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Abstract
Central nervous system (CNS) infection continues to be an important cause of mortality

and morbidity, necessitating new approaches for investigating its pathogenesis, prevention

and therapy. Escherichia coli is the most common Gram-negative bacillary organism caus-

ing meningitis, which develops following penetration of the blood–brain barrier (BBB). By

chemical library screening, we identified epidermal growth factor receptor (EGFR) as a con-

tributor to E. coli invasion of the BBB in vitro. Here, we obtained the direct evidence that

CNS-infecting E. coli exploited sphingosine 1-phosphate (S1P) for EGFR activation in pen-

etration of the BBB in vitro and in vivo. We found that S1P was upstream of EGFR and par-

ticipated in EGFR activation through S1P receptor as well as through S1P-mediated up-

regulation of EGFR-related ligand HB-EGF, and blockade of S1P function through targeting

sphingosine kinase and S1P receptor inhibited EGFR activation, and also E. coli invasion

of the BBB. We further found that both S1P and EGFR activations occurred in response to

the same E. coli proteins (OmpA, FimH, NlpI), and that S1P and EGFR promoted E. coli

invasion of the BBB by activating the downstream c-Src. These findings indicate that S1P

and EGFR represent the novel host targets for meningitic E. coli penetration of the BBB,

and counteracting such targets provide a novel approach for controlling E. coli meningitis in

the era of increasing resistance to conventional antibiotics.
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Author Summary

Escherichia coli is the most common Gram-negative bacillary organism causing meningi-
tis, and E. colimeningitis continues to be an important cause of mortality and morbidity.
E. coli penetration of the blood–brain barrier (BBB) is essential for the development of E.
colimeningitis, but the underlyingmechanisms remain incompletely understood. Recent
reports of E. coli strains producing CTX-M-typeor TEM-type extended-spectrumβ-lacta-
mases, including antimicrobial-resistant E. coli sequence type 131 (ST131) are of particular
concern. These findings necessitate searches for new targets for investigating the patho-
genesis and therapeutic development of E. colimeningitis. Our work demonstrated for the
first time that sphingosine 1-phosphate (S1P) activation of epidermal growth factor recep-
tor (EGFR) represents a novel mechanism by which CNS-infectingE. coli strains penetrate
the BBB, and that blockade of S1P and EGFR prevented E. coli penetration of the BBB. We
also determined that the specificE. coli factors contributing to penetration of the BBB
exploit S1P-EGFR signaling, and that c-Src is downstream of S1P-EGFR. Our findings
reveal a novel mechanism by whichmeningiticE. coli penetrates the BBB, and also demon-
strate the novel targets for investigating the pathogenesis, prevention, and therapy of E.
colimeningitis.

Introduction

Bacterialmeningitis is currently recognized as one of the top ten leading causes of global deaths
from infectious diseases. Case fatality rates range from 5–25%, and approximately 25–50% of
survivors sustain neurologic sequelae [1–4]. The morbidity and mortality rates of bacterial
meningitis vary, depending on age, immune state, patient location, and causative organism.
Patient groups at risk of high rates of mortality and morbidity include newborns, the elderly,
and those living in developing countries, while the infections with higher rates of mortality and
morbidity are those caused by Gram-negative bacilli [2,3].
Escherichia coli is the most common Gram-negative bacillary organism causing meningitis

[1–4]. Most cases of E. colimeningitis develop from hematogenous spread [5,6], and occur as a
result of the bacterial penetration of the blood–brain barrier (BBB), which is a prerequisite for
the development of central nervous system (CNS) infection [1–4].
The BBB consists of brain microvascular endothelial cells, astrocytes and pericytes, and is a

structural and functional barrier that maintains the neural microenvironment by regulating
the passage of molecules into and out of brain, and prevents circulatingmicrobes from pene-
trating into the brain [1,2]. Meningitis isolates of E. coli, however, have been shown to invade
the BBB [1–4], but it remains incompletely understood how circulating E. coli strains penetrate
the BBB.
Several lines of evidence from human cases and experimental animal models of E. colimen-

ingitis indicate that E. coli penetration into the brain follows a high level of bacteremia, and
that cerebral capillaries are the portal of entry into the brain [1–6]. Since E. coli penetration
into the brain occurred in the cerebral microvasculature [5], we developed the in vitro BBB
model with human brain microvascular endothelial cells (HBMEC) to investigate E. coli inva-
sion of the BBB [7,8]. We also developed the in vivo animal model of experimental hematoge-
nous meningitis to mimic E. coli penetration into the brain that occurs in neonatal meningitis
[5]. We have shown with both in vitro and in vivomodels that E. coli invasion of HBMEC is
directly correlated with its penetration into the brain [9–15], suggesting that elucidation of the
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mechanisms involved in E. coli invasion of HBMEC is likely to enhance our knowledge on the
pathogenesis of E. colimeningitis.
We took advantage of genome sequencing information available frommeningitis isolates of

E. coli (e.g., strains IHE3034, S88, RS218) to study E. coli penetration of the BBB. Using func-
tional genomics studies (e.g., transposon and signature-taggedmutagenesis, DNA microarray
and comparative genome hybridization), we have identified several microbial factors contrib-
uting to meningitic E. coli invasion of HBMEC, which include OmpA, FimH, NlpI, IbeA, IbeB,
IbeC and CNF1 [9–12,15–22].We have also shown that these microbial factors exploit specific
host receptors and host cell signalingmolecules for bacterial invasion of HBMEC [2,3]. For
example, OmpA interacts with gp96 on HBMEC, resulting in activation of focal adhesion
kinase (FAK), while FimH interaction with CD48 and CNF1 interaction with 37 kDa laminin
receptor precursor (37LRP) lead to activation of RhoGTPases [23–27]. Biological relevance of
these microbial-host interactions in the pathogenesis of E. colimeningitis is shown by the dem-
onstrations that (a) exogenous OmpA and gp96 and anti-gp96 antibodies block E. coli invasion
of HBMEC, but do not exhibit any blocking effect on the OmpA mutant [23,24], (b) addition
of exogenous FimH- or CD48- antibodies inhibits E. coli invasion of the HBMEC [25], and (c)
expression levels of 37LRP dictates the ability of E. coli to invade HBMEC, but exhibited no
effect on the CNF1mutant [26,27]. Despite the extensive information available on microbial
and host factors as well as host cell signalingmolecules contributing to E. coli invasion of
HBMEC [2–4], the mechanisms involved in E. coli penetration of the BBB remain incompletely
understood.
Since meningitic E. coli invasion of HBMEC is correlated with its penetration into the brain,

we used E. coli invasion of HBMEC as a biologically relevant model in the present study for
screening of a chemical library to discover novel targets affecting E. coli penetration of the BBB.
In our screen, we identified that gefitinib, a selective inhibitor of epidermal growth factor
receptor (EGFR) tyrosine kinase [28], significantly inhibited E. coli invasion into HBMEC
monolayers. EGFR belongs to the ErbB family of receptor tyrosine kinases (RTKs), consisting
of four closely-related members (ErbB1/EGFR,ErbB2, ErbB3, ErbB4) [29–31]. EGFR is ini-
tially expressed in the plasma membrane in an inactive form, and becomes activated through
certain kinases and/or after binding to its specific ligands, which are produced as transmem-
brane precursors and released by proteolytic cleavage [29–32]. To date, several bacterial patho-
gens have been reported to target EGFR through different mechanisms to facilitate their
infection of host cells, includingNeisseria gonorrhoeae, Neisseria meningitidis, Helicobacter
pylori,Haemophilus influenzae, and Klebsiella pneumoniae [33–38]. However, to our knowl-
edge, it is unknownwhether EGFR is involved in meningitic E. coli invasion of the BBB. In the
present study, we reported for the first time that sphingosine 1-phosphate (S1P)-mediated acti-
vation of EGFR represents a novel mechanism exploited by meningitic E. coli for penetration
of the BBB, the essential step in the development of E. colimeningitis. EGFR as well as S1P are,
therefore, likely to represent the novel targets for investigating the pathogenesis, prevention
and therapy of E. colimeningitis.

Results

Meningitic E. coli exploits EGFR for its penetration of the BBB

Our chemical screen identified gefitinib as an inhibitor of meningitic E. coli invasion of
HBMECmonolayer. Gefitinib is a low-molecular-weight anilinoquinazoline that selectively
inhibits EGFR [28]. EGFR has been shown to play essential roles in cell proliferation, survival,
and migration as well as in carcinogenesis and cancer progression, and is considered an attrac-
tive target for anticancer therapies [29–31]. However, the role of EGFR in E. colimeningitis is

E. coli Exploits S1P-EGFR for Meningitis

PLOS Pathogens | DOI:10.1371/journal.ppat.1005926 October 6, 2016 3 / 26



unknown. To address this issue, we first determined the effect of gefitinib on meningitic E. coli
strain RS218 binding to and invasion of HBMEC.We found that gefitinib inhibited RS218
invasion of HBMEC in a dose-dependentmanner without affecting E. coli adhesion to
HBMEC (Fig 1A), suggesting that its target, EGFR, is likely to be involved in E. coli invasion of
the BBB. Gefitinib did not affect bacterial growth, as assessed by determination of colony-form-
ing units (CFUs) in the presence and absence of gefitinib (Fig 1B). The cytotoxicity and prolif-
eration of the HBMEC, as assessed by live/dead stain (Molecular Probes) and MTT assays,
were not affected by gefitinib (Fig 1C). EGFR was subsequently knocked out from HBMEC via
CRISPR-Cas9 editing approach, and bacterial invasion of the EGFR knock-out cells (KO#35)
were compared with that of the control cells. The EGFR was not detectable in the KO#35
HBMEC by theWestern blotting (Fig 1D), and RS218 invasion of the KO#35 cells was signifi-
cantly decreased compared with that of the control cells (Fig 1D). We next examined the con-
tribution of EGFR tyrosine kinase activity to E. coli invasion of HBMEC.We showed a time-
dependent tyrosine phosphorylation of EGFR in response to meningitic E. coli RS218 infection
(Fig 1E) but no change in EGFR transcription or expression (Fig 1F and 1G). E. coli invasion of
HBMEC transfected with dominant-negative EGFR, pcDNA-EGFR-GGS, encoding EGFR
without tyrosine kinase activity [39], was significantly decreased compared with that of control
vector-transfected cells (Fig 1H). Moreover, we examined the role of EGFR in meningitic E.
coli penetration into the brain in a neonatal animal model, involving intraperitoneal adminis-
tration of gefitinib to 1-week-oldmice. The results, as determined by bacterial counts (CFUs)
recovered from the blood and brain specimens of mice receiving gefitinib or vehicle control,
showed that gefitinib did not affect the level of bacteremia, but was efficacious in preventing E.
coli penetration into the brain (Fig 1I). In addition, we showed a co-localization of EGFR with
meningitic E. coli strain RS218 in HBMECmonolayer (Fig 1J). Together, these data support
our novel concept that EGFR contributes to meningitis-causing E. coli penetration of the BBB.
As indicated above, we demonstrated both in vitro and in vivo that EGFR is involved in

meningitic E. coli RS218 penetration of the BBB, but there was no information on how EGFR is
activated in response to E. coli invasion. Since E. coli penetration of the BBB requires specific
microbial factors that contribute to HBMEC invasion [1–4], we examined whether EGFR acti-
vation occurred in response to those E. coli factors contributing to HBMEC invasion. The wild-
type strain RS218 and its mutants with deletion of ompA, cnf1, fimH, ibeA, ibeB, ibeC or nlpI
were examined for their involvement in EGFR tyrosine phosphorylation in HBMEC.We
found that the mutants deleted of ompA, fimH or nlpI exhibited a significantly lower level of
EGFR activation compared with wild-type strain RS218 (Fig 2A), suggesting that E. coli
OmpA, FimH, and NlpI proteins are likely to contribute to EGFR activation in HBMEC. In
contrast, the mutants deleted of ibeA, ibeB, ibeC or cnf1 did not show the decrease in EGFR
activation (Fig 2A). The involvement of OmpA, FimH and NlpI in EGFR activation was further
supported by the demonstration that antibodies directed against OmpA, FimH and NlpI inhib-
ited EGFR activation in response to strain RS218 in HBMEC (Fig 2B). As expected, the triple
mutant deleted of ompA, fimH and nlpI could not induce a discernible EGFR activation, similar
to that of uninfectedHBMEC (Fig 2C). The exploitation of EGFR by OmpA, FimH and NlpI
in E. coli invasion of the cells was further examined by using another selective EGFR inhibitor,
erlotinib [40], as well as the EGFR KO#35 cells. The results showed that erlotinib inhibited
invasion of the wild-type strain RS218 in a dose-dependentmanner, while it did not affect the
HBMEC invasion by the triple mutant deleted of ompA, fimH, and nlpI (Fig 2D). Similarly, the
triple mutant’s invasion of the KO#35 cells did not differ from that of the control cells (Fig 2E).
Taken together, these findings indicate that E. coli virulence factors OmpA, FimH, and NlpI
are likely to be involved in exploitation of EGFR in meningitic E. coli invasion of HBMEC.
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Fig 1. Meningitic E. coli exploits EGFR for its penetration of the BBB in vitro and in vivo. (A) The EGFR-selective inhibitor gefitinib

inhibits meningitic E. coli RS218 invasion of HBMEC in a dose-dependent manner, but does not affect its adhesion. * p<0.05, ** p<0.01. (B)

Bacterial growth was not affected by the treatment with gefitinib. Overnight bacterial culture was 1:100 transferred into fresh medium with or

without gefitinib at indicated concentrations, and further incubated for 2 h. Viable bacterial counts were determined by series dilution and

plating at 30 min interval. (C) Gefitinib did not lead to an inhibition of cell proliferation when used at the indicated concentrations. (D)

Meningitic E. coli invasion of the EGFR knock-out HBMEC (KO#35) was significantly decreased compared to the invasion of the control cells.

* p<0.05. (E) A time-dependent activation of EGFR occurs in response to E. coli RS218 in HBMEC. The ratio of p-EGFR and EGFR was

calculated based on densitometry analysis. ** indicates the difference was significant compared to time 0 (p<0.01). (F) EGFR mRNA

transcription levels did not change in response to E. coli RS218 in HBMEC, as assessed by real-time PCR analysis. GAPDH was used as the

endogenous reference. Representative results from three individual experiments are shown. (G) EGFR protein expression levels were not

affected in response to E. coli RS218 in HBMEC. Actin was probed in the same lysate and used as a loading control. (H) RS218 invasion was

significantly reduced in HBMEC transfected with the dominant-negative EGFR construct pcDNA-EGFR-GGS compared with pcDNA3.1
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SphK2-S1P-S1P2 signaling cascade contributes to E. coli penetration of

the BBB

Recent studies have shown that S1P acts as a multifunctional bioactive sphingolipid metabolite
implicated in a wide range of biological effects, such as cell proliferation, immune and allergic

control vector-transfected HBMEC. ** p<0.01. (I) E. coli RS218 penetration into the brain was significantly inhibited by administration of

gefitinib (10 mg/kg) compared with vehicle treatment. In contrast, the magnitudes of bacteremia did not differ between the recipients of

gefitinib and vehicle control. * p <0.05. (J) Co-localization of E. coli strain RS218 and EGFR is demonstrated in HBMEC. Scale bar = 10 μm.

doi:10.1371/journal.ppat.1005926.g001

Fig 2. OmpA, FimH, and NlpI proteins are involved in meningitic E. coli-induced activation of EGFR. (A) E. coli mutants with deletion of

ompA, fimH or nlpI exhibited lower EGFR activation compared with wild-type RS218 in HBMEC monolayer. * p<0.05 compared to wild type

bacteria. (B) Antibodies directed against OmpA, FimH, and NlpI decreased EGFR activation in response to E. coli in HBMEC. The bacteria were

preincubated with the antibodies (with 1:10 dilution) individually for 1 h, and then added to HBMEC and incubated for 30 min for assessment of

EGFR activation. * p<0.05, ** p<0.01 compared to E. coli infection without antibody incubation. (C) EGFR activation in response to E. coli was not

discernible with the triple deletion mutant (RS218ΔompAΔfimHΔnlpI), similar to that of the uninfected control HBMEC. * p<0.05, ** p<0.01

compared with the E. coli RS218 wild-type infection. (D) Erlotinib inhibited the wild-type strain RS218 invasion of HBMEC in a dose-dependent

manner, while it did not affect the HBMEC invasion by the triple mutant strain with deletion of ompA, fimH, and nlpI. * p<0.05, ** p<0.01. (E) E. coli

wild-type strain RS218 invasion was significantly decreased in EGFR knock-out HBMEC (KO#35 cells) (* p<0.05), while the triple deletion mutant’s

invasion did not differ between knock-out and control cells.

doi:10.1371/journal.ppat.1005926.g002
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reactions, and regulation of the vascular cell function [41–44]. The role of S1P in E. colimenin-
gitis, however, has not been previously appreciated. In our study, we found that the same
microbial factors involved in EGFR activation also contributed to S1P generation in response
to E. coli infection in HBMEC. S1P levels were significantly higher in HBMEC infected with
meningitic E. coli wild-type strain RS218 compared to those infectedwith the triple mutant
deleted of ompA, fimH and nlpI, as measured by LC-MS/MS after lipid extraction of HBMEC
[45]. The S1P content in HBMECwas normalized to lipid phosphate in the extracted samples
and expressed as pmol/nmol lipid phosphate (mean ± SD of three samples), being 2.45 ± 0.35
after 30 min at 37°C in HBMEC incubated with wild-type RS218 vs. 1.29 ± 0.36 in cells incu-
bated with the triple deletionmutant (Fig 3A, p<0.05). Accordingly, a trend for the decreased
amount of sphingosine was observed in HBMEC incubated with wild-type RS218 compared to
that incubated with the triple mutant (Fig 3A). Since the same microbial factors contributing
to HBMEC invasion are involved in EGFR activation and S1P generation, we hypothesized
that the contribution of EGFR to E. coli penetration of the BBB is likely to be related to that of
S1P.
S1P synthesis is catalyzed by sphingosine kinases 1 and 2 (SphK1 and SphK2) [41–44]. We,

therefore, examined the role of S1P in E. coli invasion of the BBB by determining the involve-
ment of SphK1 and SphK2 using specific inhibitors against SphK1 and/or SphK2, and an inac-
tive analogue (Fig 3B) [46–50]. Both (S)-FTY720-vinylphosphonate (inhibitor of SphK1 and
SphK2, abbreviated as (S)-FTY-Pn) and (R)-FTY720-methyl ether (selective inhibitor of
SphK2, abbreviated as ROME) significantly inhibited E. coli RS218 invasion of HBMEC, while
SphK1 inhibitors (RB-032 and RB-033) and the inactive analogue (RB-034) did not exhibit any
inhibition (Fig 3C), suggesting the involvement of SphK2, not SphK1, in meningitic E. coli
invasion of HBMEC. This finding was further supported by the dose-dependent inhibition of
E. coli RS218 invasion by the SphK2 inhibitor (Fig 3D), as well as the time-dependent activa-
tion of SphK2 (analyzed as the ratio of p-SphK2/SphK2) in response to strain RS218 in
HBMEC, which was abolished in HBMEC pretreated with the SphK2 inhibitor (Fig 3E). Next,
the role of SphK2 in E. coli penetration into the brain was examined in SphK2−/− mice com-
pared with wild-typeC57BL/6j mice [42]. We found that the magnitudes of bacteremia did not
differ between the two groups of mice, as shown by the similar bacterial counts in the blood of
wild-type and SphK2−/− mice (Fig 3F). However, the bacterial counts in the brains of SphK2−/−

mice were significantly lower than those in the brains of wild-typemice (Fig 3F), indicating
that deletion of SphK2 resulted in decreasedE. coli penetration into the brain without affecting
the magnitude of bacteremia. These in vitro and in vivo findings demonstrate the novel concept
that SphK2 contributes to meningitic E. coli penetration of the BBB.
S1P is known to exhibit diverse activities by binding to and signaling through its specific

cell-surface receptors, which are members of the G protein-coupled receptors (GPCR) family
[41,43,44].We next determined the role of S1P receptors in meningitic E. coli invasion of
HBMEC using selective receptor antagonists (VPC23019 for S1P1 and S1P3, and JTE-013 for
S1P2) [41,44]. We found that pretreatment of HBMECwith VPC23019 at indicated concentra-
tions had no effect on E. coli invasion (Fig 3G), suggesting that receptors S1P1 and S1P3 are not
likely to be involved in E. coli invasion of the BBB. In contrast, HBMEC pretreated with S1P2-
specific antagonist JTE-013 displayed a dose-dependent decrease in E. coli invasion (Fig 3G),
suggesting that S1P2 plays a role in meningitic E. coli invasion of HBMEC. Taken together, our
findings thus far support the concept that meningitic E. coli infection of HBMEC increases the
generation of S1P through SphK2 activation, and that the interaction of S1P with S1P2 is
involved in E. coli invasion of the BBB.
As indicated above, we showed that S1P levels were significantly less in HBMEC incubated

with the triple mutant deleted of ompA, fimH and nlpI, compared to wild type strain. To
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Fig 3. SphK2-S1P-S1P2 mediates meningitic E. coli penetration of the BBB in vitro and in vivo. (A) S1P generation was

significantly higher in HBMEC incubated with wild-type RS218 compared with the triple mutant deleted of ompA, fimH and nlpI.

Correspondingly, the sphingosine level was lower in HBMEC incubated with wild-type RS218 than those incubated with the triple

deletion mutant. * p<0.05. (B) Structures of (S)-FTY720-vinylphosphonae (SphK1 and SphK2 inhibitor), (R)-FTY720-methyl ether

(selective SphK2 inhibitor), RB-032 and RB-033 (selective SphK1 inhibitors), and RB-034 (inactive analogue). (C) Both (S)-

FTY720-vinylphosphonae (SphK1 and SphK2 inhibitor, shown as (S)-FTY-Pn) and (R)-FTY720-methyl ether (SphK2 inhibitor,

shown as ROME) significantly inhibited RS218 invasion of HBMEC, while the SphK1 inhibitors (RB-032 and RB-033) and inactive

analogue (RB-034) did not exhibit any inhibition. ** p<0.01. The inhibitors were all used at 10 μM. (D) (R)-FTY720-methyl ether

inhibited E. coli RS218 invasion of HBMEC in a dose-dependent manner. ** p<0.01. (E) E. coli RS218 activated SphK2 in a time-

dependent manner in HBMEC, while such activation was abolished by pretreatment with 10 μM (R)-FTY720-methyl ether. **
p<0.01. (F) E. coli penetration into the brain was significantly less in SphK2 −/− mice compared with wild-type mice. In contrast, the

levels of bacteremia did not differ between the two groups of mice. (G) JTE-013 (S1P2 antagonist) significantly inhibited E. coli
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further support our hypothesis that the contribution of EGFR to E. coli penetration of the BBB
is related to that of S1P, the E. coli factors involved in EGFR activation (OmpA, FimH, NlpI)
were examined for their contributions to SphK2 activation in HBMEC. The results revealed
that phosphorylation of SphK2 was decreased in HBMEC infectedwith the mutants with dele-
tion of ompA, fimH and nlpI, individually and in combination, compared with HBMEC
infected with wild-type RS218 (Fig 3H). Therefore, these findings support that E. coli factors
OmpA, FimH and NlpI, the key contributors to bacterial adhesion and invasion, participate in
both EGFR activation and SphK2-S1P-S1P2 signaling cascade, and suggest a linkage between
EGFR and SphK2-S1P-S1P2 in meningitic E. coli penetration of the BBB.

Meningitic E. coli-induced activation of EGFR requires

SphK2-S1P-S1P2 signaling and SphK2-S1P-S1P2-mediated

upregulation of HB-EGF in HBMEC

Since the same microbial factors (OmpA, FimH, NlpI) are involved in SphK2 activation, S1P
generation, and EGFR activation, we examined the potential relationship between the
SphK2-S1P-S1P2 cascade and EGFR activation in meningitic E. coli invasion of the BBB. We
found that pharmacological inhibition of EGFRwith gefitinib did not affect E. coli-induced
phosphorylation of SphK2, as shown by the time-dependent activation of SphK2 in response to
meningitic E. coli in HBMECwith and without gefitinib treatment (Fig 4A). We next compared
E. coli-induced SphK2 phosphorylation in HBMEC transfected with EGFR dominant-negative
construct pcDNA-EGFR-GGS with that in cells transfected with the vehicle control pcDNA3.1.
The results showed that the pattern of increased SphK2 phosphorylation upon infectionwith
meningitic E. coli was similar betweenHBMEC expressing dominant-negative EGFR and
HBMEC expressing the control vector (Fig 4B). These findings indicate that pharmacological
inhibition and dominant-negative expression of EGFR did not interfere with SphK2 activation
by meningitic E. coli. Next, we examined and compared the EGFR activation upon E. coli infec-
tion in HBMEC, with and without inhibition of S1P function.As shown in Fig 4C, blockade of
the S1P signaling cascade by the S1P2 antagonist JTE-013 was effective in inhibiting EGFR acti-
vation in response to meningitic E. coli. These findings demonstrate the novel concept that both
SphK2-S1P-S1P2 and EGFR contribute to meningitic E. coli invasion, and that the SphK2-
S1P-S1P2 signaling cascade is likely to act upstream of EGFR in meningitic E. coli penetration
of the BBB.
EGFR consists of an extracellular ligand-binding domain, a single membrane-spanning

region, and a cytoplasmic kinase domain [31,51,52]. It is known that EGFR activation occurs
via kinases and/or transactivation through binding to specific ligands. At present, several
EGFR-related ligands are known, including EGF, transforming growth factor α (TGFα), hepa-
rin-binding EGF-like ligand (HB-EGF), amphirugulin (AREG), betacellulin (BTC), epiregulin
(EREG), epigen and neuregulin family members [31,51,52].We next performed quantitative
real-time PCR to investigate whether expressions of the above-mentioned ligands are affected
in response to meningitic E. coli. We selected six ligands, EGF, AREG, BTC, EREG, HB-EGF,
and TGFα, representing the EGFR-related ligands previously examined in a study withN.
gonorrhoeae, and determined their transcriptional levels in response to meningitic E. coli infec-
tion. Our quantitative PCR data showed that three ligands, HB-EGF, AREG and EREG, dis-
played significant up-regulation at 60 min after infectionwith strain RS218, while the

invasion of HBMEC, while VPC23019 (S1P1 and S1P3 antagonist) did not exhibit any inhibition. ** p<0.01. (H) The mutants with

deletion of ompA, fimH, or nlpI as well as the triple mutant (ΔompAΔfimHΔnlpI) induced significantly lower levels of SphK2

activation in HBMEC, compared with wild-type RS218. ** p<0.01.

doi:10.1371/journal.ppat.1005926.g003
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Fig 4. SphK2-S1P-S1P2 is upstream of EGFR activation in meningitic E. coli invasion of HBMEC and contributes to

HB-EGF mediated transactivation of EGFR. (A) Activation of SphK2 in response to RS218 did not differ between HBMEC

with and without gefitinib pretreatment. * p<0.05, ** p<0.01. (B) SphK2 activation was not affected in HBMEC expressing

dominant-negative EGFR, while EGFR activation was, as expected, abolished in HBMEC expressing dominant-negative

EGFR. Activation of c-Src occurred in response to E. coli in vector-transfected HBMEC, but did not occur in HBMEC

expressing dominant-negative EGFR. ** p<0.01. (C) JTE-013 (S1P2 antagonist) inhibited EGFR activation in response to E.

coli in HBMEC. ** p<0.01. (D) Real-time PCR analysis of the expression of EGFR ligands in response to wild-type E. coli

RS218 or the triple deletion mutant in HBMEC. Representative results from three independent assays are shown. GAPDH

was used as an endogenous reference. (E) Pretreatment of HBMEC with JTE-013 or (R)-FTY720-methyl ether (shown as
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transcriptional levels of EGF, BTC and TGFα remained unchanged during the infection (Fig
4D). Since the E. coli factors OmpA, FimH, and NlpI were shown to be important in EGFR
activation, we examined whether the transcriptional levels of those ligands were changed in
response to the triple deletionmutant (ΔompAΔfimHΔnlpI), compared with the wild-type
strain. The results showed that the triple deletionmutant was able to induce significant up-reg-
ulation of AREG and EREG after 60 min, while there was no up-regulation of HB-EGF, as well
as EGF, BTC, and TGFα, after infection with the triple deletionmutant (Fig 4D). These find-
ings demonstrate that HB-EGF is the ligand up-regulated in response to meningitic E. coli
strain RS218, compared with the triple mutant with deletion of ompA, fimH, and nlpI, suggest-
ing that increased expression of HB-EGFmight be involved in the increased activation of
EGFR by meningitic E. coli strain. As shown above, the SphK2-S1P-S1P2 signaling cascade is
shown to be upstream of EGFR, and we determined the effect of SphK2-S1P-S1P2 blockade on
up-regulation of HB-EGF in response to E. coli. As expected,we observed that HB-EGF up-reg-
ulation in response to strain RS218 was abolished in HBMEC pretreated with SphK2 inhibitor
ROME and S1P2 antagonist JTE-013 (Fig 4E). Taken together, these findings support that the
SphK2-S1P-S1P2 cascade exploits EGFR activation via up-regulation of HB-EGF in response
to meningitic E. coli, and that SphK2-S1P-S1P2 is upstream of EGFR in meningitic E. coli inva-
sion of HBMEC.
HB-EGF is synthesized as a membrane-spanning precursor molecule and proteolytically

processed by metalloproteinases of the ADAM (a disintegrin and metalloproteinase) family to
be involved in binding to and activation of EGFR [53,54]. To further examine the contribution
of HB-EGF to EGFR activation and E. coli invasion of the BBB, we investigated the effect of
HB-EGF shedding on EGFR activation and E. coli invasion of HBMEC using the diphtheria
toxin mutant Cross-ReactingMaterial 197 (CRM197), a nontoxic mutant of the diphtheria
toxin that retains the ability to bind pro-HB-EGF and prevent its shedding from EGFR stimu-
lation [55]. The results showed that CRM197 was effective in preventing EGFR activation in
response to E. coli strain RS218 (Fig 4F), and also significantly inhibited RS218 invasion of
HBMEC in a dose-dependentmanner. The triple deletionmutant, as expected, exhibited sig-
nificantly decreasedHBMEC invasion and CRM197 did not decrease the triple mutant’s inva-
sion, and significant inhibition was demonstrated at the highest concentration tested (Fig 4G).
As shown previously [1–4], HBMEC invasion frequency of less than 5% of wild type strain’s
invasion, however, is less likely to be biologically relevant. We next examined and compared
the release of secretoryHB-EGF in the supernatants of HBMEC in response to infectionwith
wild-type strain RS218 or its triple deletionmutant by ELISA. The HB-EGF levels in HBMEC
infected with the triple deletionmutant for up to 4 h were below the detection limit (16 pg/
mL), similar to those of the uninfected control. In contrast, the HB-EGF levels in HBMEC
infected with wild-type RS218 were increased by approximately 3-fold at 4 h of infection
(p<0.01) (Fig 4H).
Taken together, the above findings demonstrate that meningitic E. coli RS218, with the help

of specificmicrobial factors OmpA, FimH and NlpI, up-regulates the expression and release of
HB-EGF, resulting in the transactivation of EGFR, and that this transactivation is dependent
on the SphK2-S1P-S1P2 signaling cascade.

ROME) prevented HB-EGF up-regulation (analyzed by real-time PCR) in response to RS218. (F) Pretreatment of HBMEC

with CRM197 prevented EGFR activation in response to RS218. ** p<0.01. (G) CRM197 dose-dependently inhibited RS218

invasion of HBMEC, while only the highest dosage of CRM197 significantly affected HBMEC invasion by the triple mutant. **
p<0.01. (H) The release of HB-EGF from HBMEC infected with the triple deletion mutant for up to 4 h was below the detection

limit, while HB-EGF release was significantly increased by approximately 3-fold from the cells infected with wild-type RS218 at

4 h, ** p<0.01.

doi:10.1371/journal.ppat.1005926.g004
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c-Src tyrosine kinase participates in E. coli invasion of HBMEC and is

downstream of the S1P-EGFR pathway

Meningitic E. coli strains exploit specific host cell signalingmolecules to promote their invasion
of the BBB [1–4]. The phosphotyrosine residues in the cytoplasmic domain of EGFR can serve
as bait for recruitment of proteins containing SH2 domains or certain phosphotyrosine-bind-
ing domains, depending on stimuli, and can act as a switch to assist and extend the signal trans-
duction of RTK pathways [29]. The c-Src tyrosine kinase was shown to be recruited by the
phosphotyrosine residues of EGFR upon activation and to function as a mediator of EGFR sig-
naling, e.g., ligand-independent activation of EGFR [56]. Moreover, c-Src tyrosine kinase was
reported to regulate host cell actin cytoskeleton rearrangement and contribute to E. coli inva-
sion of HBMEC [57]. To examine whether c-Src tyrosine kinase is involved in EGFR signaling
in response to meningitic E. coli invasion, we performed co-immunoprecipitation andWestern
blotting to assess the possible recruitment and activation of c-Src by EGFR. Our co-immuno-
precipitation experiments with an anti-EGFR antibody showed that c-Src tyrosine kinase (60
kD) was associated with EGFR and that this association was maintained in HBMEC during 60
min incubation with meningitic E. coli RS218 (Fig 5A). After stripping, the membrane was re-
probed for EGFR, showing an unchanged level of EGFR upon E. coli invasion (Fig 5A), consis-
tent with our earlier demonstration of no change in EGFR expression in response to meningitic
E. coli infection.We subsequently examined the activation of c-Src tyrosine kinase in response
to E. coli RS218 infection, and showed that c-Src activation occurred in a time-dependentman-
ner, but was abolished in HBMEC pretreated with the EGFR kinase inhibitor gefitinib (Fig 5B)
as well as in HBMEC expressing the EGFR dominant-negative construct (Fig 4B). These find-
ings suggest that c-Src tyrosine kinase acts downstream of EGFR in meningitic E. coli invasion
of HBMEC.
We next examined the contribution of c-Src to E. coli invasion of HBMEC. As expected

from the c-Src association with EGFR, E. coli invasion of HBMECwas significantly decreased
by pretreatment of HBMECwith the c-Src tyrosine kinase inhibitor PP2 compared with the
vehicle control, as well as by transfection of HBMECwith c-Src dominant-negative construct
compared with the control vector (Fig 5C and 5D). In support of our demonstration that c-Src
is downstream of EGFR activation, which is in turn a downstream event of SphK2-S1P-S1P2
signaling in E. coli invasion of HBMEC, we found that pretreatment of HBMECwith the S1P2
antagonist JTE-013 inhibited c-Src activation in response to E. coli RS218 (Fig 5E), while
HBMEC pretreated with the c-Src kinase inhibitor PP2 or transfected with the c-Src domi-
nant-negative construct did not affect SphK2 and EGFR activation in response to RS218 infec-
tion in HBMEC (Fig 5F and 5G). Taken together, these findings demonstrate that c-Src
tyrosine kinase is downstream of the SphK2-S1P-S1P2-EGFR signaling cascade and that
SphK2-S1P-S1P2-EGFR-c-Src contribute to meningitic E. coli invasion of the BBB.

Discussion

Bacterial pathogens, including meningitis-causing pathogens, exploit host cell signalingmole-
cules to promote their infections, but the underlyingmechanisms vary depending upon the
types of pathogens and host tissues. Recent studies have shown that EGFR plays a role for sev-
eral pathogenic organisms in the pathogenesis of their infections. For example, Pseudomonas
aeruginosa andH. pylori were shown to induce transactivation of EGFR to prevent epithelial
cell apoptosis during the early stage of infection, thereby facilitating their survival in the host
cells [36,58]. EGFR activation by nontypeableH. influenzae attenuates host defensive and
immune responses by negatively regulating the expression of Toll-like receptor 2 [37]. K. pneu-
moniae induces EGFR and its downstream signaling cascades to attenuate the activation of
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NF-κB, thereby modulating host immune responses [38]. Pasteurella multocida toxin exploits
the transactivation of EGFR and subsequent mitogen-activated protein kinase activation to
induce fibroblast proliferation [59]. In addition,N. gonorrhoeae modulates the activity and cel-
lular distribution of host EGFR to facilitate its invasion and transmigration across the epithe-
lium [33,34].
Meningitic E. coli strains have been shown to penetrate the BBB via a transcellular mecha-

nism [2], but the underlyingmechanisms remain incompletely understood. In this report, we
demonstrate a novel role of EGFR in E. coli penetration of the BBB, a prerequisite for the devel-
opment of E. colimeningitis. Noticeably, our chemical library screen using a model of E. coli
invasion of HBMEC identified gefitinib, a selective inhibitor of EGFR tyrosine kinase, as an
effective inhibitor of E. coli invasion of HBMEC.We, then, showed that EGFR contributed to
E. coli penetration of the BBB, indicating that our approach of targeting E. coli invasion of
HBMEC is likely to identify targets involved in the pathogenesis of E. colimeningitis.
Here, our demonstration of EGFR contribution to meningitic E. coli penetration of the BBB

is provided by several lines of evidence. These include (a) pharmacological inhibition and

Fig 5. S1P and EGFR promote meningitic E. coli invasion of HBMEC monolayer via exploiting c-Src. (A) Association of c-Src with

EGFR in response to E. coli in HBMEC, as shown by co-immunoprecipitation of HBMEC lysates with an anti-EGFR antibody. (B) c-Src

activation occurred in response to E. coli in a time-dependent manner in HBMEC, but was abolished by pretreatment with gefitinib. (C)

Pretreatment of HBMEC with PP2 (Src inhibitor) exhibited a dose-dependent inhibition of E. coli RS218 invasion. ** p<0.01. (D) E. coli

RS218 invasion was significantly reduced in HBMEC expressing the dominant-negative Src construct, pEGFP-N1-Src-DN, compared with

the vector (pEGFP-N1)-transfected HBMEC. ** p<0.01. (E, F) Pretreatment of HBMEC with JTE-013 (S1P2 antagonist) inhibited c-Src

activation in response to E. coli (E), while pretreatment with PP2 (Src inhibitor) did not affect SphK2 activation (F). * p<0.05, ** p<0.01. (G) E.

coli activation of EGFR and SphK2 was not affected in HBMEC expressing dominant-negative c-Src, while c-Src activation was, as expected,

abolished in HBMEC transfected with dominant-negative c-Src compared with vector control-transfected HBMEC. ** p<0.01.

doi:10.1371/journal.ppat.1005926.g005
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knock-out of EGFR inhibited meningitic E. coli strain RS218 invasion of HBMEC in vitro, (b)
administration of gefitinib effectively inhibited the penetration of circulating E. coli into the
brain of neonatal mice, and (c) the co-localization of EGFR with the E. coli strain in HBMEC.
These findings support the novel concept that EGFR is a biologically relevant host factor affect-
ing E. coli penetration of the BBB, but the underlyingmechanisms remain unclear.
We have previously shown that meningitic E. coli exploits specific host factors for invasion

of the BBB, and that host factors contribute to invasion of the BBB by functioning as receptors
for specificmicrobial factors and/or exploiting specific host cell signalingmolecules [1–4]. If
EGFR functions as a cell surface receptor for specificmicrobial factors, then blockade of EGFR
would have affected E. coli binding to and invasion of the BBB. However, we found that phar-
macological inhibition of EGFR blocked E. coli invasion of HBMEC in a dose-dependentman-
ner and there was no effect on bacterial adhesion, indicating that EGFR is likely to contribute
to E. coli invasion of the BBB by affecting host cell signalingmolecules. This concept was also
supported by our demonstration that three bacterial determinants contributing to E. coli inva-
sion of the BBB (OmpA, FimH, NlpI) were involved in EGFR activation. Since these E. coli pro-
teins were shown to interact with different host receptors [2,23–25], it is unlikely that EGFR
functions as a co-receptor for different microbial-host factors. Studies are needed to elucidate
how different microbial-host interactions exploit EGFR activation for E. coli penetration of the
BBB.
S1P is recognized as a novel bioactive lipid mediator involved in physiological and patho-

genic vascular functions [60]. For example, S1P regulates angiogenesis by activating the S1P1
and S1P3 receptors (GPCRs) on endothelial cells, which is required for endothelial cell mor-
phogenesis into capillary-like networks [61]. S1P was also shown to induce adherens junction
assembly through the Gi/MAPK pathway and the small GTPase Rho and Rac pathways [61].
The S1P receptor S1P1 was shown to be essential for vascularmaturation, and S1P1-mediated
migration was defective in S1P1 mutant cells through their inability to activate the small
GTPase Rac [62]. In addition, the S1P receptor S1P2 regulates vascular inflammation and ath-
erosclerosis by inducing the release of inflammatory cytokines IL-1β and IL-18 and retaining
macrophages in plaques [63]. Since various lines of evidence have shown that S1P functions in
the vasculature and vascular-related cells [41,60], we investigated whether S1P is involved in
microbial penetration of the BBB. Our data demonstrate for the first time a novel role of S1P
and a potential crosstalk between EGFR and SphK2-S1P-S1P2 signaling in HBMEC upon men-
ingitic E. coli infection. This novel concept was shown by our demonstrations (a) that S1P lev-
els were significantly increased in HBMEC in response to meningitic E. coli infection, (b) that
SphK2 inhibitors, but not SphK1 inhibitors, and S1P2 antagonist, but not S1P1/3 antagonist,
inhibited E. coli invasion of HBMEC and (c) that the E. coli factors contributing to EGFR acti-
vation (OmpA, FimH, NlpI) were also shown to be involved in the activation of SphK2, and
subsequent S1P generation in response to E. coli RS218. Moreover, S1P was shown to be an
upstream signalingmolecule of EGFR, by demonstrations that blockade of S1P function inhib-
ited EGFR activation in response to meningitic E. coli, while blockade of EGFR function did
not affect SphK2 activation. These findings prompted us to investigate how EGFR activation
occurs, and to determine the role of S1P signaling in EGFR transactivation in meningitic E. coli
invasion of the BBB.
To address these questions, we investigated the mechanisms of EGFR activation in response

to meningitic E. coli in HBMEC. Activation of EGFR can occur upon binding of a specific
ligand to its extracellular ligand-binding domain, leading to EGFR homo- and hetero-dimer-
ization, and tyrosine phosphorylation of the cytoplasmic tyrosine kinase domain [31,51,52],
and is classified as a ligand-dependent transactivation. A previous study on N. gonorrhoeae
invasion of genital epithelial cells showed that EGFR transactivation occurred through up-
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regulation of several ligands including HB-EGF, AREG, and TGFα [33]. Here, we examined
whether EGFR activation occurred in response to meningitic E. coli in a ligand-dependent
manner by analyzing the expression levels of EGFR-related ligands. Our quantitative real-time
PCR analysis revealed that upregulation of HB-EGF differed betweenHBMEC infected with
wild-typemeningitic E. coli and those infected with its triple mutant deleted of ompA, fimH
and nlpI. Additionally, we were able to detect significant levels of HB-EGF in the supernatants
of HBMEC infected with meningitic E. coli strain RS218, but not with the triple deletion
mutant, suggesting that HB-EGF is likely to be involved in the activation of EGFR. In addition,
HB-EGF is shown to bind to EGFR and ErbB4 [64], and our experiments here with EGFR
knock-out and dominant-negative construct supported the involvement of EGFR in E. coli
invasion of HBMEC. The contribution of HB-EGF was also shown by our demonstration that
blockade of HB-EGF with CRM197 [55], which prevents ectodomain shedding of proHB-EGF,
significantly inhibited EGFR activation as well as E. coli invasion of HBMEC. These findings
support that the ligand-dependent action involving OmpA/FimH/NlpI exploitation of
HB-EGF is likely to contribute to transactivation of EGFR in meningitic E. coli invasion of
HBMEC.
Our time-dependentmRNA up-regulation of HB-EGF, however, did not follow the same

time-dependent kinetics as EGFR activation.We showed that EGFR activation occurred in
HBMEC as early as 15 min after infectionwith meningitic E. coli, while our real-time PCR anal-
ysis revealed that the mRNA level of HB-EGFwas up-regulated at 60 min after infection, imply-
ing that EGFR activation in response to meningitic E. colimay occur via two mechanisms,
comprising an early activation (perhaps representing a ligand-independent activation) and a
late ligand-dependent activation involving HB-EGF. Previous studies have reported the cross-
talk betweenGPCRs and EGFR, in which both ligand-independent and ligand-dependent acti-
vation of EGFR by GPCRs was demonstrated [65]. Here, our data showed that SphK2-S1P-
S1P2 was upstream of EGFR in meningitic E. coli invasion, and more importantly that the
EGFR activation at 30 min after infectionwas abolished by treatment with the S1P2 antagonist
JTE-013, implying that the early EGFR activation might arise from the S1P-S1P2 pathway,
which involves GPCR-related signaling.While S1P signaling occurred, it also trigged the late
ligand-dependent activation of EGFR by regulating the expression of the EGFR-associated
ligand HB-EGF. This is supported by the demonstration that blockade of S1P functionwith the
SphK2 inhibitor and the S1P2 antagonist effectively prevented HB-EGFmRNA up-regulation
at 60 min.
The ligand-dependent transactivation of EGFR by GPCRs is shown to occur by proteolytic

processing of the transmembrane pro-EGFR-ligand precursor followed by paracrine activation
of EGFR [53–55,65]. This process requires the participation of metalloproteinase activity, the
so-called “Triple Membrane Passing Signal” (TMPS) mechanism. Therein, GPCRs stimulation
induces metalloproteinase activity that cleaves the EGF-like ligand precursor and allows shed-
ding of the ligand to bind to the extracellular ligand-binding domain of the receptor, thus
transactivating EGFR signaling [65]. Therefore, the metalloproteinase-mediated shedding of
EGF-like ligands might serve as a key step in GPCR-induced EGFR transactivation. In the pres-
ent study, our finding for SphK2-S1P-S1P2 signaling to EGFR via HB-EGF was compatible
with this TMPS mechanism. Noticeably, our results supported the exclusive involvement of
HB-EGF, rather than other ligands, in EGFR activation in response to meningitic E. coli, and
that is the reason for using CRM197 to specifically block HB-EGF function, rather than using a
broad inhibitor of metalloproteinases. Nevertheless, several questions concerning the TMPS
mechanism remain to be clarified for complete elucidation of the mechanisms underlying
EGFR activation in response to meningitic E. coli invasion, such as identification of the specific
member in the metalloproteinase family, the functional domain of metalloproteinases required

E. coli Exploits S1P-EGFR for Meningitis

PLOS Pathogens | DOI:10.1371/journal.ppat.1005926 October 6, 2016 15 / 26



for ligand precursor cleavage, and the manner in which activation occurs through GPCR sig-
naling in HBMEC upon infection. At the present time, our findings support the involvement of
S1P signaling in both early (ligand-independent) and late (ligand-dependent) activation of
EGFR in response to meningitic E. coli. Further studies are needed to elucidate the mechanisms
involved in the S1P-mediated early activation of EGFR in response to meningitic E. coli inva-
sion of the BBB.
Meningitic E. coli triggers the activation of multiple host cell signal transduction pathways

for invasion of the BBB [1–4]. The signalingmolecules such as FAK and its associated cytoskel-
etal protein paxillin, phosphatidylinosital 3-kinase (PI3K), RhoGTPases, cytosolic phospholi-
pase A2 (cPLA2) and ERM (ezrin, radixin, and moesin) protein family have all been identified
to be involved in this process, mostly likely through their promoting actin cytoskeleton rear-
rangements in HBMEC [11,13,14,23,25–27,66,67].Tyrosine-phosphorylated Src is found to be
associated with EGFR upon stimulation of certain GPCRs. It has been shown to function as a
mediator of the EGFR signaling pathway and can also be recruited by the activated EGFR phos-
photyrosine domain [65]. The implication of host cell Src family tyrosine kinase in bacterial
internalization has been reported in several pathogens. For example, ErbB2 phosphorylation
results in recruitment and activation of the tyrosine kinase Src, which is dependent on the
intrinsic kinase activity of ErbB2, and selective inhibitors of both ErbB2 and Src inhibitedN.
meningitidis internalization [35]. In Opa52-mediated phagocytosis of N. gonorrhoeae by
human neutrophils, the activity of the Rho-familymember Rac was controlled by a Src-like
tyrosine kinase for efficient uptake [68]. Likewise, Src, together with Rho family GTPases, are
involved in the internalization of Shigella into epithelial cells [69,70], and in triggering the for-
mation of actin polymerization foci induced by Shigella [71]. Previously, c-Src tyrosine kinase
was shown to regulate host cell actin cytoskeleton rearrangement and PI3K activation in
HBMEC by E. coli, and contributed to E. coli invasion of HBMEC [57]. Here, we showed an
association of c-Src with EGFR by co-immunoprecipitation analysis, and demonstrated that c-
Src activation followed the SphK2-S1P-S1P2-EGFR signaling cascade and played an important
role in meningitic E. coli invasion of the BBB. Additional studies are needed to elucidate the
mechanisms involved with EGFR-c-Src signaling in E. coli invasion of the BBB.
In summary, our findings report a novel mechanism exploited by meningitic E. coli for pen-

etration of the BBB. Via its OmpA, FimH, and NlpI proteins, meningitic E. coli induces activa-
tion of SphK2, leading to increased generation of S1P that interacts with its receptor S1P2. This
SphK2-S1P-S1P2 signaling is involved in early activation of EGFR, and also induces up-regula-
tion and release of the EGFR-related ligand HB-EGF, which is responsible for transactivation
of EGFR. Activated EGFR subsequently recruits c-Src and induces tyrosine phosphorylation of
c-Src kinase, which promotes reorganization of the actin cytoskeleton in HBMEC and E. coli
entry of the BBB (Fig 6). Hijacking of this SphK2-S1P-S1P2-EGFR-c-Src signaling cascade will
facilitate meningitic E. coli to penetrate the BBB, the essential step in the development of E. coli
meningitis. Recent reports have indicated that antimicrobial resistance is an emerging problem
in E. coli causing meningitis [3,4], necessitating the development of novel targets for effective
therapy. To our knowledge, this is the first demonstration that meningitic E. coli exploits S1P
activation of EGFR for penetration of the BBB in vivo and in vitro, suggesting that S1P-EGFR
represents a novel target for therapeutic development of E. colimeningitis.

Materials and Methods

Bacterial strains and cell culture

E. coli strain RS218 (O18:K1:H7) was obtained from cerebrospinal fluid of a neonate with men-
ingitis [15]. All the mutants used in this study were derived from strain RS218 as previously
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described [9–11,15,20–22]. E. coli strains were cultured at 37°C overnight in brain heart infu-
sion broth with appropriate antibiotics unless otherwise specified.
HBMECwere isolated and characterized as describedpreviously [7]. Cells were routinely

grown in RPMI 1640 containing 10% heat-inactivated fetal bovine serum, 10% Nu-Serum, 2
mM L-glutamine, 1 mM Sodiumpyruvate, nonessential amino acids, vitamins, and penicillin
and streptomycin (100 U/ml) in 37°C incubator under 5% CO2 until they reached confluence.
In some experiments, confluent HBMECwere washed thrice with Hanks’ Balanced Salt Solu-
tion (CorningCellgro, Manassas, VA, USA) and starved in serum-freemedium (1:1 mixture of
Ham’s F-12 and M-199) for 16–18 h before further treatment.

Reagents, antibodies and plasmids

The EGFR tyrosine kinase inhibitor gefitinib, S1P receptors antagonists VPC23019 and JTE-
013, and c-Src kinase inhibitor PP2 were purchased from Cayman Chemical Company (Ann
Arbor, MI, USA). Other inhibitors of EGFR and ErbB were purchased from Selleck (Houston,
TX, USA). The inhibitors of SphK1 and SphK2 and inactive analogue, including (S)-FTY720-
vinylphosphonae, (R)-FTY720-methyl ether, RB-032, RB-033, and RB-034, were described
previously [46–50] and used at 10 μM. The diphtheria toxin mutant CRM197 was obtained
from BioAcademia Inc. (Osaka, Japan). Protein G Agarose Fast Flow beads and anti-phospho-
tyrosine (4G10) horseradish peroxidase (HRP)-conjugate antibody (used at 1:1000 for EGFR
and c-Src phosphorylatyion detection) were purchased from EMDMillipore Corporation
(Temecula, CA, USA). Anti-EGFR, anti-c-Src, and anti-c-Src-HRP conjugated antibodies were

Fig 6. Schematic representation of the S1P-EGFR signaling pathway in meningitic E. coli invasion of

HBMEC. Meningitic E. coli penetration of the BBB follows the microbial-host interactions contributing to

HBMEC invasion, via exploiting specific host cell signaling molecules. During the HBMEC invasion, meningitic

E. coli strains activate SphK2, which catalyzes the synthesis of S1P from sphingosine. S1P is then secreted

outside and acts on S1P receptor S1P2. S1P interaction with S1P2 is involved in the activation of EGFR, as

well as the up-regulation and release of EGFR-related ligand HB-EGF, which is proteolytically processed by

metalloproteinases. The released HB-EGF binds to the extracellular ligand-binding domain of EGFR and

leads to tyrosine phosphorylation of the EGFR cytoplasmic kinase domain. This SphK2-S1P-S1P2-EGFR

cascade induces the activation of c-Src tyrosine kinase, an intracellular mediator that has been shown to

regulate host cell actin cytoskeleton rearrangements, leading to E. coli invasion of HBMEC.

doi:10.1371/journal.ppat.1005926.g006
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from Santa Cruz Biotechnology (1:1000) (Santa Cruz, CA, USA). A sphingosine kinase activa-
tion antibody kit was obtained from ECM Biosciences (Versailles, KY, USA). Cy3-conjugated
antibody were purchased from Abcam (Cambridge,MA, USA). Anti-rabbit IgG HRP-conju-
gate antibody and Alexa Fluor 488-conjugated antibody were purchased from Cell Signaling
Technology (Danvers, MA, USA). Anti-actin antibody was from Sigma-Aldrich (1:3000)
(St. Louis, MO, USA). Preparations of OmpA-, FimH-, and NlpI-specific antibodies were pre-
viously described [20–22]. The TurboFect transfection reagent was purchased from Thermo
Scientific (Suwanee, GA, USA) and used according to the instructions.G418 sulfate solution
was from Corning Cellgro. The EGFR and c-Src dominant-negative constructs, pcDNA-
EGFR-GGS and pEGFP-N1-Src-DN, along with their vector controls pcDNA3.1 and
pEGFP-N1 were obtained from Drs. Hristova and Taylor, respectively [39,72].

Chemical library screening

We used the Johns Hopkins Drug Library (JHDL), which is comprised of 3,400 chemicals that
are approved by the US Food and DrugAdministration and entered phase 2 clinical trials or
approved for use abroad [73], for discovery of novel targets affecting E. coli invasion of
HBMEC, as follows. Drugs were arrayed in 96-well plates and screened at a final concentration
of 10 μM in DMSO (solvent). HBMEC grown in 96-well tissue culture plates were incubated
with the JHDL for 60 min at room temperature, and then, examined for E. coli invasion, by a
modification of the HBMEC invasion assay [9,10,15]. Briefly, 10 μl containing approximately
1×106 CFUs of E. coli strain RS218 were inoculated into each well of HBMEC in the plate. The
plates were incubated at 37°C for 90 min for bacterial invasion to occur, and then intracellular
CFUs were determined. This screening assay always included E. coli strain RS218 in vehicle
(DMSO)-treated HBMEC as a positive control for invasion, while bacteria without HBMEC
were used as a control for assessing any inhibitory effect of the chemicals on the growth of E.
coli. Since this JHDL contains antibiotics, those wells exposed to antibiotics were used as a posi-
tive control for identification of chemicals that inhibit E. coli growth. The assay was highly
reproducible, and the coefficient of correlation from at least two separate experiments was
r = 0.98 (p<0.0001). From this assay, we identified gefitinib, which inhibited meningitic E. coli
invasion of HBMEC greater than 90%. It is important to note that gefitinib did not affect bacte-
rial growth, as assessed by comparing CFUs in experimentalmediumwith or without the drug
and also did not affect HBMEC viability, as assessed by live/dead stain (Molecular Probes). It is
also important to note that EGFR has not been previously appreciated to affect E. coli penetra-
tion of the BBB.

Bacterial adhesion and invasion assays in HBMEC

The ability of E. coli to bind to and invade HBMECwas determined as previously described [9–
12,15,20–22]. Briefly, E. coli strains were grown overnight in brain heart infusion broth with
streptomycin (50 μg/ml). Bacteria were resuspended in experimentalmedium (M199-Ham
F12 [1:1] medium containing 5% heat-inactivated FBS) and added into the confluent HBMEC
monolayer grown in 24-well plate at MOI of 100. The plate was incubated at 37°C incubator
with 5% CO2 for 90 min to allow binding. HBMECs were then washed three times to remove
unbound bacteria, and lysed in 0.025% Triton X-100 buffer. Bacterial counts of adhesion were
determined by plating with appropriate dilutions. For invasion assay, bacteria were added into
HBMEC as described above for the adhesion assay. Subsequently, cells were washed three
times to remove the unbound bacteria and incubated in experimentalmedium containing
100 μg/ml gentamicin for another 1 h to kill extracellular bacteria. HBMECwere washed and
lysed as above mentioned. The released intracellular bacteria were quantified by appropriate
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dilutions and plating. As specified in some experiments, HBMECwere pretreated with various
inhibitors for 1 h prior to addition of bacteria and then processed for bacterial invasion. The
results were calculated as percentages of the initial inoculums, and presented as percent relative
adhesion/invasion compared with that in the presence of the vehicle control (DMSO). Each
assay was performed in triplicate.

MTT assay

MTTCell Proliferation Assay Kit was purchased from BioVision (Milpitas, CA, USA) and
used according to the instructions.HBMECwere seeded in 96 well plates at 5×103 per well in
100 μL culture medium and incubated for 24 h. Gefitinibwas added as indicated in HBMEC
binding and invasion assays. Supernatant of each well was removed and MTT dissolved in
serum-freemediumwas added and further incubated for another 4 h. After incubation, 100 μL
of MTT solvent was added into each well, and the plate was wrapped in a foil and shaked on an
orbital shaker for 15 min. Absorbance of all wells at 570 nm were determined.

Mass spectrometry analysis of the sphingolipids in HBMEC

HBMECmonolayers grown in 100-mm dish were serum-starvedovernight and incubated with
E. coli strain RS218 or the triple deletionmutant at a MOI of 100 for 30 min at 37°C. Sphingoli-
pids were extracted using acidified organic solvents and quantitated by HPLC electrospray ion-
ization triple quadrupolemass spectrometry and quantitated using mass labeled internal
standards [74]. Briefly, sphingolipids were extracted from cell lysates as previously described
[74,75]. Prior to extraction, a mixture of C17 sphingolipids (125 pmol/sample) was added to
each sample as the internal standards. Sphingolipids were quantitated by HPLC electrospray
ionization tandemmass spectrometryusing selected ion monitoring on an ABSciex 4000
Q-Trap instrument as describedpreviously [76–78]. Total phospholipids for each sample were
measured using modifiedAmes and Dubin assay as previously described [75,79].

Transfection

HBMECwere transfected with empty vectors control or expression vectors encoding EGFR or
c-Src dominant-negative constructs using the TurboFect transfection reagent as describedpre-
viously [66,80]. pcDNA3.1 cloned with green fluorescence protein (GFP) and pEGFP-N1 vec-
tors were used to determine the transfection efficiencyby fluorescencemicroscopy.

Genome editing via CRISPR-Cas9

A human codon-optimizedCas9 expression vector was obtained from Addgene, plasmid
#41815 [81], and Cas9 was cloned into the pEF6 expression vector (Invitrogen, Carlsbad, CA,
USA), downstream and in-frame with a nuclear-localized YFP, linked by a piconaviral 2A
bicistronic peptide [82], such that nuclear localization signal (NLS)-YFP and Cas9 are
expressed in approximate equimolar quantities. A hEGFR guide RNA (gRNA) construct,
including the U6 promoter, was synthesized as a double stranded DNA fragment and cloned
into the pEF6-nls-YFP-2A-Cas9 vector by InFusion Cloning (Clontech, Mountain View, CA,
USA). This vector was used for transfection of HBMEC as mentioned above and clones resis-
tant to blasticidin were identified and used for isolation of a single clone. Single clones were
used for expression of EGFR by Western blot and bacterial invasion assay.
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Immunoprecipitation and western blotting

HBMECwere seeded at 1×106 cells/100-mmdish and cultured until confluence. Cells were
then serum-starvedovernight, stimulated with E. coli strains at MOI of 100 for specifiedperi-
ods of time, and processed for immunoprecipitation andWestern blotting analysis as previ-
ously described [66,80].

RNA isolation and real-time PCR

Confluent HBMEC grown in 100-mm dishes were serum-starvedovernight and then infected
with E. coli at a MOI of 100 for indicated periods of time. At each time point, the mediumwas
removed and the cells were lyzed for total RNA preparation using the TRIzol reagent (Invitro-
gen). Contaminating DNA was removed by DNase I treatment (New England Biolabs, Ipswich,
MA, USA). Aliquots (1 μg) of the total RNA in each sample were subjected to cDNA synthesis
using ProtoScript Taq RT-PCR kit (New England Biolabs). Real-time PCR was performedwith
a QuantStudio 12K Flex Real-Time PCR System (Applied BioSystems, Foster City, CA, USA)
using Power SYBR Green PCRmaster mix (Applied BioSystems), according to the manufac-
turers’ instructions. The primer sequences for human EGFR and its ligands were as follows:
EGFR, 5'-CAAGTGCTGGATGATAGA-3' (forward) and 5'-GAAGTTGGAGTCTGTAGG-3'
(reverse); EGF, 5'-GTTGGCAGGTGGTGAAGTTG-3' (forward) and 5'-CCACAGGAGCACA
GTCATCT-3' (reverse); AREG, 5'-ATTATGCTGCTGGAT TGG-3' (forward) and 5'-GAGGA
CGGTTCACTACTA-3' (reverse); BTC, 5'-CCAAGCAATACAAGCATTAC-3' (forward) and
5'-GTCCTCTGTCTCCTCTTAG-3' (reverse); EREG, 5'-AGTTCAGACAGAAGACAATC-3'
(forward) and 5'-ACATCGGACACCAGTAT A-3' (reverse); HB-EGF, 5'-TATACCTATGAC
CACACAAC-3' (forward) and 5'-CACATCATAACCT CCTCTC-3' (reverse); TGFα, 5'-GGCT
GTCCTTATCATCAC-3' (forward) and 5'-AGACCACTGTTTCTGAGT-3' (reverse). Primers
for human glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were provided in the
RT-PCR kit. The amplification conditions were: 50°C for 2 min and 95°C for 10 min, followed
by 40 cycles of 95°C for 15 s and 60°C for 1 min. The products were then applied to a melt
curve stage with denaturation at 95°C for 15 s, anneal at 60°C for 1 min, and slow dissociation
by ramping from 60°C to 95°C at 0.05°C/s to ensure the specificity of the PCR products.

Determination of secretory HB-EGF from HBMEC by ELISA

To determine the release of secretoryHB-EGF from HBMEC, cells were infected with menin-
gitic E. coli strain RS218 or its triple deletionmutant for varying time points, and the superna-
tants were discarded and cells were washed with 1.5 M NaCl/1×PBS/1% BSA to dissolve
heparin-boundHB-EGF. Cleaved and secretoryHB-EGF levels were then quantified from
wash buffer using HB-EGFHuman ELISA Kit, purchased from Abcam (Cambridge,MA,
USA), according to the manufacturer’s instructions.

Animal infection assay

C57BL/6j mice were purchased from Jackson Laboratory (Bar Harbor, Maine). SphK2−/− mice
in the background of C57BL/6 were describedpreviously [42]. Male or female mice at 1 week
of age were used for induction of hematogenous E. colimeningitis. All procedures and handling
techniques were approved by the Animal Care and Use Committee of the Johns Hopkins Uni-
versity. Each mouse received approximately 3×105 CFU of E. coli strain RS218 in 50 μl sterile
normal saline via intracardiac injection. At 1 h post-inoculation, the mice were euthanized and
blood from the right ventricle was collected for quantitative bacterial cultures. Subsequently,
the mice were perfused as previously described [14], and their brains were removed, weighed,
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homogenized, and plated to determine the bacterial counts, which were expressed as CFUs per
gram. In some experiments, gefitinib, applied at therapeutic dosage (10 mg/kg) [83], was intra-
peritoneally administrated 2 h before bacterial challenge.

Immunofluorescence of HBMEC

HBMECwas grown on collagen-coated glass slide to confluency. Cells were washed thrice with
serum-freemedium and then pre-incubated for 30 minutes in experimentalmedium. Cells
were then incubated with E. coli containing a red fluorescence protein (RFP)-expressing plas-
mid (RS218-RFP), at an MOI of 1:100 for a period of 90 minutes at 37°C with 5% CO2. Cells
were washed with PBS to remove the free, unbound bacteria, and then fixed with 4% parafor-
maldehyde, permeabilizedwith Triton X-100 solution, and blocked with 5% BSA in PBS. Cells
were then incubated with EGFR antibody overnight at 4°C, washed, and incubated with Alexa
Fluor 488-labeled secondary antibody (Life Technologies A11034), followed by nucleus stain-
ing with DAPI (Vector Laboratories H-1200). The glass slide was mounted and visualized
using fluorescencemicroscopy.

Statistical analysis

Data were expressed as mean ± standard errors of the mean (SEM) unless otherwisenoted. Dif-
ferences of the bacterial counts in adhesion and invasion assays were determined by Student’s
t-test. Differences of the bacterial counts between different treatments or groups of mice were
determined by theWilcoxon rank-sum test. P-values of< 0.05 were considered significant.
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