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Existing treatments can only delay the progression of spinocerebellar ataxia

type 3/Machado-Joseph disease (SCA3/MJD) after onset, so the prediction

of the age at onset (AAO) can facilitate early intervention and follow-up

to improve treatment e�cacy. The objective of this study was to develop

an explainable artificial intelligence (XAI) based on feature optimization to

provide an interpretable and more accurate AAO prediction. A total of

1,008 a�ected SCA3/MJD subjects from mainland China were analyzed. The

expanded cytosine-adenine-guanine (CAG) trinucleotide repeats of 10 polyQ-

related genes were genotyped and included in related models as potential

AAO modifiers. The performance of 4 feature optimization methods and

10 machine learning (ML) algorithms were compared, followed by building

the XAI based on the SHapley Additive exPlanations (SHAP). The model

constructed with an artificial neural network (ANN) and feature optimization of

Crossing-Correlation-StepSVM performed best and achieved a coe�cient of

determination (R2) of 0.653 and mean absolute error (MAE), root mean square

error (RMSE), and median absolute error (MedianAE) of 4.544, 6.090, and 3.236

years, respectively. The XAI explained the predicted results, which suggests

that the factors a�ecting the AAO were complex and associated with gene

interactions. An XAI based on feature optimization can improve the accuracy

of AAO prediction and provide interpretable and personalized prediction.

KEYWORDS

spinocerebellar ataxia type 3, CAG repeats, age at onset, machine learning, feature
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Introduction

Spinocerebellar ataxia type 3 (SCA3), also called Machado–

Joseph disease (MJD), is a common polyglutamine (polyQ)

disease. PolyQ diseases are neurodegenerative disorders, and

include Huntington’s disease (HD), spinal bulbar muscular

atrophy (SBMA), dentatorubral pallidoluysian atrophy

(DRPLA), and spinocerebellar ataxia (SCA) types 1, 2, 3, 6, 7,

and 17. The age at onset (AAO) of polyQ diseases is usually at

middle age, and after that, the condition progressively worsens

for 10–30 years until death (Ross, 1997; Fan et al., 2014).

Although many studies have focused on the treatment of polyQ

disease, there is no effective clinical treatment (Esteves et al.,

2017; Paulson et al., 2017; Coarelli et al., 2018; Brooker et al.,

2021; Costa and Maciel, 2022). Current treatments can only

alleviate the symptoms and delay the progression of the disease

after onset, and the treatment goals are to improve the motor

performance and the quality of life (Ashizawa et al., 2018;

Rodríguez-Díaz et al., 2018; Klockgether et al., 2019; Lanza

et al., 2020). However, patients with mild symptoms are more

likely to benefit from treatment (Miyai et al., 2012). Animal

experiments also show that some potential treatments may

prevent or reverse the progression of the disease, but they are

more suitable for the early stage (Ashizawa et al., 2018; Friedrich

et al., 2018). Therefore, AAO prediction contributes to early

initiation to slow the progression and helps health care and

social security agencies provide follow-up visits to improve the

treatment efficacy (Jacobi et al., 2015; Paulson et al., 2017).

PolyQ diseases are caused by expanded cytosine-adenine-

guanine (CAG) trinucleotide repeats. The relationship between

the expanded CAG repeat (CAGexp) length and the AAO

of polyQ diseases has been proven, and the AAO decreased

with increasing CAGexp length (Collin et al., 1993; Gusella

and Macdonald, 2000; Tang et al., 2000; Chattopadhyay et al.,

2003; França Jr et al., 2012; Tezenas Du Montcel et al., 2014).

However, the relationship between the AAO and modified genes

is complex. The CAG repeat length of the expanded ATXN3 is

the major AAO factor of SCA3/MJD, but other polyQ-related

genes (CACNA1A, TBP, KCN3, RAI1, HTT, ATN 1, ATXN1, 2,

and 7) and gene interactions also have modifying effects on

the AAO (Andresen et al., 2007; Tezenas Du Montcel et al.,

2014; Chen et al., 2016a). Other polyQ diseases, such as SCA1

(Wang et al., 2019), SCA2 (Hayes et al., 2000; Li et al., 2021), HD

(Hmida-Ben Brahim et al., 2014), also have similar relationships.

Models including the maximum likelihood estimation

model (França Jr et al., 2012), least-squares linear regression

(Collin et al., 1993; Aylward et al., 1996; Peng et al., 2014;

Bettencourt et al., 2016), linear regression based on the log-

transformed AAO (Andrew et al., 1993; Lucotte et al., 1995;

Chattopadhyay et al., 2003), piecewise regression (Andresen

et al., 2007), quadratic regression (Tezenas Du Montcel et al.,

2014; Chen et al., 2016a), survival models (Brinkman et al.,

1997; Langbehn et al., 2004, 2010; Almaguer-Mederos et al.,

2010; Du Montcel et al., 2014; De Mattos et al., 2019; Peng

et al., 2021b), and machine learning (ML) models (Peng et al.,

2021a) have been used for AAO fitting. Most statistical models

attempt to investigate the relationship between the AAO and

a few modifiers, but only a few studies have focused on

AAO prediction, and the prediction accuracy still needs to be

improved. For example, previous MLmodels of AAO prediction

found that ML can improve model performance by comparing

the performances of linear regression and 6 other ML models,

but its overall prediction performance is still limited (Peng et al.,

2021a).

The complex relationship betweenmodifiers and the AAO is

one reason for inaccurate prediction. Because of the complexity

of gene interactions, this study proposes a feature optimization

method to better fit non-linear relationships. We tried to

use feature crosses to represent gene interactions and then

selected the most important features to ensure the efficiency of

the models.

Compared with statistical models, ML models address

more variables and improve the accuracy, but ML models

are black boxes, and it is difficult to explain the prediction

results, which limits the application of ML models. Applying

explainable artificial intelligence (XAI) in medicine is very

important because the lack of interpretability is the reason ML-

based clinical decisions are hard to trust and far from clinical

practice (Gilpin et al., 2018; Vellido, 2020; Antoniadi et al.,

2021; Banegas-Luna et al., 2021). SHapley Additive exPlanations

(SHAP) (Lundberg and Lee, 2017) is based on game theory and

can provide an interpretation for the output of ML models.

We combined SHAP and ML algorithms to build an XAI for

AAO prediction.

In this study, we reanalyzed the data from the literature

(Peng et al., 2021a), including the largest cohort of Chinese

mainland SCA3/MJD populations. This study aims to compare

the performance of feature optimization methods and ML

algorithms and proposes an XAI for AAO prediction.

Materials and methods

Subjects

A total of 1,008 subjects with SCA3/MJD from the Chinese

Clinical Research Cooperative Group for Spinocerebellar

Ataxias were included in the study. All clinical data of

participants were derived from a previous study by Peng et al.

(2021a). The AAO was defined as the age at which the first

neurological symptoms appeared. This study was approved

by the ethics committee of Xiangya Hospital, Central South

University, and written informed consent was obtained from all

study participants.
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Genotype analysis and statistical analysis

Genomic DNA (gDNA) was extracted from peripheral blood

leucocytes using a standard protocol. The CAG repeat sequences

of polyQ-related genes (ATXN3, ATXN1, ATXN2, CACNA1,

ATXN7, TBP, HTT, ATN1, KCNN3, and RAI1) were genotyped

by polymerase chain reaction and capillary electrophoresis. The

sizes of the shorter alleles (A1) and the longer alleles (A2) were

considered as different variables, respectively. The relationships

between the length of two alleles are also defined as variables,

including the mean (M) of the length of two alleles, and the

difference (D) of the length of two alleles. In this way, genetic

variables about these 10 polyQ-related genes were described as

A1, A2, M and D. Candidate predictors included 40 genetic

variables. The Pearson correlation coefficient was calculated to

evaluate the correlation between the predictors and the AAO.

Data preprocessing and splitting

We filtered out subjects with ATXN3CAGexp repeat lengths

less than 60 or higher than 80 because the number of individuals

was too small and scattered. Data were randomly divided into

a training set and testing set at a ratio of 8:2 based on non-

repetitive random sampling. For comparison with the piecewise

model proposed in the literature (Peng et al., 2021a), the total

testing set was further split into two subsets according to

CAGexp repeat length at ATXN3.

Feature optimization

The original feature set included all candidate predictors,

including 40 genetic variables. We used 4 different methods to

optimize the original feature set.

Feature optimization by correlation (feature
set 1)

Optimized feature set 1 was selected by a less strict p-value

(p < 0.1) of the Pearson correlation coefficient referring to the

methods in the literature (Sun et al., 1996; Hongyue et al., 2017;

Angraal et al., 2020; Peng et al., 2021a).

Feature optimization by crossing-correlation
(feature set 2)

Optimized feature set 2 was optimized by two steps: feature

crossing and feature selection based on the Pearson correlation

coefficient. Feature crosses were formed by multiplying two

features in the original genetic features. After crossing, feature

set 2 is then selected by the p-value (p < 0.01) and r value (| r | >

0.2) of the Pearson correlation coefficient.

Feature optimization by
crossing-correlation-RFE (feature set 3)

Recursive feature elimination (RFE) is a backward feature

selection algorithm that removes the least important features

from the feature set recursively by training models with different

feature sets. Optimized feature set 3 was a subset of feature set

2. After crossing and correlation-based selection, features were

selected using an SVM-RFE with 10-fold cross-validation, and

the coefficient of determination (R2) was used to evaluate the

best feature set.

Feature optimization by
crossing-correlation-stepSVM (feature set 4)

Optimized feature set 4 was also a subset of feature set

2. After crossing and correlation-based selection, features were

selected using a StepSVM (Guo and Chou, 2020) with 10-fold

cross-validation, and the R2 score was used to evaluate the

best feature set. A StepSVM is a stepwise method for feature

selection based on an SVM. A StepSVM tries every possible

subset, including two features, and the subset with the highest

accuracy is chosen as the initial feature set. Then, the features

were added to the set recursively to achieve a higher accuracy

until the accuracy no longer increased or the maximum number

of features allowed was reached.

Differing from the literature (Guo and Chou, 2020), the

StepSVM used in this study started with a feature subset

including only one feature. Because (1) there were too many

features in the set, the cost of trying every pair of two features

is too high; (2) it was confirmed that the CAGexp repeat length

is an important feature for AAO prediction. The flowchart of

the StepSVM is shown in Figure 1. In this study, the minimum

expected R2 improvement was set to 0.001, and the maximum

number of features selected was set to 30.

Prediction model construction

We chose 10ML algorithms for prediction, including linear

regression (LR), ridge regression (RR), Lasso, elastic net (EN),

Huber regression (HR), K-nearest neighbor (KNN), support

vector machine (SVM), random forest (RF), extreme gradient

boosting (XGBoost), and artificial neural network (ANN).

We used 4 optimized feature sets and 10ML algorithms to

construct 40 regression models. All models were implemented

in Python 3.8 using the scikit-learn (Pedregosa et al., 2011) and

XGBoost (Chen and Guestrin, 2016) packages. The parameters

of the models were determined by a cross-validated grid search.

Linear regression (LR)

LR is a simple multiple regression linear regression model.

Usually, the LR coefficient is estimated using the ordinary least
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FIGURE 1

Flowchart of the StepSVM.

squares method, and the objective function of LR is:

J (θ) = 1
2

∑m
i

(

y(i) − θTx(i)
)2

(1)

Ridge regression (RR)

RR is a modified ordinary least squares equal estimate. It

gives up the unbiasedness of the least squares and makes the

regression process more realistic at the cost of partial accuracy. It

can prevent the model from overfitting by adding the L2-norm.

The RR objective function is:

J (θ) = 1
2

∑m
i

(

y(i) − θTx(i)
)2

+ λ
∑n

j θ2j
(2)

Lasso

Lasso is a linear model that estimates sparse coefficients.

Similar to RR, it consists of a linear model and an additional

regularization term, but Lasso regression improves the ordinary

least squares by adding the L1-norm. The Lasso regression

objective function is:

J (θ) = 1
2

∑m
i

(

y(i) − θTx(i)
)2

+ λ
∑n

j

∣

∣θj
∣

∣ (3)

Elastic net (EN)

EN is a linear regression model applying L1 and L2

regularization. It can not only remove invalid features as

Lasso does but also has the stability of RR. The EN objective

function is:

J (θ) = 1
2

∑m
i

(

y(i) − θTx(i)
)2

+λ

(

ρ
∑n

j

∣

∣θj
∣

∣ + (1− ρ) λ
∑n

j θ2j

) (4)

Huber regression (HR)

HR is a kind of robust estimation theory. It reduces the

weight of outliers to reduce the impact of outliers on regression

results. Its loss combines the advantages of the mean square

error (MSE) and the mean absolute error (MAE).

J (θ) =
∑n

i=1

(

θ + Hδ

(

S
θ

)

θ

)

(5)

Hδ (S) =











1
2 (|S|)

2, for |S| ≤ δ

δ|S| − 1
2 δ2 otherwise

(6)

where θ is the scale transformation coefficient; δ is a

threshold, and a smaller δ leads to a solution closer to the MSE,

while a larger δ leads to a solution closer to theMAE; and S is the

residual error between the predicted value and the true value.

K-nearest neighbor (KNN)

KNN predicts the label by finding K training samples closest

in distance to the new point, and the Euclidean distance is

the most common method of distance calculation in KNN. An

appropriate value of K is very important for KNN.When K is too

small, the prediction result is too sensitive to the nearest point,

and when K is too large, distances that are far from the input will

also work on the prediction.

Support vector machine (SVM)

A SVM performs regression by finding the optimal

hyperplane, which divides the data by applying the maximum

margin. The maximum margin improves the generalization of

the SVM. It has been widely used in disease prediction and has

achieved good performance (Chekol and Hagras, 2018; Asha

and Vijaya, 2019; Kibtia et al., 2020; Byeon, 2021). The SVM

regression function is:

J (C) = C 1
l

∑l
i=1 Lε

(

yi, f (xi)
)

+ 1
2 ‖ω‖

2 (7)

where the coefficients ω and b are estimated by minimizing

the regularized risk function:

Lε

(

y, f (x)
)

=
∣

∣y− f (x)
∣

∣

ε
= max {0,

∣

∣y− f (x)
∣

∣ − ε}) (8)

where C 1
l

∑l
i=1 Lε

(

yi, f (xi)
)

is the empirical error (risk);
1
2 ‖ω‖

2 is the regularization term; Lε

(

y, f (x)
)

is the ε-

insensitive loss function; and C is a constant regularization
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parameter, and it is the determinant of the trade-off between

deviation and regularization. This indicates tolerance for errors.

When C is too large, it may cause overfitting; otherwise, it may

cause overgeneralization.

Random forest (RF)

An RF is an important ensemble model based on bagging. It

resamples a dataset by bootstrapping and trains a decision tree

on each dataset. The RF prediction result is the combination of

the results of the decision trees.

Extreme gradient boosting (XGBoost)

XGBoost is a tree-based ensemble model constructed by

boosting. It is an improvement of the gradient boosting decision

tree (GBDT) algorithm. It sums up the results of many decision

trees as the final prediction.

J (t) =
∑m

i=1 L
(

yi, ŷ
t
i

)

+
∑t

k=1 �
(

fk
)

=
∑m

i=1 L
(

yi, ŷ
t−1
i

)

+ ft (xi) + �
(

ft
)

+ C

(9)

�
(

f
)

= γT + 1
2λ ‖ w ‖2 (10)

where t is the number of decision trees; L
(

yi, ŷ
t
i

)

is a loss

function; and �
(

fk
)

is the sum of the regularization items of

the trees.

Artificial neural network (ANN)

An ANN is also called a multi-layer perceptron (MLP). In

an ANN, there are multiple hidden layers between the input and

output layers. The layers are fully connected by neurons with a

non-linear activation function, and the input to each layer is the

weighted sum of the output of the previous layer.

In this study, we use a rectified linear unit (ReLU) as an

activation function, and it is a piecewise linear function:

ReLU (x) = max (0, x) (11)

The limited-memory Broyden-Fletcher-Goldfarb-Shanno

(L-BFGS) algorithm is used to optimize the ANN, which ensures

that the network can be optimized quickly and approach

the global optimal solution to the greatest extent. The L-

BFGS algorithm is an efficient optimization algorithm that can

converge faster and perform better on small datasets.

Evaluation metrics

To evaluate the prediction accuracy and performance of each

model, a set of evaluation metrics was used, including the R2,

mean absolute error (MAE), root mean square error (RMSE),

median absolute error (MedianAE), proportion of the samples

that
∣

∣

∣
AAOactual − AAOpredicted

∣

∣

∣
< 5 (Proportion < 5), and

proportion of the samples that
∣

∣

∣
AAOactual − AAOpredicted

∣

∣

∣
>

10 (Proportion > 10).

XAI based on the best ML model

SHAP (Lundberg and Lee, 2017) is based on game theory

and uses Shapley values to explain ML models. We chose

the AAO prediction model with the best performance and

used SHAP as the XAI method to explain the best AAO

prediction model on the training set. The explanations provided

by XAI include the importance of the features, the impact of

features on the model output, and the personalized prediction

of each sample.

The flowchart of the process is shown in Figure 2.

Results

Description of the subjects and statistical
analysis

Among the 1,008 subjects with SCA3/MJD, 549 were male

(54.5%), 385 were maternally transmitted, 36 were sporadically

transmitted, and 258 were transmission unknown. The mean

AAO of all subjects was 35.0 ± 10.2 years, and the mean repeat

length of the expanded ATXN3 allele was 71.8± 3.6.

Among the 1,008 subjects, 11 subjects with ATXN3 CAGexp

repeat lengths less than 60 or higher than 80 were filtered out. A

total of 997 subjects with ATXN3 repeat lengths between 60 and

80 were used for model construction. There were 797 individuals

in the training set and 200 in the testing set. The total testing

set was split into two subsets for comparison with the piecewise

model proposed in the literature (Peng et al., 2021a). There were

24 individuals in testing subset 1 (ATXN3 CAGexp ≤ 68) and

176 in testing subset 2 (ATXN3 CAGexp > 68).

The details of the descriptive statistical analysis are shown in

Table 1.

Feature optimization results

Feature optimization by correlation (feature set
1)

The results of the Pearson correlation coefficient (Table 2)

showed that there were 6 features correlated with the AAO (p

< 0.05). Because a less strict p-value (p < 0.1) was applied for

feature selection, 8 features were selected for optimized feature

set 1, including ATXN3-A2, ATXN3-D, ATXN3-M, TBP-A1,

TBP-M, ATXN1-A2, ATXN2-A1, and KCNN3-D.
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FIGURE 2

Flowchart of the study.

Feature optimization by crossing-correlation
(feature set 2)

After feature crossing, 820 features (780 feature crosses and

40 original features) were used for feature selection. Finally, 75

features were considered to be correlated with the AAO (p <

0.01, | r | > 0.2) and included in the optimized feature set 2,

which is shown in Table 3.

Feature optimization by
crossing-correlation-RFE (feature set 3)

The R2 scores of different numbers of features selected

by the SVM-RFE are shown in Figure 3. When the

SVM-RFE selected 23 features, the SVM had the highest

R2 score.

Feature optimization by
crossing-correlation-stepSVM (feature set 4)

The R2 scores of the numbers of features selected by the

StepSVM are shown in Figure 4. When the number of features

selected is greater than 16, the R2 improvement is lower than

the expected improvement of 0.001.

Performance of di�erent features and
methods

The performance of models constructed with the 4

optimized feature sets and 10ML methods is shown in Table 4.

Among the models using different feature sets, the

performance of feature set 1 was the worst, which suggests
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TABLE 1 Results of the descriptive statistical analysis.

Feature Overall (n = 997) Training set (n = 797) Testing set (n = 200)

Mean ± SD Min/Max Mean ± SD Min/Max Mean ± SD Min/Max

ATXN3-A1 19.65± 6.24 11/36 19.74± 6.27 11/36 19.31± 6.08 11/35

ATXN3-A2 71.80± 3.32 61/80 71.76± 3.30 61/80 71.97± 3.39 61/80

ATXN3-D 52.15± 7.07 31/68 51.99± 7.13 31/68 52.78± 6.81 32/66

ATXN3-M 45.73± 3.53 37.5/55.5 45.75± 3.54 37.5/55.5 45.63± 3.51 37.5/54

ATXN1-A1 27.08± 1.87 15/31 27.11± 1.77 15/31 26.94± 2.20 15/31

ATXN1-A2 29.31± 1.59 26/39 29.35± 1.62 26/39 29.17± 1.46 26/33

ATXN1-D 2.24± 1.95 0/16 2.24± 1.95 0/16 2.23± 1.96 0/11

ATXN1-M 28.20± 1.43 20.5/33.5 28.23± 1.39 23/33.5 28.05± 1.59 20.5/31

ATXN2-A1 21.51± 1.07 11/22 21.52± 1.09 11/22 21.50± 0.97 17/22

ATXN2-A2 21.93± 1.40 20/33 21.95± 1.41 20/31 21.85± 1.35 20/33

ATXN2-D 0.42± 1.51 0/12 0.44± 1.56 0/12 0.31± 1.25 0/11

ATXN2-M 21.72± 0.97 16/26.5 21.74± 1.00 16/26.5 21.63± 0.84 19.5/26

CACNA1A-A1 11.38± 2.22 4/16 11.36± 2.22 4/16 11.46± 2.20 5/15

CACNA1A-A2 13.24± 1.17 5/17 13.24± 1.16 5/17 13.26± 1.21 7/17

CACNA1A-D 1.87± 2.02 0/11 1.88± 2.01 0/11 1.84± 2.06 0/9

CACNA1A-M 12.31± 1.46 5/16 12.31± 1.46 5/16 12.33± 1.47 7/15.5

ATXN7-A1 10.29± 1.18 6/18 10.30± 1.16 6/18 10.23± 1.24 6/13

ATXN7-A2 10.97± 1.25 7/21 10.95± 1.17 7/18 11.04± 1.52 8/21

ATXN7-D 0.68± 1.14 −2/11 0.65± 1.06 −2/6 0.81± 1.40 0/11

ATXN7-M 10.63± 1.07 7/18 10.62± 1.03 7/18 10.66± 1.22 7/15.5

TBP-A1 27.68± 1.35 20/31 27.69± 1.38 20/31 27.63± 1.23 21/30

TBP-A2 29.00± 1.22 25/35 29.03± 1.23 26/35 28.89± 1.17 25/34

TBP-D 1.32± 1.49 −1/9 1.34± 1.49 −1/9 1.23± 1.46 0/8

TBP-M 28.34± 1.05 23/32.5 28.37± 1.08 23/32.5 28.23± 0.92 25/30.5

HTT-A1 18.81± 1.59 12/25 18.79± 1.61 12/25 18.88± 1.52 12/23

HTT-A2 20.89± 2.21 16/30 20.91± 2.25 16/30 20.79± 2.00 18/29

HTT-D 2.06± 2.14 0/11 2.12± 2.16 0/11 1.85± 2.05 0/10

HTT-M 19.82± 1.57 15/25.5 19.83± 1.59 15/25.5 19.80± 1.49 16/24.5

ATN1-A1 17.16± 2.77 9/24 17.14± 2.75 10/24 17.22± 2.83 9/22

ATN1-A2 20.46± 2.59 12/46 20.39± 2.31 12/35 20.72± 3.47 14/46

ATN1-D 3.30± 2.89 0/28 3.23± 2.65 0/15 3.56± 3.69 0/28

ATN1-M 18.81± 2.26 12/33 18.77± 2.17 12/27.5 18.97± 2.58 14/33

KCNN3-A1 18.11± 1.65 10/21 18.13± 1.60 10/21 18.05± 1.85 10/20

KCNN3-A2 19.60± 1.32 13/30 19.57± 1.23 13/30 19.72± 1.61 14/30

KCNN3-D 1.51± 1.80 0/16 1.47± 1.70 0/12 1.66± 2.14 0/16

KCNN3-M 19.06± 1.22 13/25 19.06± 1.17 13/25 19.06± 1.40 13/25

RAI1-A1 11.50± 0.77 7/13 11.49± 0.77 7/13 11.56± 0.75 9/13

RAI1-A2 12.11± 0.39 10/14 12.10± 0.40 10/14 12.13± 0.39 10/14

RAI1-D 0.62± 0.78 0/5 0.63± 0.79 0/5 0.59± 0.75 0/3

RAI1-M 11.93± 0.52 9/13 11.93± 0.53 9/13 11.95± 0.52 10/13

that crossing can improve the prediction accuracy. Models

based on optimized feature set 4 have achieved the best

prediction, which suggests that the Crossing-Correlation-

StepSVM is the best feature optimization method for

AAO prediction.

Among the models using different ML methods, models

constructed with an ANN perform best. The models constructed

with HR also achieve good prediction results.

Among all models, the ANN constructed with feature set

4 (Crossing-Correlation-StepSVM) performs best and achieves
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TABLE 2 Result of the Pearson correlation coe�cient.

Feature r value p-value Feature r value p-value

Sex −0.0121 0.7340 TBP-A1 −0.0892 <0.05

ATXN3-A1 0.0223 0.5289 TBP-A2 −0.0452 0.2027

ATXN3-A2 −0.7190 <0.001 TBP-D 0.0540 0.1275

ATXN3-D −0.3554 <0.001 TBP-M −0.0798 <0.05

ATXN3-M −0.3164 <0.001 HTT-A1 −0.0055 0.8758

ATXN1-A1 0.0042 0.9061 HTT-A2 0.0180 0.6122

ATXN1-A2 0.0589 <0.1 HTT-D 0.0232 0.5130

ATXN1-D 0.0452 0.2027 HTT-M 0.0092 0.7960

ATXN1-M 0.0370 0.2963 ATN1-A1 0.0403 0.2560

ATXN2-A1 −0.0739 <0.05 ATN1-A2 −0.0168 0.6366

ATXN2-A2 −0.0088 0.8051 ATN1-D −0.0578 0.1029

ATXN2-D 0.0475 0.1803 ATN1-M 0.0167 0.6385

ATXN2-M −0.0420 0.2367 KCNN3-A1 0.0479 0.1763

CACNA1A-A1 0.0164 0.6441 KCNN3-A2 −0.0244 0.4910

CACNA1A-A2 0.0205 0.5628 KCNN3-D −0.0611 <0.1

CACNA1A-D −0.0130 0.7134 KCNN3-M 0.0064 0.8575

CACNA1A-M 0.0227 0.5220 RAI1-A1 0.0185 0.6029

ATXN7-A1 0.0001 0.9968 RAI1-A2 −0.0285 0.4219

ATXN7-A2 −0.0417 0.2396 RAI1-D −0.0273 0.4411

ATXN7-D −0.0453 0.2013 RAI1-M 0.0010 0.9783

ATXN7-M −0.0174 0.6229

Bold indicates features optimized through correlation (feature set 1).

the best R2 (0.653), MAE (4.544), RMSE (6.090), MedianAE

(3.236), and Proportion < 5 (136[68.00]) on the testing set.

Performance comparison with the model
proposed in the literature

The AAO prediction performances on two testing subsets

are shown in Table 5. It shows the results of the models

constructed with the optimized feature set 4 and results declared

in the literature (Peng et al., 2021a).

In testing subset 1 (ATXN3 CAGexp ≤ 68), several models

achieved a higher proportion < 5 (63%) than the best model,

XGBoost, in the literature (55%). HR, as one of the models

with the highest proportion < 5 (63%), also achieved the

lowest MedianAE (3.18). Additionally, the ANN achieved the

lowest MAE (4.83), RMSE (5.95), and proportion > 10 (8%),

which showed obvious superiority in prediction accuracy over

XGBoost in the literature (MAE: 5.56, RMSE: 7.13, proportion

> 10: 21%), but its proportion< 5 (54%) was slightly lower than

that of the reported XGBoost model (55%).

In testing subset 2 (ATXN3 CAGexp > 68), the ANN was

the best AAO prediction model, and the evaluated results were

MAE (4.50), RMSE (6.11), MedianAE (3.20), Proportion < 5

(70%), which was considerably superior to other models and

the previous XGBoost (MAE: 4.78, RMSE: 6.31, MedianAE 3.59:

proportion < 5: 65%).

Overall, the results ofmodels constructed with the optimized

feature set 4 are better than the results reported in the literature,

and the performance of the ANN is the best, followed by HR.

XAI based on the best ML model

We used the SHAP explainer on the best model (the ANN

constructed with the optimized feature set 4) to build the XAI.

In the SHAP result, the higher the SHAP value of a feature is, the

higher the AAO prediction will be.

Importance of features

The importance of each feature is measured by the mean

of the absolute SHAP value. The importance ranking of the 16

features according to their SHAP values is shown in Figure 5.

The ATXN3-related features have the greatest impact on the

model, which suggests that ATXN3-related features have the

greatest impact on the model. The ATXN-A2 is not the most

important feature, but the three most important features are

only associated with the ATXN3 gene. It suggests that the in

addition to the CAG repeat length of ATXN, the relationships
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TABLE 3 Result of feature optimization by cross-correlation (feature set 2).

Feature r value p-value Feature r value p-value

ATXN3-A2 −0.7190 <0.001 ATXN3-A2*CACNA1A-A2 −0.3152 <0.001

ATXN3-D*ATXN3-M −0.6405 <0.001 ATXN3-D*ATXN1-A2 −0.3099 <0.001

ATXN3-A2*RAI1-A2 −0.6003 <0.001 ATXN3-M*TBP-A1 −0.3081 <0.001

ATXN3-A2*TBP-M −0.5905 <0.001 ATXN3-M*ATXN2-M −0.3081 <0.001

ATXN3-A2*TBP-A2 −0.5578 <0.001 ATXN3-D*HTT-A1 −0.3048 <0.001

ATXN3-A2*ATXN3-M −0.5439 <0.001 ATXN3-M*ATXN2-A1 −0.3039 <0.001

ATXN3-A2*ATXN2-M −0.5392 <0.001 ATXN3-D*HTT-M −0.3020 <0.001

ATXN3-A2*TBP-A1 −0.5362 <0.001 ATXN3-M*TBP-A2 −0.3011 <0.001

ATXN3-A2*ATXN2-A1 −0.5250 <0.001 ATXN3-M*RAI1-A2 −0.2995 <0.001

ATXN3-A2*RAI1-M −0.5224 <0.001 ATXN3-A2*KCNN3-A1 −0.2931 <0.001

ATXN3-A2*ATXN3-D −0.5006 <0.001 ATXN3-D*CACNA1A-A2 −0.2919 <0.001

ATXN3-A2*ATXN1-M −0.4763 <0.001 ATXN3-D*ATXN7-A2 −0.2911 <0.001

ATXN3-A2*ATXN2-A2 −0.4454 <0.001 ATXN3-D*ATXN7-M −0.2882 <0.001

ATXN3-A2*KCNN3-A2 −0.4378 <0.001 ATXN3-A2*ATN1-A2 −0.2849 <0.001

ATXN3-A2*ATXN1-A2 −0.4303 <0.001 ATXN3-D*ATN1-A2 −0.2772 <0.001

ATXN3-A2*KCNN3-M −0.4238 <0.001 ATXN3-M*RAI1-M −0.2759 <0.001

ATXN3-A2*ATXN1-A1 −0.4144 <0.001 ATXN3-A2*ATXN7-A1 −0.2711 <0.001

ATXN3-A2*RAI1-A1 −0.4016 <0.001 ATXN3-D*KCNN3-A1 −0.2708 <0.001

ATXN3-D*TBP-M −0.3632 <0.001 ATXN3-M*ATXN2-A2 −0.2682 <0.001

ATXN3-D*TBP-A1 −0.3629 <0.001 ATXN3-D*ATXN7-A1 −0.2657 <0.001

ATXN3-D −0.3554 <0.001 ATXN3-D*HTT-A2 −0.2654 <0.001

ATXN3-D*RAI1-A2 −0.3537 <0.001 ATXN3-A2*HTT-A2 −0.2626 <0.001

ATXN3-D*TBP-A2 −0.3536 <0.001 ATXN3-D*ATN1-M −0.2565 <0.001

ATXN3-D*ATXN2-A1 −0.3524 <0.001 ATXN3-D*CACNA1A-M −0.2547 <0.001

ATXN3-A2*HTT-M −0.3475 <0.001 ATXN3-M*KCNN3-A2 −0.2531 <0.001

ATXN3-A2*HTT-A1 −0.3447 <0.001 ATXN3-A2*ATN1-M −0.2521 <0.001

ATXN3-D*ATXN2-M −0.3432 <0.001 ATXN3-M*ATXN1-M −0.2488 <0.001

ATXN3-D*RAI1-M −0.3380 <0.001 ATXN3-M*KCNN3-M −0.2450 <0.001

ATXN3-D*KCNN3-A2 −0.3379 <0.001 ATXN3-A2*CACNA1A-M −0.2397 <0.001

ATXN3-D*ATXN1-M −0.3266 <0.001 ATXN3-M*ATXN1-A1 −0.2367 <0.001

ATXN3-D*ATXN1-A1 −0.3247 <0.001 ATXN3-M*RAI1-A1 −0.2298 <0.001

ATXN3-A2*ATXN7-M −0.3213 <0.001 ATXN3-M*ATXN1-A2 −0.2293 <0.001

ATXN3-D*KCNN3-M −0.3211 <0.001 ATXN3-M*ATXN7-A2 −0.2262 <0.001

ATXN3-D*ATXN2-A2 −0.3182 <0.001 ATXN3-M*ATXN7-M −0.2187 <0.001

ATXN3-A2*ATXN7-A2 −0.3181 <0.001 ATXN3-A1*ATXN3-D −0.2133 <0.001

ATXN3-M −0.3164 <0.001 ATXN3-M*HTT-A1 −0.2133 <0.001

ATXN3-D*RAI1-A1 −0.3162 <0.001 ATXN3-M*HTT-M −0.2093 <0.001

ATXN3-M*TBP-M −0.3161 <0.001

between the expanded allele and normal allele of ATXN cannot

be ignored. In addition, the combination of ATXN3 and ATXN1

is also very important for AAO prediction.

Impact of features on model output

The impact on the model output of all features is shown in

Figure 6. The red color represents a higher feature value, while

the blue color represents a lower feature value. A positive SHAP

value means that the feature results in an increase in the AAO

prediction value, and a negative SHAP value means that it leads

to a decline. For example, a higher value of the first 3 features

will lead to a lower predicted AAO.

We used the SHAP value to analyze the impact ofATXN3-A2

on AAO output because ATXN3-A2 is the only original feature,

and it is the most relevant feature to the AAO (r = −0.7190, p

Frontiers inNeuroinformatics 09 frontiersin.org

https://doi.org/10.3389/fninf.2022.978630
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Ru et al. 10.3389/fninf.2022.978630

FIGURE 3

Feature selection using the SVM-RFE.

FIGURE 4

Feature selection using the StepSVM.
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TABLE 4 Performances of models constructed with di�erent feature sets and ML methods.

Method Model R2 MAE (yrs) RMSE (yrs) MedianAE (yrs) Proportion < 5 (no. [%]) Proportion > 10 (no. [%])

LR 1 0.599 4.936 6.546 4.011 126[63.00] 27[13.50]

2 0.519 5.243 7.166 3.718 124[62.00] 30[15.00]

3 0.619 4.814 6.380 3.505 129[64.50] 23[11.50]

4 0.628 4.761 6.303 3.325 132[66.00] 23[11.50]

RR 1 0.597 4.972 6.564 3.985 123[61.50] 27[13.50]

2 0.594 4.955 6.588 3.683 125[62.50] 28[14.00]

3 0.604 4.908 6.509 3.818 128[64.00] 25[12.50]

4 0.625 4.751 6.332 3.587 134[67.00] 25[12.50]

Lasso 1 0.599 4.936 6.545 4.014 126[63.00] 27[13.50]

2 0.606 4.902 6.491 3.738 125[62.50] 28[14.00]

3 0.620 4.801 6.371 3.651 127[63.50] 24[12.00]

4 0.622 4.773 6.353 3.624 133[66.50] 25[12.50]

EN 1 0.599 4.936 6.546 4.012 126[63.00] 27[13.50]

2 0.597 4.935 6.565 3.591 126[63.00] 28[14.00]

3 0.608 4.867 6.471 3.443 125[62.50] 25[12.50]

4 0.622 4.766 6.353 3.639 132[66.00] 24[12.00]

HR 1 0.609 4.817 6.467 3.540 127[63.50] 26[13.00]

2 0.605 4.826 6.497 3.548 129[64.50] 29[14.50]

3 0.620 4.738 6.370 3.402 133[66.50] 24[12.00]

4 0.624 4.713 6.339 3.454 135[67.50] 24[12.00]

KNN 1 0.548 5.474 6.949 4.422 112[56.00] 31[15.50]

2 0.493 5.743 7.364 4.860 102[51.00] 38[19.00]

3 0.574 5.191 6.749 4.403 116[58.00] 25[12.50]

4 0.575 5.173 6.737 4.138 117[58.50] 28[14.00]

SVM 1 0.620 4.755 6.375 3.370 128[64.00] 24[12.00]

2 0.594 4.975 6.585 3.655 127[63.50] 25[12.50]

3 0.616 4.824 6.404 3.490 131[65.50] 23[11.50]

4 0.621 4.766 6.363 3.698 134[67.00] 23[11.50]

RF 1 0.622 4.862 6.356 3.746 124[62.00] 23[11.50]

2 0.618 4.883 6.393 3.863 128[64.00] 25[12.50]

3 0.626 4.863 6.321 3.925 121[60.50] 21[10.50]

4 0.629 4.815 6.300 3.858 125[62.50] 22[11.00]

XGBoost 1 0.598 4.984 6.552 3.807 124[62.00] 25[12.50]

2 0.606 4.881 6.490 3.517 130[65.00] 28[14.00]

3 0.608 4.963 6.472 3.736 126[63.00] 27[13.50]

4 0.623 4.773 6.345 3.462 132[66.00] 27[13.50]

ANN 1 0.614 4.919 6.421 3.790 126[63.00] 25[12.50]

2 0.624 4.729 6.338 3.582 132[66.00] 21[10.50]

3 0.639 4.706 6.214 3.551 133[66.50] 26[13.00]

4 0.653 4.544 6.090 3.236 136[68.00] 22[11.00]

Models 1, 2, 3, and 4 are constructed with feature sets 1, 2, 3, and 4, respectively.

Bold indicates the best result of the models based on the same ML methods.

Underline indicates the best result of all models.

< 0.001). The relationship between the SHAP value of ATXN3-

A2 and ATXN3-A2 before normalization (ATXN3 CAGexp) is

shown in Figure 7. With the increase in the length of ATXN3

CAGexp, the SHAP value first decreased and then increased, and

the segmentation point was at ATXN3 CAGexp = 68, which is

similar to the results of a previous study (Chen et al., 2016b).

The dataset was divided into two parts according to ATXN3

CAGexp = 68 and the importance of each feature was checked.
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TABLE 5 Performance on di�erent testing subsets.

Testing

subset

Method Model MAE (yrs) RMSE (yrs) MedianAE (yrs) Proportion < 5 (%) Proportion > 10 (%)

Testing

subset 1:

ATXN3

CAGexp

≤68

LR L 6.67 7.83 6.60 38 28

4 5.75 7.08 3.77 54 17

RR L - - - - -

4 5.49 7.12 3.79 63 21

Lasso L 6.64 7.70 6.53 35 24

4 5.49 7.18 4.05 63 21

EN L 6.63 7.70 6.47 35 24

4 5.45 7.18 3.81 63 21

HR L - - - - -

4 5.39 7.30 3.18 63 17

KNN L 6.41 7.40 6.00 38 17

4 6.03 7.02 5.35 38 17

SVM L 7.30 8.57 6.01 34 28

4 5.42 7.17 4.26 63 21

RF L 6.74 7.67 6.05 42 17

4 6.15 7.30 5.31 42 21

XGBoost L 5.56 7.13 4.15 55 21

4 6.30 7.59 5.16 50 25

ANN L - - - - -

4 4.83 5.95 3.95 54 8

Testing

subset 2:

ATXN3

CAGexp

>68

LR L 4.86 6.37 3.75 60 12

4 4.63 6.19 3.30 68 11

RR L - - - - -

4 4.65 6.22 3.59 68 11

Lasso L 4.82 6.33 3.59 62 12

4 4.67 6.23 3.58 67 11

EN L 4.80 6.31 3.63 63 24

4 4.67 6.23 3.64 66 11

HR L - - - - -

4 4.62 6.20 3.49 68 11

KNN L 5.45 6.91 4.70 54 15

4 5.06 6.70 3.76 61 14

SVM L 4.96 6.47 3.70 60 12

4 4.68 6.24 3.67 68 10

RF L 4.79 6.34 3.67 65 17

4 4.63 6.15 3.48 65 10

XGBoost L 4.78 6.31 3.59 65 10

4 4.56 6.16 3.29 68 12

ANN L - - - - -

4 4.50 6.11 3.20 70 11

Model 4 is constructed with feature set 4.

The results of Model L are those published in the literature.

Bold indicates the best result of models based on the same ML methods.

Underline indicates the best result of all models on the same testing subsets.
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FIGURE 5

Importance ranking according to SHAP value.

The ranking of feature importance and the impact of features are

different in the two parts of the data is shown in Figure 8. The

importance and impact of the features were different in different

part of samples. Compared with cases of ATXN3 CAGexp > 68,

the importance of ATXN3-related features decreased in cases of

ATXN3 CAGexp ≤ 68.

Personalized prediction

The SHAP can provide personalized predictions for each

sample. Two samples with the largest and smallest predicted

AAO were selected as examples of personalized prediction. The

relationship between the predicted AAO and features is shown

in Figure 9. It explains how the value of each variable leads to

the final prediction. The red color represents the increase of

AAO prediction, while the blue color represents a decrease of

AAO prediction.

Discussion

To our knowledge, this is the first study attempting to apply

XAI to the AAO prediction of SCA3/MJD. This study proposed

an XAI model based on feature optimization, which achieved

a better AAO prediction accuracy than previous studies (Peng

et al., 2021a,b) and can explain the impact of features and

provide a personalized prediction.

The relationship between polyQ-related genes and the

AAO may be non-linear because of the complex gene

interaction. We used feature optimization to model the

non-linear relationship between genes and the AAO and

compared different feature optimization methods. The best

feature optimization method (Crossing-Correlation-StepSVM)

can improve the performance of different ML methods. For

future research, the feature optimization method can be used

for other polyQ diseases because the relationships between

the AAO and genetic modifiers are similar in polyQ diseases,

such as SCA1 (Wang et al., 2019), SCA2 (Hayes et al.,

2000; Li et al., 2021), and HD (Hmida-Ben Brahim et al.,

2014).

We compared the performance of 10ML algorithms for

AAO prediction, including LR, RR, Lasso, EN, HR, KNN, SVM,

RF, XGBoost, and ANN, and models constructed with the ANN

achieved the best accuracy. Additionally, although we chose

an ANN to build the XAI model for the final prediction, HR

also achieved good results. Combined with feature optimization,

HR can provide an effective prediction but requires only a few

parameters, which may have more potential in clinical practice.
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FIGURE 6

Impact on the model output of all features.

FIGURE 7

Relationship between the SHAP value and ATXN3 CAGexp.
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FIGURE 8

Impact on model output of all features in the two parts of the data: (A) ATXN3 CAGexp ≤ 68, (B) ATXN3 CAGexp > 68.

FIGURE 9

Examples of personalized prediction: (A) sample with the largest predicted AAO, (B) sample with the smallest predicted AAO. f(x) is the predicted

AAO and E[f(x)] is the expectation of the predicted AAO of all samples.

The XAI proposed in this study performs better in

comparison with the results from the literature, and it achieved

better R2 (0.653), MAE (4.544), RMSE (6.090), MedianAE

(3.236), and proportion < 5 (136[68.00]) values. The previous

piecewise XGBoost model for AAO prediction of SCA3/MJD

patients achieves metrics of MAE (5.56 and 4.78), RMSE (7.13

and 6.31), MedianAE (4.15 and 3.59), and proportion < 5 (55%

and 65%) for CAGexp ≤ 68 and CAGexp > 68, respectively

(Peng et al., 2021a). Another survival analysis study proposed

a parametric survival analysis method to predict the AAO with

a reported R2 of 0.54 (Peng et al., 2021b).

The interpretability of the XAI model was provided by

the result of feature optimization and the SHAP (Figure 5).

All optimized features were of the ATXN3 gene. The most

important feature is not ATXN3-A2 (the length of ATXN3

CAGexp) but the combination of ATXN3-D (the difference in

the length of the two alleles of ATXN3) and ATXN3-M (the

mean length of the two alleles of ATXN3). In addition, optimized

features include crosses related to ATXN1, HTT, ATN1, RAI1,

KCNN3, CACNA1A, and ATXN2. The feature crosses related

to ATXN1 are considered of high importance. This suggests

that the ATXN3 gene is the most important AAO modifier,
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but the relationship between AAO and ATXN3 is not simply

linear, and the factors affecting the AAO are more complex

and associated with more modifiers and gene interactions. The

proposed XAI also helps to achieve a personalized prediction,

which can provide the impact of each feature on the final

prediction output in a specific sample (Figure 9). Personalized

prediction makes the prediction results of the ML model easier

to understand and trust, which may contribute to clinical

decisions in the future. For abnormal samples with inaccurate

prediction, personalized interpretability can also be combined

with medical record analysis, which may also help to discover

more AAOmodifiers and further improve the prediction model.

This study has some limitations. First, the study reanalyzed

data from previous research to provide an XAI model with more

accurate prediction but only included data with a small number

of subjects from a single center. Second, piecewise models may

bemore suitable for AAO prediction because the strong negative

correlation between the AAO andATXN3CAGexp only exists in

cases with ATXN3 CAG repeats > 68 (Chen et al., 2016b). Our

SHAP analysis also supports this segmentation point (Figure 7).

However, there are too few cases withATXN3CAG repeats≤ 68,

so we did not use piecewise models as in the literature (Peng

et al., 2021a). Third, there are 11 subjects with ATXN3 CAGexp

repeat lengths less than 60 or higher than 80 were excluded from

our study, while the model in previous literature (Peng et al.,

2021a) included all subjects. Comparing with the correlation

coefficient reported in the literature, the correlation of ATXN3-

A2 increased (r1 =−0.708, r2 =−0.7190) and that ofATXN3-D

(r1 = −0.378, r2 = −0.3554) and ATXN3-M (r1 = −0.336, r2
= −0.3164) decreased (r1 is the Pearson coefficient reported

in the literature, r2 is the Pearson coefficient in this study).

Although the correlation changes are small, there is still the

possibility of causing differences in the prediction effect. At last,

the improvement of accuracy is still limited, especially for the

cases with ATXN3 CAG repeats ≤ 68. This result suggests a

more complex set of AAO modifying factors. There may be

other related genes that have not been tested, and environmental

influences are difficult to quantify and consider.

Conclusions

This study proposed an XAI based on feature optimization

for AAO prediction in the largest cohort of patients with

SCA3/MJD in mainland China. We compared the performance

of 4 feature optimization methods and 10ML algorithms,

and the model constructed with the ANN and the feature

optimization method of Crossing-Correlation-StepSVM

performed best. Then, we built an XAI based on the

best model and the SHAP to provide an interpretable

and personalized prediction. We hope this study can

provide a reference for clinical treatment and help with

genetic counseling.
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