
Escherichia coli transcription factors of
unknown function: sequence features and
possible evolutionary relationships
Isabel Duarte-Velázquez1, Javier de la Mora2,
Jorge Humberto Ramírez-Prado3, Alondra Aguillón-Bárcenas1,
Fátima Tornero-Gutiérrez1, Eugenia Cordero-Loreto1,
Fernando Anaya-Velázquez1, Itzel Páramo-Pérez1,
Ángeles Rangel-Serrano1, Sergio Rodrigo Muñoz-Carranza1,
Oscar Eduardo Romero-González1, Luis Rafael Cardoso-Reyes1,
Ricardo Alberto Rodríguez-Ojeda1, Héctor Manuel Mora-Montes1,
Naurú Idalia Vargas-Maya1, Felipe Padilla-Vaca1 and Bernardo Franco1

1 Biology, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato,
Guanajuato, México

2 Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional
Autonoma de Mexico, Mexico City, México

3Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A. C., Mérida, Yucatán,
Mexico

ABSTRACT
Organisms need mechanisms to perceive the environment and respond accordingly
to environmental changes or the presence of hazards. Transcription factors (TFs) are
required for cells to respond to the environment by controlling the expression of
genes needed. Escherichia coli has been the model bacterium for many decades, and
still, there are features embedded in its genome that remain unstudied. To date, 58
TFs remain poorly characterized, although their binding sites have been
experimentally determined. This study showed that these TFs have sequence
variation at the third codon position G+C content but maintain the same Codon
Adaptation Index (CAI) trend as annotated functional transcription factors. Most of
these transcription factors are in areas of the genome where abundant repetitive and
mobile elements are present. Sequence divergence points to groups with distinctive
sequence signatures but maintaining the same type of DNA binding domain. Finally,
the analysis of the promoter sequences of the 58 TFs showed A+T rich regions that
agree with the features of horizontally transferred genes. The findings reported here
pave the way for future research of these TFs that may uncover their role as spare
factors in case of lose-of-function mutations in core TFs and trace back their
evolutionary history.

Subjects Bioinformatics, Evolutionary Studies, Microbiology, Molecular Biology, Mycology
Keywords Transcription factors of unknown function, Mobile elements, Sequence codon bias,
Synteny, Escherichia coli, Structural features

INTRODUCTION
The Escherichia coli genome was sequenced and published in 1997 (Blattner et al., 1997),
describing the total coding capacity of this organism and positioning this bacterium as a
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model organism for prokaryotic cells. With the E. coli genome sequence available,
thousands of published studies have assessed this organism’s physiology. The E. coli K-12
genome comprises 4.6 Mbp with a coding capacity of 4,501 genes, 4,284 protein-encoding
genes, 89 tRNAs, 22 rRNAs, 58 regulatory RNAs, 36 other RNA molecules, 186
pseudogenes, and 1,264 genes of unknown function (Karp et al., 2018). Studying genes of
unknown function, although complicated, renders an important step towards genome
reduction by synthetic biology means in microbial organisms (Martínez-García & de
Lorenzo, 2016).

Transcription factors (TFs) are the key elements for regulating spatiotemporal gene
expression and adapting to environmental cues. These proteins are trans-acting factors
that contain a DNA-binding domain and either a domain that senses a signal or allows
them to interact with the RNA polymerase (Seshasayee, Sivaraman & Luscombe, 2011).
TFs act either globally or locally. In the first case, the TF can regulate several genes, thus,
several cellular functions, or in the latter case, a small number of genes (Seshasayee,
Sivaraman & Luscombe, 2011). There are discrepancies in the total number of TFs present
in E. coli, but thus far, 210 TFs are annotated, 58 are of unknown function (Karp et al.,
2018). In the EcoCyc smart tables, there are 249 annotated TFs (http://regulondb.ccg.
unam.mx/menu/download/computational_predictions/files/TF_predicted.txt) rendering a
broad regulatory repertoire. Key questions regarding the TFs of unknown function are: Are
they real TFs? DNA-binding experiments support this. Also, why some of the few
characterized TFs of unknown function are differentially transcribed in various
conditions? What could their evolutionary origin be?

In bacterial evolution, acquiring genomic island is a central topic, especially the transfer
of pathogenicity-associated genes (Desvaux et al., 2020). One of the best-studied gene
transfer examples is phage-mediated, which ultimately can lead to pandemic strains
(Tassinari et al., 2020). Therefore, the study of genome dynamics takes a central spot in
potentially pathogenic organisms.

Genomic islands contain special features, such as a lower G+C content, the presence of
phage genes in the vicinity of virulence genes, and the presence of insertion sequences or
repeated sequences. Genomic islands with particular functions such as metabolic,
symbiotic, or the resistance to certain environmental insults and tRNA loci (da Silva Filho
et al., 2018). But little attention has been focused on genes in the genome that may be
related to novel functions acquired by horizontal transfer.

One example of this mechanism is the transcription factor GmrA, a horizontally
acquired gene in E. coli O157:H7. This gene controls flagella synthesis by interacting with
the promoter sequence of fliA and the sigma factor of the RNA polymerase (Yang et al.,
2018). This suggests that some TF may be acquired horizontally, but the focus has been
centered on their presence in pathogenicity islands.

Almost the majority of the TF in E. coli K-12 has been recently analyzed for their
binding activity to DNA and the rest of the TFs of E. coli by gSELEX analysis (Ishihama,
Shimada & Yamazaki, 2016). In some instances, the binding of TF plays an anti-silencing
role, and in others depend on ligands for gene activation (Ishihama, Shimada & Yamazaki,
2016). Recently, the hierarchy of TF showed that the least minority of them bind to single
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targets, and a hierarchy has been proposed, from the minority as single target regulators,
local regulators, global regulators, and nucleoid-associated regulators. Also, some of the
TFs are located in prophages. Shimada et al. (2021) show that they may become active in
regulating host genes, and host TFs may, in turn, also regulate prophage target genes.
One key aspect that may support this is the estimation of the Codon Adaptation Index or
CAI (Puigbò, Bravo & Garcia-Vallvé, 2008). The CAI value helps evaluate the impact on
the preference for synonymous codons, how selection has affected the codon usage, and
ultimately renders a sequence with a higher preference for translation. Strong biases in this
value are accompanied by variation in G+C content, suggesting that certain genomic
modules or genes may have been acquired horizontally as reported for viral genes adopting
the codon usage of the host cell (Sharp & Li, 1987; Puigbò, Bravo & Garcia-Vallvé, 2008).

The features of TFs of unknown function have been poorly analyzed. Our goal is to
analyze the sequence and structural features of TFs of unknown function to uncover the
following: generate a hypothesis of their role and origin, address structural signatures for
their physiological function, and datamining to assess their expression during different
conditions.

In the present study, 58 TFs of unknown function have sequence features that stand out.
Of the total of these TFs in E: coli, 14 are located in prophages, six of unknown function.
They contain differences in sequence or structural elements that are conserved among
other TFs of unknown function, not only constraint to the family previously identified in
the genome annotation. The Codon Adaptation Index (CAI) of all 58 TFs analyzed
showeds approximate values to those from annotated and functional TFs. Still, the G+C
content in the third position of each codon varies greatly. Analysis of TFs of unknown
function showed that they had predicted structural similarities, not confined exclusively to
the DNA binding domain. Additionally, microarray data mining shows that all TF
analyzed here show expression. Many of them correlate with STRING functional
predictions and even show a putative network between them, suggesting a role in cell
physiology.

MATERIALS AND METHODS
Sequence retrieval
The overall workflow followed in this work is summarized in Fig. S1. Protein and nucleic
acid sequences were retrieved from KEGG database (Kanehisa & Goto, 2000), using the
accession numbers listed by Ishihama, Shimada & Yamazaki (2016). Also, Gao and
colleagues have studied the TFs of unknown function DNA-binding sites (Gao et al., 2021)
Here, focus on the TFs reported by Ishihama, Shimada & Yamazaki (2016) since they
confirmed the DNA binding sites of these TFs throughout the genome by Systematic
Evolution of Ligands by EXponential enrichment (SELEX), and the same group has carried
subsequent work.
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Sequence analysis
All 58 TFs were localized in the genome of E. coli. Highlighting the position of palindromic
repeats, mobile elements, and prophage elements was done with CGView (Grant &
Stothard, 2008).

Sequence comparison and analysis were carried out with Clustal Omega (Sievers et al.,
2011) using five Iterations and other options in the default settings. The result was
confirmed using MEGA.

Protein structure models
Protein structure prediction was conducted using AlphaFold2 (Jumper et al., 2021) with
the default options, using the API hosted at Söding lab based on MMseqs2 server (Mirdita,
Steinegger & Söding, 2019), generating five models per protein, using the most accurate for
structural alignment (see below). Complementary reference structures were retrieved from
the AlphaFold2 database at https://alphafold.ebi.ac.uk/, hosted by the European
Bioinformatics Institute. These models are indicated in the figures with the corresponding
accession number of this database. Model confirmation was done using the recently
deposited structures of the E. coli proteome and using verify3D server (Bowie, Lüthy &
Eisenberg, 1991; Lüthy, Bowie & Eisenberg, 1992). All models passed the quality control
threshold. Reference annotated and functional TFs were downloaded from the AlphaFold2
database. In the case of the Xre-family, DicA was used for structural comparison
(AlphaFold2 database accession AF-P06966-F1).

Protein models’ structural alignment was conducted with RaptorX (Källberg et al., 2012;
Källberg et al., 2014) and mTM Align using the default options (Dong et al., 2018a, 2018b).
Structural alignments showed a Root-mean-square deviation (RMSD) between 1.22 and
5.24. No relevant differences were observed with either platform. Visualization of protein
models for obtaining individual images arranged as in structural alignments was
conducted with PyMOL (Schrödinger & DeLano, 2020). A rainbow color scheme and
cartoon representation were used to assess the localization of the N-terminal (blue) and
C-terminal (red) ends.

Sequence motif discovery
For assessing conserved and potentially unique sequences, amino acid sequences were
analyzed with GLAM2 using the default options (Frith et al., 2008). The best score
predicted motif was mapped and identified in the protein sequences using MAST using the
default options (Bailey & Gribskov, 1998). Manually, each sequence isindicated with the
family type they are annotated.

For promoter sequence analysis for A+T rich sequence stretches, 400 bp sequences plus
the ATG for each gene were downloaded from KEGG (Kanehisa & Goto, 2000). Then, the
sequences were analyzed with GLAM2 using the default options. The highest score motif
was mapped against all promoter sequences using MAST with the default options.
Manually, each sequence is indicated with the family they are annotated. Also, the best
score motif was scanned against known TFs binding sites using Tomtom with the default
options (Gupta et al., 2007).
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Additionally, promoter sequence prediction was conducted using two tools. One was
NNPP using a cutoff of 0.8 (Reese, 2001). The second tool was PePPER (University of
Groningen, Groningen, The Netherlands), a web server to predict prokaryote promoter
elements and regulons (de Jong et al., 2012). The analysis with PePPER was conducted with
the default options.

Sequence composition analysis
The nucleotide sequence of each TF, along with annotated and functional TFs were
analyzed for G+C content at the third position of each codon. The expected Codon
Adaptation Index (CAI) was estimated using the E-CAI webserver with the default options
(at http://genomes.urv.es/CAIcal/E-CAI) (Puigbò, Bravo & Garcia-Vallvé, 2008). This tool
renders a statistically significant CAI value by comparing the G+C content against the
normalized CAI value calculated by the quotient of the CAI of a gene and its expected
value. This tool provides a better statistical analysis to find whether a gene is biased only to
mutation or a true codon usage adaptation. The data were plotted using Microsoft Excel by
plotting only the %G+C at the third position vs. the normalized CAI value or ordered from
the lowest to the highest CAI value and plotted separately. As a comparison standard, the
same parameters were estimated for 58 annotated and functional TFs, i.e., those with
known functions.

Gene location and putative interacting partners
Synteny and gene context was analyzed for each TF using GeConT 3 webserver with the
default options (three neighboring genes upstream and downstream for each query)
(Abdala, Ciria & Merino, 2008). Each hit was confirmed by Blast analysis with the default
options and non-redundant sequence search (Zhang & Madden, 1997), for assessing true
homology of each hit in bacteria different from E. coli. Sequences showing insertions,
different sequences, or structural variations were retrieved and further analyzed.

Interacting or functional partners for each TF were assessed with STRING with the
default options (von Mering et al., 2005; Franceschini et al., 2013). A complete list for each
TF is provided in File S3, containing the details of the co-occurrence or co-expressing
partners for each TF. Also, the full list of the TFs analyzed in the present work were
analyzed by STRING to discover potential functional relationships. It was analyzed by
STRING to find potential functional relationships among them.

Gene expression data mining
The 58 TFs analyzed were screened in the GenExpDB online webserver hosted by
Oklahoma State University (at https://genexpdb.okstate.edu/databases/genexpdb/) to
browse the data of 216 data sets containing 1,292 microarray experiments of E. coli. Since
published datasets were analyzed differently and the GenExpDB contains normalized data,
the data cannot be re-analyzed from raw data, or re-scaled, the datasets from different
studies cannot be compared quantitatively, only qualitatively with the provided data. Thus,
we selected the data from microarrays that contain contrasting experimental conditions,
such as the expression of a small RNA involved in the iron response, three strains adapted
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to high temperature (41.5 �C) and a time course of different stressing conditions, for small
RNA (RyhB) iron response (Massé, Vanderpool & Gottesman, 2005); the expression
analysis of three temperature adapted strains (Riehle et al., 2003); and the analysis of four
stressing conditions using a time course (Jozefczuk et al., 2010). The data was collected
from these microarrays, including the data for LysR, AraC, and GntR for comparison. Data
were analyzed by heatmapper (Babicki et al., 2016). The data collected from each condition
for each TF analyzed here was plotted using the average linkage clustering method and
Spearman Rank Correlation for distance measurement. Also, from GenExpDB other
examples were analyzed. The 58 TFs analyzed here that showed either up or
down-regulation were also considered also a,correlation with STRING predictions. Only
some examples are shown, but many TFs showed regulation in various conditions.
The data is shown in Fig. S7 and in File S2 the reference for each experiment and the detail
of each experimental condition where regulation was observed in each microarray
experiment.

RESULTS
The nature of a TF is determined by the DNA-binding domain and the presence of a
regulatory domain (Iyer & Aravind, 2012) that links the TF to a particular cellular
function, ligand, or response to an environmental cue (Browning, Butala & Busby, 2019).
In Fig. 1, we show a schematic representation of the relevant features of TFs. In Fig. 1A we
show that TFs activity depends on two main domains, a DNA-binding module, and a
ligand or regulatory module. The outcome of the TF activity may depend on ligands,
covalent modifications such as phosphorylation, the binding of another protein partner or
the subcellular location, therefore resulting in the repression or the activation of target
genes. In Fig. 1B the prototypical structure of a TF is shown. PurR, a GalR/LacI

Figure 1 Transcription factors in bacteria are proteins mainly with two domains. In (A), TFs activity depends on the location or accessibility to
the target cis sequence, the binding of a partner protein, and the binding of ligands or covalent modifications such as phosphorylation. Once
activated, most TFs dimerize and bind to target sequences in the vicinity of the core promoter sequence that either repress or activate transcription.
In (B), an example of a typical TF shows the DNA-binding domain and the regulatory domain, in this case, a ligand-binding domain for
hypoxanthine. The protein shown here is PurR, a LacI-family member (PDB accession number 2PUB) (Schumacher et al., 1994).

Full-size DOI: 10.7717/peerj.13772/fig-1
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familyGalR/LacI family member, contains a canonical HTH DNA-binding domain and a
regulatory domain that, upon binding of the effector (hypoxanthine and guanine), allows
the conformational change that permits DNA binding (Schumacher et al., 1994).

Previously, Iyer & Aravind (2012) reported that the number of TFs correlates with the
genome size, Posing a more complicated task in determining the relevance and function of
many TFs. The number of TFs of unknown function in E. coli requires further study to
assess if they are real TFs truly functional. There are 58 TFs in this category for which
binding sites have been determined experimentally (by SELEX) and that are scattered
throughout the genome (Ishihama, Shimada & Yamazaki, 2016).

TFs of unknown function sequence analysis
The sequence of the 58 TFs of unknown function reported by Ishihama, Shimada &
Yamazaki (2016) were selected, and their sequence features were analyzed based on
similarity and structure.

Figure 2A shows that TFs of unknown function are split into 13 distinctive groups in the
phylogenetic tree. Ancestral nodes can be identified for some of the groups (indicated with

Figure 2 Sequence and structural features of 58 TFs of unknown function.When comparing all transcription factors, homology is focused on the
DNA binding domain. To prevent bias, sequence comparison was carried out using a guide tree. After five iterations using Clustal Omega, we
identified clusters of proteins unrelated to them and clusters of closely related protein sequences. Identified ancestral nodes are indicated with a red
arrow. AlphaFold2 models were used for structural comparison to find homology beyond the DNA binding domains using RaptorX (Källberg et al.,
2012, 2014) to facilitate common structural cores. Names are placed just beside the protein on each alignment and indicated with an arrow. Refer to
Fig. S1 for each protein predicted structure in the rotation as shown in the alignment for easier comparison. In the case of groups 1, 2, and 3,
�indicates an overall comparison with the most outlier protein (YgfI) is presented in Fig. S2. Full-size DOI: 10.7717/peerj.13772/fig-2
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red arrows), suggesting that no strong bias is observed between family members. While
some clustering is observed for the rest of the groups, this is less evident than the observed
in the first clade. This suggests that even though TFs of unknown function are annotated to
particular families, more divergence than expected can be found between them.

Next, a structural comparison analysis was conducted to assess whether the groups had
limited structural conservation or if divergence was significant than those observed in
standard sequence comparison. The structural alignments were performed among the
members of each group of proteins from the phylogenetic analysis (Fig. 2B).

The alignments revealed that the proteins are diverse structurally. In more distant TFs,
diversification was more evident. Each alignment indicates only the conserved structure on
each set (Fig. 2) and can be traced to the representative TF that assigned the family for each
TF of unknown function, as shown in Fig. S2. In Fig. S3, the comparisons of the three first
groups are provided, including the outlier YgfI, and the three distinct positions of the
N-terminal region can be identified (DNA-binding domain).

The rest of the TFs show lower sequence and structural similarity even in small groups
such as the 12 and 13 groups, which should show closer homology between them. These
results collectively suggest that TFs of unknown function may be less prone to retain
characteristics from an ancestor and accumulate more variability. The structural features
indicate that the domain or domains involved in regulating the TF activity may diverge
more frequently than the DNA-binding domain, thus retaining the features that allow
classification to a specific family type.

In addition to e the actual variation observed in the structural comparisons, and a
structural comparison against each classification’s representative annotated and functional
TF family member was conducted. In Figs. 3A and 3B, the structural alignment of all TFs
was performed by each set of branches shown in Fig. 1.

In Fig. 3A, structural comparisons indicate evident similarity, especially against with the
TF that designates each family. All groups except for Xre, showed better structural
similarity than in Fig. 2 (RMSD values range from 1.22 to 4.5). Also, groups such as LysR,
RutR, and AraC, show more diverse spatial configurations than the parental TF (RMSD
values range from 1.22 to 2.1). For example, LysR TFs have three distinct conformations
for the N-terminal domain. In AraC-family, YijO contains an N-terminal domain that is
more divergent than the rest of the TFs of this group, suggesting a sensory role for this
domain in this TF.

When comparing the common core on each set, the similarity of each protein alignment
is lower in the first sets and higher in the more distant sets, as shown in Fig. 3B. This result
suggests that the TFs closely related to their parental TF have higher diversification than
those less divergent to their parental TF.

All 58 TFs were compared and analyzed for motif discovery using GLAM2 and then
searched for the best scoring motif using MAST to assess the possibility of sequence or
sequences that may be further conserved. In Figs. S4A (motif) and S4B (position), only one
best matching motif was found in some TF sequences, mostly near the N-terminal domain
where the DNA-binding domain is located. One exception, YgfI, is located near the
C-terminal domain and far from the DNA-binding domain (Fig. S4C). Belonging to the
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Figure 3 Structural features of TFs of unknown function contain strong similarities with bona fide TFs that determine the family
classification. (A) Structural alignments using mTM Align (Dong et al., 2018a, 2018b) show each transcription factor’s color code. The name
color indicates the TF on the alignment. Plot (B) has the same alignments shown in (A) but highlights the common core in magenta on each set.
Arrow indicates that the alignment was rotated to allow visualization of the common core. Name and AlphaFold2 database accession numbers
indicate reference TFs for each family. Full-size DOI: 10.7717/peerj.13772/fig-3
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LysR family the motif is found in ten TFs [YbhD (set 1), YnfL (set 1), YhaJ (set 2), YeeY
(set 2), YdhB (set 2), YafC (set 3), YcaN (set 3), YhjC (set 3), YgfI (between sets 3–4), YbdO
(set 8)]. Belonging to the GntR-family, three TFs were found [YdcR (set 6), YegW (set 6),
YihL (set 6-GntR)]. Three belong to DeoR-family [YjiR (set 6), YgbI (set 5), YihW (set 5)].
Two belong to RipR-family [YtfH (set 12), YfhH (set11). And one for LacI-family [YcjW
(set 13)], NagC-family [YphH (set 7)] and IclR-family [YagI, (set 10-IclR)].

The representative motif suggests that it is constrained to the TFs of unknown function
that belong to the most abundant families of transcription factors but is absent in the rest
of the TFs analyzed here. This feature may be related to other factors such as genome
position, horizontal gene transfer, or differences in sequence features that may regulate the
translation of each gene.

Sequence analysis for HGT traits
To test the idea that the coding sequence of each TF may be evolutionary divergent, %G+C
content in the third position of each codon and the normalized Codon Adaptation Index
(CAI) was calculated for TFs annotated and functional, and those of unknown function.
This analysis may allow finding whether a gene is biased only to mutation or if a faithful
codon usage adaptation exists; if so, some of the genes encoding for TFs of unknown
function may be on the verge of becoming functional or be fully functional.

In Fig. 4A, the analysis of %G+C content against normalized CAI showed clustering of
annotated and functional TFs (indicated with dashed lines, showing some outliers of both
kinds). Those of unknown function showed a more scattered profile and tended to bear a
lower %G+C content in the third position of each codon. This suggests an overall variation
in the %G+C content. Also, this result suggested that these TFs may have a more variable
CAI, thus having repercussions on their translation.

To further test this, CAI values were ordered from the lowest to the highest in annotated
and functional transcription factors and in the 58 TFs of unknown function. Then,
simultaneously plotted the %G+C variation at the third position. In Fig. 4B, the variation
in CAI values is in the same range for both types of TFs, contrary to the assumption made
by observing the clustering pattern. Still, the %G+C values differ significantly among TFs
of unknown function (indicated by a dashed line for comparison between the two groups).
TFs variations are in the range of 46.4–69.5%, while in the TFs of unknown function vary
between 22.1–83.3%. This was further verified using 15 LysR experimentally characterized
TF (Fig. S5), showing the same trend as the overall TFs shown in Fig. 4. In annotated and
functional.

Overall, this suggests that most of the LysR-family of TFs of unknown function may
show lower translational efficiency and accumulate more mutations, leading to a lower %G
+C content than the genome’s overall %G+C content. Also, those having higher
normalized CAI values may potentially be gaining functional roles in E. coli and are worth
further in vivo analysis.

Duarte-Velázquez et al. (2022), PeerJ, DOI 10.7717/peerj.13772 10/27

http://dx.doi.org/10.7717/peerj.13772/supp-5
http://dx.doi.org/10.7717/peerj.13772
https://peerj.com/


TFs promoter sequences show potential “promoter islands”
Previous reports indicate that regions enriched with A+T pairs may be responsible for
integrating foreign genes into the recipient bacterial regulatory network (Daubin &
Ochman, 2004). Also, the increased frequency of promoter-like sequences has been
recognized as a possible signature of HGT acquired genes (Huang et al., 2012).

Recently, experimental evidence of such events has been reported (Bykov et al., 2020)
and corroborated the hypothesis that several promoter sequences hinder RNA
polymerases’ activity by suppressing the expression of foreign genes. Also, the regions of
HGT genes result in accumulating A+T-rich regions and creating promoter-like elements.

To test this possibility, sequence motif discovery was conducted to prevent any bias of
real promoter sequences, using 400 bp upstream regions of all 58 TFs, including the ATG
sequence.

In Fig. S6, using GLAM2, we discovered two motifs or stretches rich in A+T that are
located in the 400 bp upstream of the ATG (panels A and C). The position of these motifs
and the family that each TF belongs to is shown in panels B and D. These results suggest
that most of the sequences analyzed had at least one predicted promoter.

Figure 4 %G+C content and normalized CAI suggest a bias in TFs of unknown function. (A) Comparison of %G+C at the third position against
the normalized CAI values of 58 TFs of unknown function (blue dots) and annotated and functional TFs (orange dots) as described in the Methods
section. Dashed lines were included to indicate the major cluster between annotated and functional TFs and those with unknown functions,
excluding two outliers of annotated and functional TFs. With the clustering observed for each dataset, in (B), the normalized CAI was ordered from
the lowest to the highest value (purple data points) and then plotted along with the %G+C content (red data points), indicating each TF. Horizontal
dashed lines were used to indicate the limits of normalized CAI values for annotated and functional TFs to facilitate comparison with the TFs of
unknown function. In the case of TFs of unknown function, the family that each one belongs is shown. The vertical dashed line indicates the
separation of TFs of unknown function from those with known regulatory roles. Full-size DOI: 10.7717/peerj.13772/fig-4
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For ycaN no promoter was found with NNPP, while PePPER found a sequence that may
function as a promoter in the negative strand. For ydaW, yfjR, and yidL no evident
promoter sequence was found. The rest contain at least one predicted promoter sequence,
while most of the promoter sequences containing the motif shown in Fig. S6A contains
more than one promoter sequence. The second motif (panel B) showed less in the TFs
analyzed, most had more than one predicted promoter sequence. Thus, the exceptions are
yihL, yahB, yphH, and ycnE, which lacks a precise promoter sequence. For motif 2 (panel
B), yfjR and ycaN lack a predicted promoter sequence, and yphH and yneL contain only
one promoter sequence.

Overall, the analysis shown in Fig. S6 suggests that some of the TFs of unknown
function may have been either acquired by HGT or are the result of gene duplication.

Expression patterns for the 58 TFs
To address if a role can be predicted for the TFs and their conservation across species,
synteny, STRING analysis, and microarray data mining were conducted.

First, we selected three microarray datasets that contain contrasting situations, the
expression of RyhB regulatory RNA, the effect of selective pressure at 42 �C (comparison
between adapted vs. ancestral strains), and a time course for different stresses (Massé,
Vanderpool & Gottesman, 2005; Riehle et al., 2003; Jozefczuk et al., 2010).

In Fig. 5, a heatmap analysis of the expression data retrieved from GenExpDB shows
that clustering is observed between TFs of unknown function. From the data, we note the
following:

First, for the effect of expressing the small RNA RhyB or the conditions tested in this
experiment, it is noted that most of the Tfs are repressed with some exceptions such as
YbhD and YgeK. In other instances, FeSO4 induces their expression such is the case of
YcaN, YeiL, and YjiR.

Second, in the temperature-adapted strains, strong expression in one or either of the
three adapted strains is observed for the comparison between the temperature-adapted
strain vs. the ancestral strain. Such is the case for: YafC, YgbI, YhjC, YihL, YiiF, and YieP.
For YegW, two temperature-adapted strains showed expression, but one showed
repression. In other instances, strong repression is observed, such is the case for: LysR
(included here as an external reference), YbaO (in one of the three strains), YbeF (in the
three strains) and YiaU. This suggests that some of the TFs may perform as either buffering
TFs during strong selective pressures or have a low expression profile that is activated
during selection.

Finally, the analysis of cold, heat, oxidative, and metabolic stress, using a time series of
experimental data, can lead to finding clusters of TFs that may show differential
expression. As shown in Fig. 5, sets of TFs are found with opposing expression patterns,
either for cold or heat stress for example. A trend can be found for some of the TFs
analyzed here but not as evident as found for cold or heat stress with oxidative and
metabolic stress. This suggests that these TFs form an underlying network of buffering TFs
that may become active depending on the selective pressure.
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In GenExpDB there is a compendium of 216 microarray data; in many instances, we
found specific experimental setups that showed strong regulation (either positive or
negative), suggesting that the TFs analyzed here have other regulatory conditions and, in
some instances, correlate with the STRING prediction.

The analysis of all microarray data is summarized in Fig. S7, where predicted synteny, if
present, is indicated for each TF. STRING relevant hits are indicated, and snapshots of the
microarray data indicating the reference and condition corresponding to each experiment
are included. In File S2, the reference for each microarray experiment, the description of
the microarray experiment, and the relevant expression data for the heatmap are provided.

The data shown in Fig. S7 regarding synteny is further detailed in File S3, where
information about the neighborhood in the genome of each gene and the flanking genes or
synteny registered in other organisms is provided. Also, in this file, STRING hits are
provided, emphasizing in each case if the hit is related to co-occurrence, co-expression, or
both. In most cases, the hits are irrelevant, a decisive conclusion cannot be drawn. The data
is summarized in Fig. S7.

The relevant observations drawn from the analysis shown in Fig. S7 are as follows:

Figure 5 Transcriptional datamining of the 58 TFs of unknown function. Heatmap of three microarray data covering the effect of RhyB
expression and iron induction, E. coli adapted strains to 41.5 �C, and four different stressing conditions ranging cold, heat, oxidative and metabolic
stress. Heatmap includes the clustering of the data using average linkage and Spearman Rank Correlation. For each experiment, the condition used is
indicated at the bottom. Dashed lines separate each dataset. The family for each TF is shown in the color code displayed on the right. Black arrows
indicate the position of three annotated and functional TFs (LysR, GntR and AraC). Full-size DOI: 10.7717/peerj.13772/fig-5
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First, YgeK and YneL are annotated as pseudogenes. Figure S8 shows snapshots of heat
maps from 216-microarray data (GenExpDB), indicating that YgeK and YneL are
expressed and regulated in many conditions.

Second, YneL showed an interesting synteny arrangement (Fig. S6) that was restricted
to E. coli strains. In Fig. S9, a snapshot of the genetic context of this gene shows that this
gene has two different domains. The gene has an extra domain annotated as a P-pilus
assembly protein and another where it is either annotated as a pseudogene or contains an
AraC-type DNA binding domain. Also, the flanking genes are different in several strains.
This feature was further analyzed, and AlphaFold2 modeling revealed that the BL21 YneL
indeed contains a domain strikingly like FimA. The models from DH10B strain and
MG1655 strains are similar but not identical. The AraC-type DNA binding domain is
located at the N-terminal portion of the protein. It is conserved when comparing the YnfL
model from MG1655 and BL21 strains (Fig. S10, structural alignment). Also, in the W
strain, the sequence shows low similarity in the C-terminal region, which once modeled
shows a remarkable difference (Fig. S10), suggesting that this TF may differ significantly in
E. coli strains others than the ones analyzed here. Similarly, YdaW also shows important
structural variation prediction regarding differences in sequence length in different strains,
for instance, the sequence in MG1655 vs. O55:H7 (Fig. S11). This suggests inter-strain
variation that may ultimately result in divergence.

Third, although little correlation was found between the STRING hits and the
expression data, there are cases where evident regulation is observed.

Fourth, TFs belonging to LysR-family have fewer expression data than the TFs from the
more distant groups, except for Xre-family TFs, which showed more defined roles.
The case of YiaG shows expression under different conditions, clear expression during
stress and during stringent response. In Fig. S8, a snapshot of all 216 experiments where
this TF has expression or repression under different metabolic conditions, RNA decay, and
growth conditions.

Lastly, some TFs were found to have fewer microarray data that supported that they
were expressed in a specific condition, except in different mutant backgrounds and in an
adaptative condition such as UV irradiated or temperature stressed adapted strains,
suggesting that in laboratory adaptation experiments, these TFs may become active by
accumulating mutations and thus becoming ‘rescue’ TFs (see for example YneJ and
reference [2] in File S2 and Fig. S6).

In the case of YfjR, no predicted promoter sequences are found. Nevertheless,
strong expression is observed in microarray datasets (Fig. S6). This DeoR transcription
regulator shows consistent activation during biofilm formation (Herzberg et al., 2006).
A mutant lacking this TF showed a 65% reduction in biofilm formation, suggesting
that this TF belongs to the group of TFs and effectors for biofilm formation.
For instance, YfjR, a CP4-57 prophage (location and information at https://ecocyc.org/
gene?orgid=ECOLI&id=G6685#tab=TU) derived TF may have belonged to a set of spare
TFs. The other TFs analyzed in this work that are located in prophages are: YdaW
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(https://ecocyc.org/gene?orgid=ECOLI&id=G7369#tab=TU), YbcM (https://ecocyc.org/
gene?orgid=ECOLI&id=G6302#tab=TU), YjhJ (https://ecocyc.org/gene?orgid=ECOLI&id
=G7913#tab=TU), YagA (https://ecocyc.org/gene?orgid=ECOLI&id=EG12338#tab=TU),
and YagI (https://ecocyc.org/gene?orgid=ECOLI&id=G6144#tab=TU). One special case is
YgeK, which is located near prophage derived genes (https://ecocyc.org/gene?
orgid=ECOLI&id=G7475#tab=TU).

Overall, the data collected in Fig. S7 and File S3, contains information for further testing
the phenotype of individual mutants of each TF analyzed here. Also, compelling data
suggests that the expressed genes in microarray and the promoter sequences data suggest
that these TFs may be buffering when losing annotated and functional TFs.

Genomic location of TFs
The analysis shown here of the 58 TFs, suggests a putative duplication or HGT origin.
Analyzing the genome elements near the TFs, several repeated sequences or mobile
elements may explain the bias in codon usage, differences in %G+C content in the third
position, and the presence of A+T rich sequences or an excessive number of predicted
promoters. In Fig. 6 and Fig. S12, the genomic location of each TF is shown, with the
comparison to the genomic map where mobile elements and repeated sequences are
located. Transcription factors of the LysR-family tend to be clustered, while the rest show
less relevant clustering.

By comparing the data presented by Scholz et al. (2019) related to the highest and lowest
transcriptional active regions of the E. coli genome, we found that most of the LysR-family
TFs are located in low expression regions of the genome. The GntR-family TFs are situated
in the highest transcriptional active region. Partially, YiaG is located between a low and a
high activity region. This observation correlates with the diminished transcriptional
activity found in the 216-microarray data analyzed. Also, as shown in Fig. 5, some of the
LysR-family TFs found to be active in artificially selected strains, such as
temperature-stressed adapted strains, become active under stressing conditions.
Noteworthy, they are located in less active genome regions (see Fig. 6).

The following genes that are present in these active regions showed high transcriptional
activity in microarray datasets: YafC (temperature adaptation and isobutanol usage), YjhJ
(activated in glucose to lactose or acetate to lactose shift), YtfH (activated in heat stress),
YidC (activated in heat stress), YijO (biofilm formation and transcription termination),
YihW (heat stress and glucose to lactose shift), YihL (temperature adaptation, reference 2
in File S2, also motif 1 (Fig. S6A) in promoter plus a single promoter sequence), YiiF
(transcription termination), YieP (temperature adaptation, reference 2 in File S2 and cold
stress), YidP (stress response and metabolism, also motif 1 (Fig. 5A) in promoter sequence
and four predicted promoters), YidL (biofilm formation). The silent regions are YiaU,
which is only active in transcription termination analysis using bicyclomycin and shows
strong activation in a genome-reduced strain (MDS42, reference 12 in File S2). YhaJ is also
silent in temperature adaptation strains (reference 2 in File S2) and metabolism during
glucose to acetate shift (reference 6 in File S2).
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The only exception regarding genome localization near highly transcribed regions is
YjiR (region II in Fig. 6B). YjiR showed repression in Wt and DksA deficient cells. Also,
YjiR is only active in cells treated with serine hydroxamate to generate amino acid
starvation (see reference 17 in File S2). It also contains motif 1 (Fig. S6A) and three
promoter sequences.

Only a couple of examples of these TFs were found to possess either A+T motifs
described in Fig. S6, suggesting that the positions in which these genes belong are related to
the active or silent regions of the genome.

The genomic location that is transcriptionally active (Scholz et al., 2019), also shows the
lowest content of mobile or repeated elements (Fig. 6 and Fig. S12).

The genomic map also suggests that independently of the position and GC skew, the
normalized CAI values and %G+C content in the third position may be independent of the
localization of the genome, supporting the hypothesis that these genes may be duplication
or HGT events. Finally, the TFs located in the higher transcriptional activity region of the
genome may be relevant examples for further experimental analysis.

DISCUSSION
An enormous effort has been conducted to achieve a complete image of the regulatory
network of transcription factors in the model organism E. coli. The complex regulatory

Figure 6 The genomic landscape of the 58 TF analyzed. In (A), G+C content and skew are shown, along with cryptic prophage and mobile
elements in the complete genome. Only the TFs are shown in (B), indicating the family that each TF belongs to.: Indicates the approximate regions
of high transcription rate and: indicates the lowest transcription regions according to Scholz et al. (2019). The list on the right of the figure suggests
the highest to the lowest value for active regions (:), and the repressed regions (:) indicate the lowest to the highest of the repressed areas.

Full-size DOI: 10.7717/peerj.13772/fig-6
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network comprises seven σ factors and ~300 predicted TFs (Ishihama, 2012). 270 TFs have
been purified and analyzed by systematic SELEX, using a careful and direct approach,
through the generation of a genomic library of small DNA fragments and purified proteins
to discover binding sites (Ishihama, 2012; Shimada, Ogasawara & Ishihama, 2018a). With
this approach, several targets have been identified and paved the way for assessing the role
of TFs in cell physiology and environmental responses. Obvious limitations include
knowing the exact combination of TFs and σ factors at a given moment or the lack of
certain TFs if others may render certain plasticity to bypass the regulatory voids.

The complement for this impressive achievement is the Keio collection, a set of single
in-frame deletion mutants that can serve as a platform for further assessing the role of each
TF (Yamamoto et al., 2009; Baba et al., 2006), with the need of obvious controls and careful
analysis due to polar effects (Mateus et al., 2021).

For example, the screening of such mutant collection uncovered the role of novel genes
involved in regulating swimming and swarming motility in E. coli (Inoue et al., 2007) or the
discovery of fluorophores that can be accumulated in the cytoplasm depending on the
deficiency of transporters (Salcedo-Sora et al., 2021).

The study of TFs or proteins of unknown characteristics can uncover novel functions,
such as the recently found role for PlaR (previously named YiaJ). PlaR main role is to allow
E. coli to tribe outside warm-blooded organisms, survive with plant-derived nutrients, and
form biofilms by regulating a limited but sufficient set of genes (Shimada et al., 2019).

The evolutionary aspect of TFs of unknown function
The evolution of the bacterial genome is a hot topic. Mainly because of the strong
relationship between the movement of pathogenesis-related genes and the origin of
virulence traits and thus, rendering E. coli as highly adapted pathogen to a myriad of
conditions and niches (Desvaux et al., 2020). Desvaux et al. (2020) described genomic
integration sites near tRNA genes, resulting in the presence of direct repeats. This is the
case for many regions in the genome where TFs are located, showing ‘scars’ of repeated
sequences in the neighboring genes or the presence of tRNA genes (File S3).

The surveillance of these events is relevant not only for epidemic purposes, like the one
reported by Tassinari et al. (2020), where a mobile gene (sopE) which acts as a guanine
nucleotide exchange factor that activates Rho-GTPases Cdc42 and Rac-1 in the host cells,
causing membrane ruffling. is a mobile genetic element. It is present in half of the species
of S. enterica subspecies I.

In the analysis shown here, the TF was found in some strains of E. coli annotated as
YneL. Still, three showed the inserted FimA homologous domain, which encodes for the
P-pilus assembly protein, pilin FimA. The analysis showed that YneL contained several
configurations according to the deposited sequence. The only study where the mutant for
YneL coding sequence reports no variation in resistance to ultrasound (Spiteri et al., 2017).
However, the authors do not discuss the reason behind using the mutant lacking this gene
or the mechanism that is derived from the resistance to this condition.
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The synteny analysis and the location of each gene revealed that many possess different
lengths, and most showed high synteny conservation (for example, those belonging to
LysR-family) to low conservation, as found for the lower groups in Fig. 2.

The only TFs studied here that have known targets are: YdcI (Total regulated genes: 2,
total regulated operons: 1 and total of binding sites: 1, total regulatory interactions: 1); YeiL
(Total regulated genes: 1, total regulated operons: 1 and total of binding sites:1, total
regulatory interactions: 1), and YhaJ (Total regulated genes: 1, total regulated operons: 1
and total of binding sites:1, total regulatory interactions: 1) (RegulonDB, Santos-Zavaleta
et al., 2019). Perhaps using a less stringent analysis, other weak targets may arise relevant to
their function. This also correlates with the low expression rates found in Fig. 5.

TFs structural analysis
Overall, the PDB contains 789 E. coli experimentally determined protein structures, but
with the implementation of AlphaFold2 and AlphaFold2 database (Jumper et al., 2021;
David et al., 2021), the assessment of structural features in unknown proteins is faster and
highly accurate and provides a starting point for future experimental approaches. Also, the
careful and human-monitored analysis should be taken to avoid misinterpreting the
predicted structure, especially in disordered regions (Ruff & Pappu, 2021).

In Figs. 2 and 3, the similarity of each TF is constrained to the DNA-binding domain
(N-terminal end), but once the structure is compared, we found structural features that are
highly conserved but shows differences in certain domains compared to the annotated and
functional family member TF that was used to assign the family membership. This
explains why in some instances, synteny is found in highly divergent organisms.

The structural analysis agrees that low normalized CAI sequences mainly belong to
LysR-family TFs and show a higher variation in %G+C content in the third position;
suggesting either HGT genes or duplicated genes exhibiting independent variation.
Strikingly, the active TFs showing defined functions may be associated with a more stable
genomic location showing different normalized CAI values but retain the %G+C on the
third position as for core genes.

TFs of unknown function are transcribed
The results regarding expression showed that the TFs of unknown function are transcribed
in a myriad of conditions. Those located in the lagging-strand tend to be more expensive
energetically speaking, consistent with the model that shows that active genes are located
in the leading strand. Those located in the lagging strand tend to be more expensive,
energetically speaking, resulting in mutational bias (Gao et al., 2017). It also correlates with
the highly expressed genes found in the areas of the genome with peaks of high expression
vs. low expression sites that are flanked by prophage or repeated sequences or mobile
elements (Scholz et al., 2019). Interestingly, the GLAM2 signature found in some TFs
correlates with the position in the genome of low transcriptional activity except for YihL
(GntR), YjiR (DeoR), YihW (DeoR) and YtfH (RipR) that are located in the highly
transcribed region.
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Perhaps many of the silent copies of TFs analyzed in the present study may be silenced
by H-NS due to the presence of A+T sequences in the promoter sequence (Lang et al.,
2007).

The findings presented here show that the genes encode TFs with variable sequence and
structural features correlate with the observation that HGT genes show low selective
pressure. These genes are expressed more in poor environments and are susceptible to
transcription-driven mutagenesis, depending on the growing conditions (Feugeas et al.,
2016).

TF landscape
Transcription factors vary greatly depending on the target sequences, from single targets
(Shimada, Ogasawara & Ishihama, 2018b) many and diverse binding sites and targets
depending on the nature of the bacterial organism (Flores-Bautista et al., 2020). Also,
bacterial genomes show diversity in all aspects, such as size, G+C content, gene
distribution, among others. For instance, in E. coli, the smallest genome belongs to the
BL21 strain (Lukjancenko, Wassenaar & Ussery, 2010). This points towards the need to
design analyses to assess the micro diversity in bacterial genomes (Touzain et al., 2010),
focusing on locus related to high mobility such as tRNAs and small non-coding RNAs
(Germon et al., 2007; Sridhar & Rafi, 2007).

The landscape of the TFs is also related to the essentiality of the genes. Finding new
conditions where any gene may be needed, the comparison of several strains is needed.
This demonstrates that the essentiality correlates with the epistatic effect of mobile
elements; resulting in the activation of genes that may not be essential under laboratory
conditions but are needed in the environment (Rousset et al., 2021). In the future, the
analysis of mutants lacking any of these TFs in strains different from the MG1655 may
render important information of the role of the TFs analyzed here, as described for GmrA
that in the O157:H7 strain controls the expression of flagellar genes (Yang et al., 2018).

STRING analysis with the 58 TFs studied here showed a network that contains mainly
TFs with fewer members in the overall TF families in E. coli. In Fig. S13, the network
comprises mainly TFs that are less conserved and belong to AraC, RutR, and, as expected,
the LysR-family due to its vast number of members. The consistency in the expression data
found in the time course analysis during cell stress (Fig. 5) correlates with YgfI, YfeD, YfeC,
YiaU, YfiE, and YddM, which seems to be functionally linked, as shown in Fig. S13.
Overall, the data in Fig. S13 suggests that the TFs of unknown function may constitute a
buffering regulatory network that may be functional during adaptation or when annotated
and functional TFs are missing or have deleterious mutations.

The observations suggest that using careful analysis, human monitored and manually
curated data (Méndez-Cruz et al., 2020), allows the discovery of novel features in proteins
that often are neglected due to the difficulty of designing experimental designs approaches
to discover gene function.

The analysis of TFs of unknown function has revealed interesting and novel features;
such as the case of YieP, which recently was demonstrated that this TF binds to intergenic
regions far from the regulatory regions. Lower global binding or binding in regions of
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genes with putative functions has rendered an interesting model for further research of
novel regulatory modes (Gao et al., 2018). Also, the most common binding site for YieP is
downstream of the RNA polymerase binding region, rendering an out-of-the-ordinary TF
(Gao et al., 2018).

With all the above, here we propose three scenarios for the origin of these TFs:
First, the CAI and %G+C suggest that many of the TFs of unknown function were

acquired horizontally but a long time ago. This hypothesis is supported when phylogenetic
reconstructions are done using the same 58 annotated and functional TFs. This is further
reinforced when a pairwise analysis is carried out and compared both sets of TFs (Fig. 7).
This indicates that both kinds of TFs are divergent, mainly because of differences in the
regulatory and DNA binding domains, which provide specificity to the ligands and DNA
sequences.

Second, if the transfer did occur, it may have been from bacteria phylogenetically close
to E. coli. This is supported by the synteny analysis, where most neighboring genes belong
to closely related bacteria, although adjacent genes are conserved in closely related bacteria,
and exceptions are observed.

Third, the challenging idea is that most of the 58 TFs of unknown function originated by
duplication and no selective pressures forced selected them to be functional. This is
supported when comparing the expression patterns found in Fig. 5. Most of the TFs of
unknown functions showed a clustering expression pattern under different conditions in
this analysis. Perhaps, the strains used in the lab have been so domesticated that the TFs of
unknown function have lost their ability to be expressed, or the activation signal is
something only found in the usual ecological niche that E. coli thrives. This suggests that
annotated and functional transcription factors may mask their activity. Also, the homology
between the two kinds of TFs is low (Fig. 7).

Figure 7 Global sequence comparison between the 58 TFs analyzed as annotated and functional or canonical TFs against the 58 TFs of
unknown function. Protein sequences were aligned using MUSCLE and then analyzed in Aligmentviewer. Pairwise identity 2D map was gener-
ated for each set; sequence order is given in File S4. In (A), a pairwise comparison between the 58 canonical TFs is provided. Clustering is observed
for each family. In (B), the comparison between the 58 TFs of unknown function is provided. In (C) overall comparison between TFs of unknown
function against TFs of known function. Scale indicates at 0 that 0% identity is found, and 1 indicates 100% identity.

Full-size DOI: 10.7717/peerj.13772/fig-7
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Further research is needed to address each TF studied here and its contribution to E. coli
cell physiology. In turn, this will shed lighton how effective genome reduction can be
achieved and whether any of these TFs are required as quasi-essential.

To address this, we now have a complete set of data sets with 17,000 genome-wide
binding maps that have provided integrated information to define functional modules and
pathways (Baumgart et al., 2021), discovering new functional roles of TFs and an increase
in DNA binding motifs in E. coli, that ultimately may serve as a powerful tool for future
research of the transcriptional landscape of this organism. We cannot rule out a novel
effect of metabolites that are now known that similarly drives genome structural
rearrangements as heterochromatin, mediated by Hfq (Beaufay et al., 2021), that can
ultimately displace TFs or generate structural impediments. This is relevant in the case of
the TFs analyzed here since the Hfq binding site is enriched in A+T-rich DNA regions.
Also, based on the recent finding that polyphosphate regulates Hfq, increasing prophage
and transposon mobilization occurs in the absence of this polyanion (Beaufay et al., 2021).

During the review of this manuscript, a recent paper described the role of YiaU (now
termed CsuR), that is required to produce membrane proteins of unknown function but is
involved in biofilm formation, complement and antibiotics sensitivity (Shimada et al.,
2022).
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