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Abstract

Background: Mutations in the DISC1 gene are strongly associated with major psychiatric syndromes such as schizophrenia.
DISC1 encodes a cytoplasmic protein with many potential interaction partners, but its cellular functions remain poorly
understood. We identified a role of DISC1 in the cell biology of primary cilia that display disease-relevant dopamine
receptors.

Methodology/Principal Findings: A GFP-tagged DISC1 construct expressed in NIH3T3 cells and rat striatal neurons localized
near the base of primary cilia. RNAi-mediated knockdown of endogenous DISC1 resulted in a marked reduction in the
number of cells expressing a primary cilium. FLAG-tagged versions of the cloned human D1, D2 and D5 dopamine receptors
concentrated highly on the ciliary surface, and this reflects a specific targeting mechanism specific because D3 and D4
receptors localized to the plasma membrane but were not concentrated on cilia.

Conclusions/Significance: These results identify a role of DISC1 in regulating the formation and/or maintenance of primary
cilia, and establish subtype-specific targeting of dopamine receptors to the ciliary surface. Our findings provide new insight
to receptor cell biology and suggest a relationship between DISC1 and neural dopamine signaling.
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Introduction

The disrupted-in-schizophrenia (DISC) genetic locus was

discovered as a balanced translocation segregating as a strong

risk factor for major psychiatric syndromes including schizophre-

nia, bipolar disorder and major depression [1,2]. Subsequent

studies have consistently verified the importance of one of the

genes disrupted by this translocation (DISC1). DISC1 has been

reproducibly linked to psychiatric disorders involving impairment

of cognitive function, particularly schizophrenia [3]. Further,

DISC1-mutant mice exhibit anatomical and behavioral deficits

that are generally consistent with DISC1-associated psychopathol-

ogy observed in humans [4].

Given these compelling genetic data, critical challenges

moving forward are to elucidate the cellular basis of DISC1

function under normal conditions, and to determine fundamen-

tal consequences of DISC1 disruption. These are areas of

intensive current investigation, and exciting progress has already

been made. Summarized very briefly, the present data suggest

that DISC1 functions in multiple cellular processes affecting

neural development and synaptic structure or activity [5,6].

Precise cellular mechanisms underlying these diverse effects,

however, remain largely mysterious. Based on a serendipitous

observation, we tested the hypothesis that DISC1 affects the cell

biology of primary cilia. Our results support such a link, and

reveal specific ciliary targeting of dopamine receptors implicated

in schizophrenia.

Results

DISC1-GFP localizes near the base of primary cilia
In the course of carrying out a distinct series of experiments, we

examined the localization of a GFP-tagged human DISC1 fusion

construct expressed in transfected NIH3T3 cells. Punctate concen-

trations of GFP-DISC1 were often observed near the nucleus, and

near the base of primary cilia marked by acetylated tubulin (Fig. 1A).

We observed a similar distribution of DISC1 tagged with a distinct

HA epitope rather than GFP (Fig. 1B). This distribution is consistent

with association of DISC1 with centrosomal components, as

reported previously [7,8]. Triple localization of DISC1 (green) with

the pericentriolar protein PCM1 (red) and acetylated tubulin

marking cilia (blue) verified proximity of DISC1 both to

pericentriolar components and the primary cilium (Fig. 1C and

D). Because a number of centrosome-localized proteins affect the

formation or regulation of primary cilia [9], we wondered if DISC1

plays any role in ciliary biology.

Depleting endogenous DISC1 results in loss of primary
cilia

To investigate this question, we first asked if depleting

endogenous DISC1 protein affected cilia number in NIH3T3

cells. To accomplish this, we identified two independent siRNA

duplexes producing reliable knockdown of endogenous DISC1

(Fig. 2A; scanning densitometry estimated .80% reduction in
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immunoreactive DISC1 protein). As a positive control, we verified

two RNA duplexes depleting the essential ciliary protein IFT88

(Fig. 2B).

Using the nuclear stain DAPI (blue) to identify individual cells,

and acetylated tubulin (green) to mark cilia, we observed primary

cilia on the majority of cells transfected with control (non-silencing)

Figure 1. Localization of DISC1-GFP near the base of primary cilia. (A) NIH3T3 cells transfected with DISC1-GFP were fixed and
immunolabeled for acetylated tubulin to mark primary cilia. An example of such a double-labeled cell is shown, with DISC1-GFP in green and
acetylated tubulin in red in the merged image. Arrow indicates indicates the concentration of DISC1-GFP observed near the ciliary base. (B) The same
experiment conducted using DISC1-HA. (C) Triple localization of DISC1-GFP, endogenous PCM1, and acetylated tubulin verifying localization of DISC1
in a centrosomal region near the ciliary base. (D) Merged image from the triple localization with DISC1-GFP in green, PCM1 in red, and acetylated
tubulin in blue. (E) The region indicated in panel D displayed at higher magnification. Scale bar, 10 mm.
doi:10.1371/journal.pone.0010902.g001
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siRNA duplex (Fig. 3A, top row of panels; a particular example is

indicated by arrow). In cells transfected with DISC1 siRNA, in

contrast, we rarely observed a detectable cilium (Fig. 3A, middle

row). This effect of DISC1 depletion was observed using both of

the siRNA duplexes silencing DISC1. This effect was qualitatively

similar to that of knocking down IFT88 (Fig. 3A, bottom row),

whose depletion is already known to prevent cilia formation

[10,11]. We verified these results quantitatively by counting cilia-

bearing cells across multiple experiments (Fig. 3B). To test

specificity, we attempted to rescue this phenotype using a lentiviral

vector encoding a human-derived DISC1-GFP construct that is

resistant to knockdown by the rodent-specific duplexes (see

Materials and Methods). Primary cilia were observed in the majority

of knockdown cells following re-expression of DISC1-GFP

(Fig. 4A), and quantification across multiple experiments indicated

essentially complete rescue relative to the scrambled siRNA

control (Fig. 4B). Together, these results suggest that DISC1 plays

an important role in the normal formation or maintenance of

primary cilia in this model cell system.

A subset of dopamine receptors concentrate on the
surface of primary cilia

Cilia are known to concentrate a variety of signaling receptors

and mediators, supporting the general view that they function as

a specialized signaling domain of the plasma membrane [12].

With this in mind, we asked if particular signaling receptors

already implicated in schizophrenia might be located there. We

focused on dopamine receptors, a subfamily of seven-transmem-

brane G protein-coupled receptors (GPCRs) whose significance

to schizophrenia is firmly established. D2-class dopamine

receptors represent major targets of both typical and atypical

antipsychotics, have been linked to schizophrenia in human

genetic studies, and are implicated most strongly in the so-called

‘positive’ symptoms of schizophrenia such as hallucinations

[13,14]. A correspondence between D2 receptor occupancy and

antipsychotic effects has been convincingly verified in human

neuroimaging studies [15]. D1-class receptors are implicated in

cognitive deficits observed in schizophrenic patients [16], and

may be related to a distinct cluster of ‘negative’ symptoms

including social withdrawal [17,18].

To investigate a potential link between DISC1-regulated cilia

and dopamine receptors, we used epitope tagging to localize

individual members of this receptor family relative to primary cilia

marked by acetylated tubulin. In order to specifically examine

dopamine receptors present in the plasma membrane, we

engineered a Flag-epitope tag into the amino-terminal extracel-

lular domain of each receptor and specifically decorated surface-

exposed receptors by incubating intact cells with anti-Flag

antibody. As a negative control, we expressed a Flag-tagged

version of the human transferrin receptor (Flag-TfnR), a well

characterized nutrient-uptake receptor that is present in the

plasma membrane but is not known to localize to cilia [19].

As expected, Flag-TfnRs localized throughout the plasma

membrane of NIH3T3 cells but were not detected on cilia

(Fig. 5, top row of panels). In contrast both D1-class dopamine

receptors (Flag-D1R and Flag-D5R), while also distributed

throughout the plasma membrane, were prominently concentrat-

ed on the ciliary surface relative to the surrounding plasma

membrane (rows 2 and 3 from top). One of the D2-class dopamine

receptors (Flag-D2R) also concentrated prominently on the surface

of cilia (row 4, a higher magnification view is shown in inset). This

localization was specific for a subset of dopamine receptors

because the closely related D2-class dopamine receptor, Flag-

D4R, was diffusely localized in the plasma membrane but not

detected on cilia (row 5 and inset). Another D2-class dopamine

receptor, Flag-D3R, was also not observed on cilia although, in

some cells, Flag-D3R concentrated in regions of the plasma

membrane near the ciliary base (row 6).

We next asked if these observations pertain to a physiolog-

ically relevant population of CNS-derived neurons. We focused

on striatal medium spiny neurons because they express various

dopamine receptors endogenously [20], and because a signifi-

cant fraction of these neurons are ciliated in the intact brain

[21,22]. We examined the surface distribution of Flag-tagged

versions of the cloned D1, D2 and D4 receptors when expressed

in primary cultures of neurons dissociated from rat striatum,

and compared the receptor localization observed to that of

adenylyl cyclase type III (ACIII), shown previously to be a useful

ciliary marker in the CNS [22]. Flag-D1Rs localized promi-

nently to ACIII-positive cilia (Fig. 6, top set of panels; higher

magnification of the relevant region is shown in inset), as did

Flag-D2Rs (Fig. 6, middle row of panels). Flag-D4Rs, in

contrast, were distributed elsewhere in the plasma membrane

but were not detected on cilia (Fig. 6, bottom row of panels).

Figure 2. Depletion of endogenous DISC1 and IFT88 by RNA
interference. NIH3T3 cells were transfected with the indicated siRNA
duplexes (sequences are listed in Materials and Methods). Total cell
extracts were prepared 72 hours later, and levels of DISC1 (A) or IFT88
(B) protein were assessed by immunoblot using antibodies recognizing
the endogenous proteins. Representative immunoblots are shown.
Densitometric scanning across multiple experiments verified .80%
depletion of both proteins by the respective siRNA duplexes.
doi:10.1371/journal.pone.0010902.g002
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Figure 3. DISC1 knockdown reduces cilia number. (A) NIH3T3 cells were transfected with the indicated RNA duplexes and then stained with
anti-acetylated tubulin (to mark primary cilia, left panels) and DAPI (to mark nuclei, middle panels). Merged images (right panels) show acetylated
tubulin and DAPI staining in green and blue, respectively. Cilia were prominently observed in the majority of cells transfected with control (non-
silencing) RNA duplexes (top row of images, an example is indicated by arrow). In cells transfected with either siRNA targeting DISC1, the vast
majority of cells did not project a detectable primary cilium. Depleting IFT88 (bottom row of images) produced a similar effect. (B) Quantification of
cilia loss by counting the number of cells extending a primary cilium, as marked by acetylated tubulin immunostaining, observed in blinded analysis
of the indicated populations of siRNA-transfected cells. Bars represent the mean fraction of cells with a visible cilium, averaged across 5 experiments
counting $250 cells/condition in each. Error bars represent the s.e.m. calculated across the experiments (***, p,0.0001).
doi:10.1371/journal.pone.0010902.g003
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This pattern of dopamine receptor localization mirrored that

observed in NIH3T3 cells, suggesting the operation of a

conserved targeting mechanism and establishing subtype-

selective localization of dopamine receptors to the primary

cilium in physiologically relevant neurons.

To further explore the potential applicability of our findings to

the CNS, we next asked if cilia present on striatal neurons are

sensitive to DISC1 depletion. To do so we used lentiviral

expression of shRNA to knock down endogenous DISC1 in

neuronal cultures. We first screened for effective shRNAs in rat-

derived PC12 cells (Fig. 7A) and, after choosing two duplexes that

produced reliable knockdown in this system, verified depletion of

endogenous DISC1 in primary rat striatal neurons with two

independent antibodies recognizing distinct portions of the DISC1

protein (Fig. 7B; details of each antibody are provided in Materials

and Methods). We then used these tools to assess effects of DISC1

knockdown on ciliation. ACIII-marked cilia were observed on

,40% of control striatal neurons, transduced with virus expressing

the scrambled (non-silencing) duplex. DISC1 depletion signifi-

cantly reduced the fraction of neurons expressing a visible cilium,

and this effect was comparable in magnitude to that produced by

shRNA targeting IFT88. Further, the effect of DISC1 knockdown

in striatal neurons, as in NIH3T3 cells, could be rescued by

expression of human-derived (shRNA-resistant) DISC1-GFP

(Fig. 7C). Representative images from this experiment are shown

in Fig. 7D. In the left and middle columns, control and knockdown

conditions are shown using soluble GFP to mark the entire

neuron. In the rescue condition (right column of panels), the green

channel displays recombinant DISC1-GFP fluorescence, verifying

localization of the rescue construct near the ciliary base of

neurons.

Discussion

The present results identify a role of DISC1 in regulating

primary cilia, and show that dopamine receptors exhibit subtype-

selective localization to these structures. We established both

observations in a well-established non-neural cell model and in

physiologically relevant CNS-derived neurons that are ciliated in

vivo. Accordingly, our results provide new insight to the basic cell

biology of both DISC1 and dopamine receptors. They also suggest

the possibility that primary cilia may represent a fundamental

organizing principle linking pathological mutations of DISC1 to

the development and/or expression of major psychiatric disorders.

We are not aware of previous evidence linking DISC1

functionally to primary cilia, but the present findings are broadly

consistent with biochemical data indicating that DISC1 binds to

and exhibits similar localization as various centrosome-associated

proteins [7,23,24,25]. This includes Bbs4, an essential component

of primary cilia that causes a ciliopathy (Bardet-Biedl syndrome)

when disrupted [8,26], and PCM1 as shown here. We are also not

aware of previous evidence linking dopamine receptors to cilia.

Ciliary localization of a number of other seven-transmembrane

signaling proteins has been reported, however, including conven-

tional GPCRs such as MCHR1 melanocortin receptors [27],

5HT6 serotonin receptors [28], SSTR3 somatostatin receptors

[29] as well as more distantly related non-conventional seven-

transmembrane proteins such as Smoothened [30]. The present

results add to the number of conventional GPCRs that localize to

cilia, and establish subtype-selective ciliary localization of

particular dopamine receptors that have been genetically associ-

ated with schizophrenia (D2 receptors) or regulate disease-related

features (D1 and D2 receptors).

Figure 4. Rescue of the DISC1 knockdown phenotype by human-derived DISC1-GFP. NIH3T3 cells were transfected with siRNA targeting
endogenous murine DISC1 and transduced with lentiviral particles encoding human-derived DISC1-GFP lacking the target sequence. (A) Example images
from the rescue experiment. Top panels show the negative control condition, in which cells were transfected with scrambled (non-silencing) siRNA and
infected with a lentivirus encoding GFP. Middle panels show the knockdown condition, in which cells were transfected with DISC1 siRNA and infected
with lentivirus encoding GFP. Bottom paneles show the rescue condition, in which cells were transfected with DISC1 siRNA and infected with lentivirus
encoding the siRNA-resistant DISC1-GFP construct. Left panels show acetylated tubulin immunoreactivity, middle panels show GFP fluorescence, and
right panels show the merge image with inset as indicated by box. (B) Quantification of the rescue effect by cilia count (n = 4 experiments).
doi:10.1371/journal.pone.0010902.g004
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These findings raise interesting mechanistic questions for future

study. First, how does DISC1 depletion affect primary cilia?

DISC1 did not localize to the cilium per se but concentrated near

the ciliary base, consistent with previous data linking DISC1 to

various centrosome-associated proteins. This suggests that DISC1

does not affect cilia directly but, instead, likely functions as an

Figure 5. Subtype-specific localization of dopamine receptors to the primary cilium. NIH3T3 cells were transfected with expression
construct encoding the indicated Flag-tagged dopamine receptor or transferrin receptor. 48 hours after transfection, cells were fixed and receptors
present in the plasma membrane were selectively labeled by incubating non-permeabilized cells in the presence of anti-Flag antibody, and cells were
then permeabilized to immunolabel acetylated tubulin. Each row of images shows representative cells expressing the indicated Flag-tagged receptor
construct. The merged image in each row shows surface receptor immunoreactivity in red and acetylated tubulin in green to mark the primary cilium.
Insets show the indicated region at higher magnification, scale bar corresponds to 10 mm.
doi:10.1371/journal.pone.0010902.g005
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indirect regulator of cilia formation or maintenance. The

biochemical mechanism of this proposed regulation is presently

unknown. We note that the centrosome is a complex structure,

including dynamic associated components such as centriolar

satellites [31,32]. The present data regarding DISC1 localization

compared to PCM1 and acetylated tubulin suggests that DISC1 is

optimally situated to interact both with centriolar and ciliary

components. Second, what is the mechanism by which specific

dopamine receptors localize to cilia? The current data indicate

that individual members of the dopamine receptor family, which

share extensive structural homology, differ significantly in their

ability to localize to cilia. This was clear from the remarkable

selectivity in ciliary targeting of D2 compared to D4 receptors,

both in NIH3T3 cells and striatal neurons. A degenerate ciliary

targeting motif, AxA/SxQ, was identified previously in the third

cytoplasmic loop of several GPCRs [27]. We were unable to

identify any cytoplasmic sequence matching this consensus in the

cilia-targeted dopamine receptors examined in the present study.

The most similar sequence that we could find is AKNCQ, present

in the D1 dopamine receptor. This sequence is not conserved in

either D2 or D5 receptors, even though these receptors also

localize prominently to cilia. We also found that mutating the

glutamine residue in this sequence to phenylalanine (Q242F), a

substitution used to disrupt two such motifs identified previously in

the SSTR3 receptor[27], did not detectably impair ciliary

localization of Flag-D1Rs (data not shown). Thus, our results

suggest the existence of additional structural determinant(s)

determining subtype-specific localization of dopamine receptors

to cilia. Another proposed mechanism of ciliary targeting is by

association of receptors with b-arrestins (also called non-visual

arrestins) that exhibit centrosomal localization [33,34]. Previous

studies suggest that D2Rs interact with arrestins relatively weakly

[35] and none of the dopamine receptors are known to bind

arrestins to a significant degree in their non-activated state [36],

the condition examined in the presence study. Thus, our results

suggest that this alternate mechanism is also not sufficient to fully

explain the observed ciliary localization of dopamine receptors.

We also note that D3 dopamine receptors, although not clearly

observed on cilia, often localized near the cilia base. This suggests,

further, that dopamine receptors may undergo cilary targeting by

a multi-step mechanism involving more than one receptor-

selective step.

Our results also raise a number of interesting physiological

questions. Foremost among them are to determine whether

DISC1 regulates primary cilia in the developing or adult brain,

and to define the functional consequence(s) of subtype-specific

localization of dopamine receptors to neuronal cilia. The role of

primary cilia in the cell biology of postnatal neurons is poorly

understood, but the existence of such structures has been

recognized for some time [21,22,37,38]. It is increasingly clear

that primary cilia fundamentally organize various cellular

signaling processes, including those emanating from conventional

and atypical seven-transmembrane receptors [9,12,30,39]. The

present results add to the accumulating evidence for ciliary

targeting of conventional GPCRs, and do so for dopamine

receptors whose activity (or dysregulation of activity) is implicated

in the expression of schizophrenic symptoms. Another important

question for future study, given that present results are limited to

Figure 6. Subtype-selective localization of dopamine receptors to cilia in striatal neurons. Examples of ciliary localization of Flag-D1R and
Flag-D2R, but not Flag-D4R, in primary striatal neurons. The left panels indicate surface Flag immunoreactivity marking receptors present in the
plasma membrane. Middle panels indicate ACIII immunoreactivity marking cilia. The merged image is shown in the right panels, with the region of
cell body containing the cilium displayed at higher magnification in the inset.
doi:10.1371/journal.pone.0010902.g006

DISC1 Regulates Primary Cilia

PLoS ONE | www.plosone.org 7 May 2010 | Volume 5 | Issue 5 | e10902



depletion of wild type DISC1, is whether disease-associated

mutations in DISC1 affect the structure or function of cilia. As a

number of other disease-linked genes, such as PCM1 discussed

above, localize near the ciliary base [9,13] it remains an open

question how pathological mutations affect their organization or

function.

The ultimate objective of this line of investigation is to elucidate

the cell biological underpinnings of complex neuropsychiatric

disorders, using advances in human disease genetics as a guide. We

believe that the results described here, establishing a previously

unrecognized role of DISC1 in regulating primary cilia, and

revealing ciliary localization of particular schizophrenia-relevant

dopaminergic receptors, represent early progress toward this

challenging and important goal.

Materials and Methods

cDNA constructs and cell culture
Human KIAA0457 (DISC1 long variant) was obtained from

Kazusa (RIKEN). We generated a fluorescently tagged version of

this construct by adding NheI and AgeI sites at the 59 and 39 ends,

respectively, of the coding sequence by PCR amplification. The

PCR product was then ligated in-frame to a 39 sequence encoding

enhanced GFP in the pIREShyg3 backbone (Clontech). FLAG-

Figure 7. DISC1 knockdown and rescue in striatal neurons. (A) Example immunoblot showing depletion of endogenous DISC1 detected in
PC12 cells using the C-terminal antibody (see Materials and Methods). The immunoreactive band corresponding to the major full length DISC1 species
is shown. (B) Example of DISC1 depletion in striatal cultures, detected using the C-terminal (C-term) antibody and verified using the midi antibody, as
indicated. (C) Quantification of knockdown and rescue phenotypes, based on count of cilia number compiled from 8 independent experiments. (D)
Examples of the phenotypes observed in the indicated conditions (indicated above each column). The rescue condition (right column of images)
shows the localization of DISC1-GFP rather than GFP. Insets indicate relevant regions of the cell body at higher magnification.
doi:10.1371/journal.pone.0010902.g007
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tagged versions of the human D1 and D2 (long isoform) dopamine

receptors have been previously described [35]. cDNA encoding

the human D4 dopamine receptor (D4.7 isoform) was a gift of Dr.

Hubert Van Tol. cDNAs encoding human D3 and D5 receptors

were obtained from the Missouri cDNA Resource Center (www.

cdna.org). Tagged receptor constructs were cloned into pcDNA3

(Invitrogen) for expression in NIH3T3 cells and into pCAGGS

[40] for expression in striatal neurons.

NIH3T3 cells (ATCC, Manassas, VA) were maintained in

Dulbecco’s modified Eagle’s medium supplemented with 10%

fetal calf serum (University of California, San Francisco, Cell

Culture Facility). The fraction of ciliated cells declined with

extended passaging, so all experiments were carried out using

early-passage cells within 30 days of thaw. We utilized Effectene

(Qiagen) to transiently transfect NIH3T3 cells with the cells the

indicated tagged receptors constructs and examined 3 days after

transfection or viral transduction (see below).

Dissociated striatal neurons were cultured from embryonic day

17–18 Sprague Dawley rat embryos. The striatum (caudate–

putamen and nucleus accumbens) was dissected based on the

criteria of Ventimiglia and Lindsay (1998) [41]. Upon dissection,

tissue was dissociated in 16 trypsin/EDTA solution (Invitrogen)

for 15 min before 1 ml of trypsin inhibitor was added for 5 min at

room temperature. The suspension was triturated in DMEM plus

10% fetal calf serum (FCS; Invitrogen) using a glass pipette. Cells

were plated on coverslips previously etched with 70% nitric acid

and rinsed over 2–3 days, then coated with poly-L-lysine-coated

(1 mg/ml in 0.1 M sodium borate buffer, pH 8.5) overnight, dried

and washed extensively. Media on the cells was replaced with

Gibco Neurobasal media (Invitrogen) supplemented with B27

(Gibco) and L-glutamine 24 h after plating. For tagged receptor

expression, neurons were transfected using Lipofectamine (In-

vitrogen) at 5–7 DIV and examined 2 days later. Primary

dissociated neurons were infected with lentiviral particles 1–2 DIV

and examined 10 days later.

Knockdown and recombinant protein expression
For knockdown of endogenous DISC1 in NIH3T3 cells, the

following siRNA duplexes were obtained from Qiagen:

siRNA#1 (mM_DISC1_4): r(CACGGAGACCAGGCUACA-

UGA)

siRNA#2 (mM_DISC1_2): r(CAGCUGGAGGUCACUUCC-

UUA)

For knockdown of IFT88 in NIH3T3 cells we used the following

siRNA duplexes, also obtained from Qiagen:

siRNA#1 (mM_IFT88_1), r(AAGGCAUUAGAUACUUAU-

AAA)dTdT

siRNA#2 (mM_IFT88_4)r(UUGGAGCUUAUUACAUU-

GAUA)dTdT.

The scrambled control sequence used was r(AAU UCU CCG

AAC GUG UCA CG)dT

Duplexes were transfected using Lipofectamine RNAi-max

(Invitrogen) using the optimized protocol provided by the

manufacturer for NIH3T3 cells. In all experiments reagent

amounts were scaled according to surface area of the specific

culture dishes used, based on the optimized protocol listed for 24-

well plates. Experiments were conducted 3 days after siRNA

transfection without starvation.

For knockdown of endogenous DISC1 in neurons, short hairpin

sequences were cloned as DNA oligos into pLKO.1 with AgeI/

EcoRI, then shuttled into the dual short hairpin GFP expression

vector pHUGW-GFP [42,43].

shRNA DISC1 #1: GGCTACATGAGAAGCACAG

shRNA DISC1 #2: CAGCTGGAGGTCACTTCCTT

shRNA DISC1#1 is a previously validated sequence which has

been shown to target mouse DISC1 [44]. The identical target

sequence is present in rat DISC1.

For knockdown of endogenous IFT88 in neurons,

shRNA IFT88 #1: GCCCTCAGATAGAAAGACCAA

shRNA IFT88 #2: GCAGGAAGACTGAAAGTGAAT

The scrambled control sequence used was TCCTAAGGT-

TAAGTCGCCCTCT

For recombinant protein re-expression in both NIH3T3 cells

and cultured neurons, DISC1-GFP was mutated by site directed

mutagenesis to CGGGTATATGC in order to assure resistance to

knockdown by rodent-targeted siRNA#1 and sh#1duplex (the

duplexes used in rescue experiments; underlined residues show

synonymous mutations introduced). This construct was then

cloned by PCR into the pHUGW vector downstream of the Ub

promoter using the restriction enzyme sites XbaI/AgeI.

Lentiviruses were generated from the constructs described

above in fresh HEK293FT cells (Invitrogen) cultured in 10 cm

dishes containing DMEM-H21, 10% FBS, 4 mM L-Glutamine,

1 mM MEM sodium Pyruvate, 0.1 mM MEM Non-Essential

Amino Acids, 1% penicillin-streptomycin, and 500 ug/ml G418.

Cells were transfected with pLKO.0 or pHUGW and the

packaging vectors psPAX2, pVSV-G, at a ratio of 2/2/1

respectively, utilizing Lipofectamine 2000 (Invitrogen) as tranfec-

tion reagent. Medium was changed the next day and new media

collected the following day. We centrifuged the media at 30006g

for 15 min to pellet cell debris. We took the supernatant and

filtered through a Millex-HV 0.45 mM PVDF filter (Millipore) and

transferred it to a PEG-it Virus Precipitation solution (System

Biosciences) and refrigerated overnight. Twelve hours later we

centrifuged the lentivector-containing particles at 15006g for 5

minutes and removed all traces of fluid, taking care to not disturb

the pellet. We resuspended the pellet in 100 ml of OPTI-MEM

and snap-froze individual aliquots at 270 C.

In order to achieve efficient knockdown of endogenous DISC1

without cytotoxic effects (which we frequently observed in both

NIH3T3 cells and striatal neurons expressing the tagged construct

at high levels as estimated by GFP fluorescence intensity), we co-

transduced with different viruses, one encoding the silencing

shRNA alone and another including the shRNA-resistant

replacement construct. This achieved efficient knockdown of

endogenous DISC1 while allowing independent titration of

recombinant DISC1-GFP expression. With our preparations of

viral particles we achieved optimal rescue at a ratio of 5/1, with 5

representing lentivirus containing shRNA and 1 being the

lentivirus encoding DISC1-GFP (or GFP as a negative control).

This strategy resulted in .80% knockdown of endogenous DISC1

(estimated from densitometry of immunoblots, see Results) and

uniform, low levels of expression of DISC1-GFP in 90–95% of

neurons (assessed by visualization of GFP fluorescence in the

transduced cell population).

Fluorescence microscopy
Colocalization of DISC1-GFP with acetylated tubulin or

adenylyl cyclase III (ACIII) was visualized with cells plated on

nitric acid etched coverslips and then treated with poly-D-lysine

(Sigma) overnight. Cells were fixed with 3.7% formaldehyde and

permeabilized with 0.1% Triton X- 100, and 3% milk in PBS. We

incubated cells with mouse anti acetylated tubulin (Sigma, 1 mg/

ml for 60 min) and rabbit anti adenylyl cyclase III-C20 (Santa

Cruz Biotech, 0.8 mg/ml for 60 min), and then probed with goat

anti rabbit Alexa594 (Invitrogen) and goat anti mouse Alexa488

(Invitrogen) respectively for 20 minutes. DISC1-GFP was localized

relative to PCM1 using a rabbit antibody (H262, Santa Cruz
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Biotech, sc-67204, 1:200 for 60 min) that has been previously

validated [45]. In triple localization with mouse anti acetylated

tubulin, detection of each protein was accomplished using goat

anti rabbit Alexa594 and goat anti mouse Alexa647 (both from

Invitrogen).

For cilia counts in NIH3T3 cells and primary striatal neurons,

we stained for acetylated tubulin in NIH3T3 cells and ACIII in

neurons as indicated above. Approximately 60% of NIH3T3 cells

formed acetylated tubulin positive cilia in control conditions, and

40% formed ACIII positive cilia in primary dissociated striatal

cultures. We arrived at the above numbers by counting the

number of acetylated tubulin or ACIII positive cilia, respectively,

and dividing it by the number of DAPI-positive cells. Each siRNA

and short hairpin RNA condition was measured in the same

manner. For each siRNA and short hairpin, experiments were

conducted at least 5 times on separate days. In each experiment,

$250 cells were examined for each condition.

Surface receptor immunoreactivity was assayed by incubating

intact, non-permeabilized NIH3T3 cells with rabbit anti FLAG

antibody (Sigma, 1 mg/ml for 15 min), washed, and fixed with

3.7% formaldehyde. Surface receptor immunoreactivity for non-

permeabilized striatal primary dissociated neurons was assayed by

incubating with mouse M1 anti-FLAG antibody (Sigma, 1 mg/ml

for 15 min). Cells were washed and permeabilized with 0.1%

Triton X- 100 in PBS, 3% milk, then incubated mouse anti

acetylated tubulin (Sigma, 1 mg/ml for 60 min) or Rabbit anti AC

III (Santa Cruz Biotech, 0.8 mg/ml for 60 min) followed by goat

anti-rabbit Alexa594 and goat anti-mouse Alexa488 conjugate

(Invitrogen) respectively.

All specimens were imaged by epifluorescence microscopy,

using standard dichroic filter sets (Chroma) and a 606, numerical

aperture 1.4 objective (Nikon). Images were captured using a

cooled CCD camera (Princeton Instruments) and exposures

adjusted to avoid saturation. Acquired images were rendered with

Adobe Photoshop software using linear lookup tables.

Biochemical methods
Cell monolayers were washed three times in ice-cold phosphate-

buffered saline (PBS) and lysed in extraction buffer (0.1% Triton

X- 100, 150 mM NaCl, 25 mM KCl, 25 mM Tris, pH 7.4)

supplemented with a standard protease inhibitor mixture (Roche

Applied Science). Extracts were clarified by centrifugation

(20,0006g for 15 min) and then mixed with lithium dodecylsulfate

(LDS) sample buffer for denaturation and 1% b-mercaptoethanol

for reduction, and incubated for 5 minutes at room temperature.

Total protein levels for each well were normalized to each other by

averaging 3 measurements of Coomassie Plus in a 96 well plate

reader. Proteins present in the extracts were resolved by LDS-

PAGE using 4–12% BisTris gels (NuPAGE; Invitrogen), trans-

ferred to nitrocellulose membranes, and probed for tagged protein

by immunoblotting using the indicated primary antibody.

Horseradish peroxidase-conjugated donkey anti-rabbit IgG

(Amersham Biosciences) was used as secondary antibody, as

appropriate, followed by detection of immunoreactivity using

SuperSignal detection reagent (Pierce). Apparent molecular mass

was estimated using commercial protein standards (Novex Sharp

prestained protein standard, Invitrogen). Band intensities of

unsaturated immunoblots were analyzed and quantified by

densitometry using FluorChem 2.0 software (AlphaInnotech

Corp.). Antibodies used were Rabbit-DISC1 (midi and C-term;

Invitrogen catalog number 40–6900 and 40–6800, respectively;

used at 1.5 mg/ml overnight), Rabbit anti IFT88 (Proteintech;

used at 1/1000). The midi antibody was raised to a proprietary

peptide immunogen corresponding to a middle portion (between

residues 400 and 450) of NP_777279.1. The C-term antibody was

raised to a proprietary peptide between residues 520 and 570 of

NP_777279.1. Both antibodies have been previously characterized

[46,47].

Statistical analysis
Quantitative data were averaged across multiple independent

experiments, with the number of experiments specified in the

corresponding figure legend. Unless indicated otherwise, the error

bars represent the S.E.M. calculated across experiments. The

statistical significance of the indicated differences was analyzed

using Student’s t test, calculated using Prism 4.0 software

(GraphPad Software, Inc.).
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