest through
time. Publications in the early 1940s were largely on the orders
Hyracoidea (hyraxes), Proboscidea (elephants), Soricomorpha (dis-
solved paraphyletic taxa of shrews—combined with Erinaceidae
to form Eulipotyphla), and Didelphimorphia (opossums) (Fig. 2B).
Upon skimming the titles of some articles (around 10 titles), we
noted that early publications in these species appeared to be
mostly comparative anatomy studies. In the 1950s, the mam-
malian literature took on its modern structure, with research fo-
cused largely on 6 orders (Fig. 2A)—rodents (Rodentia, 1950–2021
mean = 30.94% of the yearly article count); primates (1950–2021
mean = 13.98%); bats (Chiroptera, 1950–2021 mean = 11.16%); car-
nivores (Carnivora, 1950–2021 mean = 11.61%); pigs, sheep, cat-
tle, and other even-toed ungulates (Artiodactyla, 1950–2021 mean

= 11.83%); and whales and dolphins (Cetacea, 1950–2021 mean
= 3.15%). Higher species h-index was generally associated with
larger body sizes (Fig. 4A), intermediate latitudes (Fig. 3, Fig. 4B),
more human uses (Fig. 4C) and domestication (Fig. 4D), lower ex-
tinction risk (Fig. 4E), and higher general interest (Fig. 4F).

Statistical predictors of species’ h-index and
phylogenetic signal
We included 5,497 species of mammals in the first (Table 2) and
5,343 species (after excluding domesticated animals) in the sec-
ond (Table 3) Bayesian generalized linear mixed model (BGLMM).
In both models, body size positively and significantly predicted
species h-index (Tables 2 & 3; Fig. 4A). While mammalian diver-
sity was highest in the tropics, species found here had signifi-
cantly lower species h-indices compared to those in the temper-
ate regions and near the poles, which was again supported in the
models (Tables 2 & 3; Fig. 3; Fig. 4B). Although most mammals
had a Google Trends index of 0, species h-index significantly in-
creased with the Google Trends index in all models (Tables 2 & 3;
Fig. 4F). There was a U-shaped distribution across the IUCN Red
List statuses (Fig. 4E) with a statistically significant quadratic ef-
fect in both models (i.e., with and without domesticated animals;
Tables 2 & 3; see also Supplementary Fig. S5 for IUCN Red List
statuses not included in the model). These models also showed a
statistically significant linear decline of species h-index with in-
creasing extinction risk (IUCN Red List status). Further, species h-
index significantly increased with human use in both models (Ta-
bles 2 & 3; Fig. 4C; see Supplementary Fig. S6 for all human use
categories). The first 2 models showed that domestication status
was a significant positive predictor of species h-index (Tables 2
& 3; Fig. 4D). Finally, phylogenetic signal was present in species
h-index in both models (Tables 2 & 3; see Supplementary Fig. S7
for the phylogenetic tree).

Discussion
Scientific research is not spread evenly across mammal species:
we found strong bias in “research interest” in the literature, quan-
tified by species h-index. A small group of species (n = 34 with all
species and n = 17 without domestication species) had a species
h-index above 100, while one-third of the species (n = 2,426 with
or without domestication species) received no scientific interest
at all (h = 0) (Fig. 1). The modern mammalian literature was dom-
inated by the orders Rodentia, Primates, Carnivora, Artiodactyla,
Chiroptera, and Cetacea (Fig. 2), which resulted in a high value of
phylogenetic heritability in the model (H2 = 64%; Table 2). Over-
all, our analyses confirmed our predictions (Table 1). The bias to-
ward a few orders also appeared in species with high species h-
indices (Fig. 1) and these commonly found in the high latitudes
(Fig. 3). Mammals with high species h-indices were more likely to
be large, be less endangered, and have their utility documented
(Fig. 4). These “research superstars” include farmed animals, pets,
and small laboratory mammals, as expected.

Low research interest in endangered small
mammals
The relationship between IUCN Red List status and species h-
index (Fig. 4D) resembled a U-shaped distribution, and this trend
was statistically significant in both models with and without do-
mesticated animals (Table 3). Also, we found a significant de-
cline (a significant linear effect) in research interest (species h-
index) with conservation status (i.e., for more endangered mam-
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Figure 1: Species h-index of mammals. Panel (A) shows 34 mammals with h = 100 or more, representing 6 different orders marked by dots of different
colors. Figure in the inset shows the distribution of species h-index of all mammals, with the species scoring above h = 100 or more marked by the red
box. Panel (B) shows the mammals with h = 100 or more but removes domesticated species, with 17 species left.

mals). Collectively, these quadratic and linear effects indicate
that some endangered species may enjoy higher species h-indices,
such as the lion (Panthera leo) and the orangutan (Pongo pygmaeus)
(Fig. 1).

We also found that species h-index is positively related to in-
creasing body mass (Fig. 4A). These findings could jointly indi-
cate that larger mammals that are less endangered could be at-
tracting more research attention than smaller mammals that are

severely endangered. Since taxa with larger mammals, such as the
big cats and African megafauna, are typically considered more
charismatic [8, 46], larger mammals may receive more research
interest than smaller mammals, regardless of whether or not they
are threatened (Fig. 3B). We found that taxa with smaller mam-
mals in the IUCN Red List categories “Endangered” and “Critically
Endangered” were likely to have slightly lower species h-indices.
This indicates a lack of research focus on smaller species, espe-
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A

B

Figure 2: The changes in mammalian literature from 1940 to 28 April 2021. (A) The number of publications per year for 30 mammalian orders and the
proportion of species per order from the collated mammalian data set represented by the doughnut chart, and (B) change in the frequency of
publications on 30 mammalian orders present in the data set. Total number of mammalian species analyzed is 7,521.

cially those endangered, possibly because they are rarer in the
wild and comparatively harder to research.

High research interest with domestication and
phylogenetic relatedness
Domesticated species were among the top ranks of mammals
with the highest species h-indices (Fig. 1A, Fig. 4D). Mammals with
human uses documented also had higher species h-indices than
species with no documented human uses (Fig. 4C). However, some
species lack documentation on human uses because the data on
human uses are patchy and not reliable for locally used species.
The strong focus on pets and livestock animals can be explained
by their global proximity to humans as well as our needs and pref-
erences. Among all mammals on earth, wild mammals make up
only 4% of the total mammalian biomass, while humans and live-
stock combine to form the other 96% [50], and this corresponds
with their widespread occurrence due to the globalization of a
small number of animal husbandry systems [51]. Our need to
make our animal use more efficient has clearly driven high vol-
umes of research on these animals.

For example, the literature on cattle or sheep can have contri-
butions and interested readers from all over the world. The broad

readership creates academic rewards for researchers and thus
positive feedback toward an ever-expanding literature on these
animals. In contrast, the research on the grizzled tree-kangaroo,
a vulnerable wild species, can only be done on New Guinea and
surrounding islands, severely limiting both the pool of poten-
tial researchers and potential readers of that research. Thus, not
only is it financially and logistically difficult to research grizzled
tree-kangaroos, but the readership and academic rewards for do-
ing research in species without any direct human uses are very
limited.

We also found phylogenetic signals in species h-indices (Ta-
bles 2 & 3), meaning some taxonomic groups usually had higher
h-indices than others (Fig. 1). Many livestock animals are phylo-
genetically related, such as the pig (Sus scrofa), the sheep (Ovis
aries), and the cow (Bos taurus) (Fig. 1A), all of which belong to
the order Artiodactyla. Furthermore, several primates had rela-
tively high species h-indices compared to those from other taxa.
Indeed, when we removed the domesticated species, around 65%
of the species with h = 100 or more were primates (Fig. 1B). This
finding strongly supports the anthropomorphic stimuli hypothe-
sis [11], where humans tend to be more attracted to species that
are phylogenetically similar to us.
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Figure 3: Centroids of global distributions of 4,744 mammalian species. (A) The distribution of nonthreatened species listed as “Least Concern”. (B) The
distribution of threatened species listed as “Vulnerable”, “Near Threatened”, “Endangered”, “Critically Endangered”, and “Extinct in the Wild”. The
species’ corresponding h-index values are illustrated by dot color.

Geographical bias toward species in developed
countries
We found that mammals with higher species h-indices were con-
gregated in clusters centered at the temperate latitudes (Fig. 3,
Fig. 4B). Some of these locations—in the United States, Europe,
and Australia—are regions with high gross domestic product val-
ues, GDP [52], characteristic for developed countries. Not only
are scientists in developed countries able to carry out more re-
search activities with better funding, but they have better access
to the infrastructure, such as laboratories, transport, and equip-
ment. Higher education is also better implemented in these re-
gions, which is largely lagging in developing countries [53, 54].
Developing countries often require even more research funding
to compensate for the scarcity of resources [55]. Since developed
countries dominate global publication output [56], the geograph-
ical biases revealed in our analyses therefore reflect the research
interests of scientists in wealthier countries.

Academic preferences toward certain mammal species also
suggest that convenience is often prioritized. This trend is evident
in Fig. 3, where species near the tropics had much lower species h-

indices than those in temperate zones, regardless of their extinc-
tion risk. Such preference toward species in the temperate zone
is not unique to Mammalia. Scientific literature on species across
all taxa, both vertebrates and invertebrates, is biased toward the
temperate environment [57]. This is alarming given that 55% of
species in the tropics are at risk of local extinctions from climate
change, which is higher than that of temperate species, at 39%
[58]. At the same time, tropical regions are biodiversity hotspots
because of their high species richness [59]. However, considering
that funding in science is often limited, projects that yield the best
results with the lowest cost may receive more resources and sup-
port.

Potential limitations and future perspectives
This study has 4 major limitations. First, the data sources included
varying lists of mammals with available information, resulting in
missing values in some of our predictors (body mass, latitude, and
IUCN Red List status) (Supplementary Fig. S1). Although this issue
was mitigated by imputing values, the results of our study would
be more reliable if complete data were available. Further, some
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Figure 4: Relationship between predictor variables and species h-index values. (i) (A) Species average body mass (n = 5,158 species, fitted curves
represent 50% quantile for each clade). (B) Median latitude of species geographical distribution (n = 4,435 species, fitted curve from generalized
additive model [GAM] with shaded gray area representing 95% confidence interval; density bar on top of the plot illustrates the number of species at
each latitude). (C) Human use categories (n = 7,521, No documented use = 6,124 and Use documented = 1,397). (D) Domestication status (n = 7,521
species, Domesticated = 12, Partially domesticated = 136, and Wild = 7,373). (E) IUCN Red List status (n = 5,584 species, Least Concern = 3,152, Near
Threatened = 340, Vulnerable = 530, Endangered = 512, Critically Endangered = 208, and Extinct in the Wild = 2). (F) Google Trends index summed for
each species (n = 7,521 species, Google Trends index > 0 = 1,323, and Google Trends index = 0 = 6,124 species). Box plots in (C), (D), and (E) show the
median, 25th and 75th percentiles, and lower and upper extremes. (ii) Showing the same data as (i), except each species is colored according to their
domestication status.
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Table 2: Summary of statistical results from the Bayesian Gener-
alized Linear Mixed Model (BGLMM)

Estimate Mean
95% Credible
interval (CI)

Fixed effects
Intercept 1.310 −0.119, 2.743
log10(body mass) 0.097 0.037, 0.155
Latitude (absolute value) 0.022 0.019, 0.025
IUCN Red List status

(first-degree polynomial)
−16.397 −19.323, −13.569

IUCN Red List status
(second-degree polynomial)

2.759 0.323, 5.206

Human use 0.268 0.166, 0.371
Domestication status −0.376 −0.547, −0.206
log10(Google Trends) 0.490 0.457, 0.522

Random effects
Phylogeny 1.601 1.080, 2.230
Nonphylogeny 0.807 0.745, 0.871
Phylogenetic heritability (H2) 0.637

(∗0.642)
0.000, 0.660

(∗0.516, 0.660)

∗Phylogenetic signal after removing 1,124 species (20.4%) from the tree that
showed no signals.
The distributions here follow the distributions stated in the hypothesis.

Table 3: Summary of statistical results from the Bayesian Gener-
alized Linear Mixed Model (BGLMM)

Estimate Mean
95% Credible
interval (CI)

Fixed effects
Intercept 0.149 −1.163, 1.451
log10(body mass) 0.105 0.043, 0.165
Latitude (absolute value) 0.022 0.019, 0.025
IUCN Red List status

(first-degree polynomial)
−16.539 −19.453, −13.692

IUCN Red List status
(second-degree polynomial)

3.021 0.581, 5.469

Human use 0.277 0.171, 0.382
log10(Google Trends) 0.501 0.469, 0.534

Random effects
Phylogeny 1.573 1.055, 2.209
Nonphylogeny 0.818 0.755, 0.882
Phylogenetic heritability (H2) 0.626

(∗0.633)
0.000, 0.652

(∗0.510, 0.653)

∗Phylogenetic signal after removing 1,124 species (21.0%) from the tree that
showed no signals.
The distributions here follow the distributions stated in the hypothesis, ex-
cept we removed domestication status and domesticated and partially domes-
ticated species.

species may have been dropped from the analyses as their bino-
mial names were spelled differently from the current consensus
name. Although we attempted to incorporate synonyms and re-
move species that went extinct during the prehistorical and his-
torical times, some synonyms with different spellings and extinct
species might still be present in the data set. This can potentially
explain why the sample size of this study is 7,521 species of mam-
mals, much higher than Burgin et al.’s [60] resolved list with only
6,495 species. The issue of unresolved taxonomy is likely going to
affect similar studies that attempt to gather high volumes of data
for multiple species from other taxa [61].

Second, we used the h-index [26] as a measurement of research
interest since it takes into account both number of publications
and numbers of citations. However, there are other similar indices

that can be used to quantify research output and influence, in-
cluding the h5 index, m-index, and i10 index. The h5 index is the h-
index of publications that were published in the past 5 years [62].
The m-index is the h-index divided by the number of years since
the first publication [26], which directly scales for time (Supple-
mentary Fig. S8). Indirectly, the h-index can also indicate the time
dimension, assuming that more time associates with more pub-
lications and more citations. The i10 index is the total number of
articles with 10 or more citations; it is currently used by Google
Scholar [63]. Future studies can compare these indices and inves-
tigate how they differ with specieshindex R package, which can cal-
culate these other indices.

Third, we used species h-index here to characterize the distri-
bution of research interest across mammalian species. More re-
search interest does not inform us on the kinds of research that
has been done for a given species. Text mining could be used
on full-text publications to single out studies on a given topic
(e.g., conservation, behavior, ecology, or biomedical use) in fu-
ture studies, although such an endeavor would require access to
full texts.

Finally, although a proxy for general interest in species, pres-
ence in Google searches, was a strong and statistically signifi-
cant predictor of species h-index (Fig. 4C, Supplementary Table 2),
members of the public, in general, are unlikely to use binomial
names of species, which we used in this study. We decided against
the use of common names for our analyses as many species have
multiple common names and many common species names are
often used the name of products or companies, such as “Tiger Cor-
poration”, which is a Japanese manufacturer of household prod-
ucts, and our searches would result in very messy data. Therefore,
we require a better proxy for quantifying public interest in differ-
ent species.

Conclusion
This study has quantified species h-index for all available mam-
malian species as a case study and asked meta-scientific and
biological questions. We have elucidated the current patchiness
and biases in the mammalian research landscape using poten-
tial drivers of such biases that have been hypothesized before, but
perhaps at the largest and finest scale than previously done. More
importantly, we have demonstrated potential of addressing meta-
research and biological questions by combining available online
data sets and species h-indices calculated from a bibliometric
database. Therefore, future studies can ask a rich set of similar
and extended questions to quantify the research landscape of any
taxa.

Data Availability
The source code of this article can be found on GitHub [30] and
the data can be found on Zenodo [31, 32]. Additional information
is available at the end of the article as supplementary material. An
archival copy of the data sets and GitHub Repository is available
via the GigaScience database, GigaDB [64].
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Additional Files
Supplementary Fig. S1. Summary of the data collected and treat-
ments assigned for analysis. Completeness of data is the propor-
tion of available data out of n = 7,521.
Supplementary Fig. S2. Graphical explanation of the h-index. The
h-index is obtained by ranking the citations of each paper in de-
scending order and then finding the number of papers (h) with h
number of citations. The sixth most cited publication has been
cited at least 6 times, as indicated by the blue dotted lines. Hence,
the h-index is 6.
Supplementary Fig. S4. Frequency of species with each species
h-index. nall = 7,521, nh = 0 = 2,426.
Supplementary Fig. S5. Distribution of individual species h-index
for all IUCN Red List categories. Box plots show the median, 25th
and 75th percentiles, and lower and upper extremes.
Supplementary Fig. S6. Distribution of individual species h-index
for all human use categories. Box plots show the median, 25th and
75th percentiles, and lower and upper extremes.
Supplementary Fig. S7. Phylogenetic tree of 5,497 mammalian
species included in the analyses. Five major clades are shown in
different colors. Silhouettes representing the top 9 mammals with
the highest species h-index.
Supplementary Fig. S8. Species m-index of mammals. The plot
shows the mammals with m > 1, representing 9 different orders
marked by dots of different colors. Figure in the inset shows the
distribution of species m-index of all mammals, with the species
scoring above m > 1 or more marked by the red box.
Supplementary Table S3. Variance inflation factors of the moder-
ators from the quasi-Poisson generalized linear model (GLM).
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