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ABSTRACT Salmonella sp. infections are associated with contaminated low-moisture
foods (with high fat content) with increasing frequency. Here, we report the complete
genome sequence of Salmonella enterica subsp. enterica serovar Tennessee, which was
isolated from tahini (a paste made from ground sesame seeds) purchased at a local retailer
in Berlin, Germany.

Recent transnational outbreaks of various Salmonella serovars associated with tahini
sesame paste highlight the issue of Salmonella contamination of processed sesame

food (1, 2). In a study analyzing nine different tahini products purchased in Berlin, Germany,
we found one that was positive for Salmonella, and we isolated (3) Salmonella enterica
subsp. enterica Tennessee. Briefly, 25 g of tahini was mixed with 225 mL buffered peptone
water and incubated for 19 h at 37°C. On modified semisolid Rappaport-Vassiliadis (MSRV)
agar, 100ml was incubated for 24 h at 41.5°C. Cell material from MSRV agar was plated on
xylose-lysine-desoxycholate (XLD) agar and incubated for 22 h at 37°C. Black colonies were
confirmed as Salmonella spp. using matrix-assisted laser desorption ionization–time of flight
mass spectrometry (MALDI-TOF MS) (Bruker Daltonics). Serological typing was performed
according to the White-Kaufmann-Le Minor scheme using standard reagents (Sifin Diagnostics
GmbH, Berlin, Germany) (4).

For isolation of genomic DNA (gDNA) used for both short-read Illumina sequencing and
long-read Oxford Nanopore Technologies (ONT) sequencing, one single colony was enriched
in lysogeny broth for 18 h at 37 6 1°C. The PureLink gDNA minikit (Invitrogen, Carlsbad,
CA, USA) was used for gDNA isolation.

The library for short-read sequencing was prepared using the DNA preparation (M)
tagmentation kit (Illumina, San Diego, CA, USA). The library was sequenced on the Illumina
NextSeq benchtop sequencer using the NextSeq 500/550 midoutput kit v2.5 (300 cycles;
Illumina) in 2 � 149-bp cycles. The short-read sequence data were trimmed using fastp
v0.19.5 (5). Trimming resulted in 1,666,364 high-quality reads (82.8% [quality scores of$Q30]).

The library for the MinION platform (ONT, Oxford, UK) was prepared using the rapid
barcoding kit SQK-RBK004 (ONT). The DNA isolation and sequencing kits were used
according to the instructions of the manufacturer.

The MinION library was sequenced for 24 h on an ONT MinION Mk1C device (MinKNOW
v20.03.5, including Guppy base caller v3.4.8) using a Flongle adapter and a FLO-FLG001
Flongle flow cell. The reads obtained were trimmed using Porechop v0.2.3 (https://github
.com/rrwick/Porechop), filtered using NanoFilt v2.7.1, and quality checked using NanoStat
v1.4.0 (6). Trimming and filtering resulted in 30,938 reads, with a read N50 value of 10,167 bp
and 71.6% of bases reaching quality scores above 10.

To assemble and circularize the genome sequence, short- and long-read data sets were
subjected to the hybrid assembler Unicycler v0.4.8 including Pilon v1.23 (7–9).
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The assembly resulted in a circular bacterial chromosome (start gene, dnaA) and a circular
ColRNAI_1 plasmid sequence (Table 1). The overall G1C content of the genome sequence
was 52.2%. For annotation, NCBI PGAP v6.0 was used (10).

For further analysis of the genome sequence, the BakCharak pipeline vv2.1.0 was used
(11). The pipeline includes modules (tools, databases, and options) (Table 1) for identifying
antimicrobial resistance genes, plasmids, and virulence factors and for predicting sequence
types (STs) and serotypes (12–20). For screening of Salmonella pathogenicity islands (SPIs),
SPIFinder2.0 was used (21, 22). Default parameters were used for all tools unless otherwise
specified.

Data availability. Sequencing raw reads were deposited in the NCBI Sequence
Read Archive (SRA) (accession numbers SRR17858527 [ONT data] and SRR17858528
[Illumina data]). The complete genome sequence of 21-SA00318-0 is available at
NCBI (GenBank accession numbers CP091878 [chromosome], CP091879 [plasmid],
and GCF_022162985.1 [latest]). All data are encompassed under BioProject accession number
PRJNA802760.
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Featurea Result(s) Tool(s), database(s), and optionsb

Serovar Salmonella enterica subsp. enterica serovar Tennessee Sistr_cmd v1.1.1 (20)
MLST ST319 MLST v2.19.0, PubMLST database (18, 19)
Chromosome size (bp) 4,825,110
Plasmid type ColRNAI_1 plasmid ABRicate v1.0.1, Center for Genomic Epidemiology database,

PlasmidFinder, Platon v1.4.0 (mode: accuracy, –verbose)
(14–16)

Plasmid size (bp) 3,967

Virulence determinants SPIFinder v2.0, ABRicate v1.0.1, VFDB (minicov/minid: 80) (16, 17, 21)
No. of SPIs 7 (SPI-1 to SPI-5, SPI-8, and SPI-9)
No. of virulence genes 102
Virulence genes
located on SPIsc

SPI-1: invH, invFGEABCIJ, spaOPQRS, sicA, sipBCDA, sicP,
sptP, prgHIJK, orgABC, and avrA; SPI-2:
ssaUTSRQPONVMLK, ssaJIHG, sseGF, sscB, sseEDC,
sscA, sseBA, and ssaEDCB; SPI-3:mgtCB andmisL;
SPI-5: sopB and pipB

Other virulence genes Genes associated with, e.g., adhesion (e.g., fim and lpf),
curli (csg), effectors (e.g., sif, slrP, sop, sse, and ste),
iron transport (ent and fep), and resistance (mig-14)
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ident_min21 coverage_min 0.5) (12, 13)

Stress resistance factors golST NCBI AMRFinderPlus v3.10.1 (–nucleotide –O Salmonella –
ident_min21 coverage_min 0.5) (12, 13)

a The virulence and resistance genes listed here were located on the chromosome. MLST, multilocus sequence typing.
b Default parameters were used for all tools unless otherwise specified.
c Contribution was confirmed by visualization of the chromosome annotation in Geneious Prime v2020.2.2 (22).
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