metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

$Di-\mu-oxido-bis({(R)-(-)-2-[1-(2-amino$ propylimino)ethyl]-1-naphtholato- $\kappa^3 N, N', O$ oxidovanadium(V))

Grzegorz Romanowski,^a* Artur Sikorski^a and Andrzej Wojtczak^b

^aUniversity of Gdańsk, Faculty of Chemistry, Sobieskiego 18/19, 80-952 Gdańsk, Poland, and ^bNicholas Copernicus University, Faculty of Chemistry, Gagarina 7, 87-100 Toruń, Poland

Correspondence e-mail: greg@chem.univ.gda.pl

Received 29 May 2008; accepted 12 June 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.010 Å; disorder in main residue; R factor = 0.085; wR factor = 0.153; data-to-parameter ratio = 12.2.

In the title dinuclear compound, $[V_2(C_{15}H_{17}N_2O)_2O_4]$, each V^{V} atom is six-coordinated by one oxide group, and by two N and one O atom of the tridentate Schiff base ligand, and bridged by two additional oxide O atoms, resulting in a centrosymmetric dimer. The metal centre has a distorted octahedral coordination with the monoanionic Schiff base ligand occupying one equatorial and two axial coordination positions. The separation between V atoms is 3.214 (3) Å. In the crystal structure, there are $N-H \cdots O$, $C-H \cdots O$ and C-H··· π hydrogen bonds, and π - π interactions.

Related literature

For general background, see: Sigel & Sigel (1995); Butler & Walker (1993); Martinez et al. (2001); Rehder (1991); Thompson & Orvig (2000); Evangelou (2002); Kwiatkowski et al. (2003, 2006, 2007); Romanowski et al. (2008); Rehder (1999); Colpas et al. (1994); Li et al. (1988); Fulwood et al. (1995). For related structures, see: Root et al. (1993); Romanowski et al. (2008); Rayati et al. (2007, 2008); Kwiatkowski et al. (2007). For the synthesis, see: Kwiatkowski et al. (2003).

Experimental

Crystal data

 $[V_2(C_{15}H_{17}N_2O)_2O_4]$ $M_r = 648.49$ Monoclinic, C2/c a = 25.187 (5) Åb = 7.663 (2) Å c = 16.898 (3) Å $\beta = 118.09 (3)^{\circ}$

Data collection

Oxford Diffraction Sapphire CCD diffractometer Absorption correction: numerical (CrysAlis RED; Oxford Diffraction, 2006) $T_{\min} = 0.828, T_{\max} = 0.918$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.084$	202 parameters
$wR(F^2) = 0.153$	H-atom parameters constrained
S = 1.23	$\Delta \rho_{\rm max} = 0.66 \ {\rm e} \ {\rm \AA}^{-3}$
2474 reflections	$\Delta \rho_{\rm min} = -0.41 \text{ e } \text{\AA}^{-3}$

 $V = 2877.3 (13) \text{ Å}^3$

Mo $K\alpha$ radiation

 $0.28 \times 0.13 \times 0.12 \text{ mm}$

9202 measured reflections

2474 independent reflections

2086 reflections with $I > 2\sigma(I)$

 $\mu = 0.70 \text{ mm}^{-1}$

T = 298 (2) K

 $R_{\rm int} = 0.078$

Z = 4

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C6-C9/C14/C15 ring.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{ccccccc} \mathrm{N1-H1}A\cdots\mathrm{O1}^{i} & 0.90 & 2.19 & 3.011 \ (6) & 151 \\ \mathrm{C7-H7}A\cdots\mathrm{O2}^{ii} & 0.93 & 2.41 & 3.335 \ (7) & 173 \\ \mathrm{C18-H18}B\cdots\mathrm{O16}^{ii} & 0.96 & 2.56 & 3.482 \ (8) & 161 \\ \mathrm{C3-H3}B\cdots\mathrm{Cg1}^{ii} & 0.97 & 2.95 & 3.874 \ (7) & 159 \end{array}$	$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$N1-H1A\cdotsO1^{i}$	0.90	2.19	3.011 (6)	151
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C7 - H7A \cdots O2^n$	0.93	2.41	3.335 (7)	173
$C3-H3B\cdots Cg1^{n}$ 0.97 2.95 3.874 (7) 159	$C18-H18B\cdots O16^{n}$	0.96	2.56	3.482 (8)	161
	$C3-H3B\cdots Cg1^n$	0.97	2.95	3.874 (7)	159

Symmetry codes: (i) $-x + \frac{1}{2}, -y - \frac{1}{2}, -z$; (ii) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$.

Table 2	_
π - π interactions	(Å,°).

CgI	CgJ	$Cg \cdots Cg$	Dihedral angle	Interplanar distance	Offset
Cg2	Cg2 ⁱⁱⁱ	3.518 (4)	0.0	3.365 (4)	1.025 (4)
<u>_</u>	. 1	()		1	014 010

Symmetry code: (iii) $-x_{-} - y_{-} - z_{-}$ Notes: Cg2 represents the centroid of the C14–C19 ring. $C_{2} \cdots C_{q}$ is the distance between ring centroids. The dihedral angle is that between the planes of the rings CgI and CgJ. The interplanar distance is the perpendicular distance of CgI from ring J. Offset is the lateral offset distance of ring I from ring J.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

This scientific work has been supported from funds for science in years 2007-2009 as a research project (N N204 0355 33 and DS/8210-4-0086-8).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2429).

metal-organic compounds

References

- Butler, A. & Walker, J. V. (1993). Chem. Rev. 93, 1937-1944.
- Colpas, G. J., Hamstra, B. J., Kampf, J. W. & Pecoraro, V. L. (1994). Inorg. Chem. 33, 4669–4675.
- Evangelou, A. M. (2002). Crit. Rev. Oncol. Hematol. 42, 249-265.
- Fulwood, R., Schmidt, H. & Rehder, D. (1995). J. Chem. Soc. Chem. Commun. pp. 1443–1444.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kwiatkowski, E., Romanowski, G., Nowicki, W. & Kwiatkowski, M. (2006). Polyhedron, 25, 2809–2814.
- Kwiatkowski, E., Romanowski, G., Nowicki, W., Kwiatkowski, M. & Suwińska, K. (2003). Polyhedron, 22, 1009–1018.
- Kwiatkowski, E., Romanowski, G., Nowicki, W., Kwiatkowski, M. & Suwińska, K. (2007). Polyhedron, 26, 2559–2568.
- Li, X., Lah, M. S. & Pecoraro, V. L. (1988). Inorg. Chem. 27, 4657–4664.
- Martinez, J. S., Carrol, G. L., Tschirret-Guth, R. A., Altenhoff, G., Little, R. D. & Butler, A. (2001). J. Am. Chem. Soc. 123, 3289–3294.

- Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Poland, Wrocław, Poland.
- Rayati, S., Sadeghzadeh, N. & Khavasi, H. R. (2007). *Inorg. Chem. Commun.* 10, 1545–1548.
- Rayati, S., Wojtczak, A. & Kozakiewicz, A. (2008). Inorg. Chim. Acta, 361, 1530–1533.
- Rehder, D. (1991). Angew. Chem. Int. Ed. Engl. 30, 148-167.
- Rehder, D. (1999). Coord. Chem. Rev. 182, 297-322.
- Romanowski, G., Kwiatkowski, E., Nowicki, W., Kwiatkowski, M. & Lis, T. (2008). Polyhedron, 27, 1601–1609.
- Root, C. A., Hoeschele, J. D., Cornman, C. R., Kampf, J. W. & Pecoraro, V. L. (1993). *Inorg. Chem.* 32, 3855–3861.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sigel, H. & Sigel, A. (1995). Variadium and its Role in Life. In Metal Ions in Biological Systems, Vol. 31, edited by H. Sigel, A & Sigel, A. New York: Marcel Dekker.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Thompson, K. H. & Orvig, C. (2000). J. Chem. Soc. Dalton Trans. pp. 2885– 2892.

supplementary materials

Acta Cryst. (2008). E64, m950-m951 [doi:10.1107/S160053680801787X]

Di- μ -oxido-bis({(R)-(-)-2-[1-(2-aminopropylimino)ethyl]-1-naphtholato- $\kappa^3 N, N', O$ }oxidovanadium(V))

G. Romanowski, A. Sikorski and A. Wojtczak

Comment

Vanadium is a trace element in diverse living forms (Sigel & Sigel, 1995). It plays active roles in many biologically important reactions such as halogenation of organic substrates, activation or fixation of nitrogen through an alternative pathway (Butler & Walker, 1993; Martinez *et al.*, 2001) and potent inhibitor of phosphate-metabolizing enzymes (Rehder, 1991). Some of the vanadium compounds stimulate glucose uptake and inhibit lipid breakdown in a manner remarkably reminiscent of insulin effects (Thompson & Orvig, 2000) or exert preventive effects against chemical carcinogenesis on animals (Evangelou, 2002). Recently, it has been established that vanadium(V) complexes with Schiff bases, which are excellent models for active sites of vanadium containing haloperoxidases, are able to catalyze the oxidation of organic sulfides to the corresponding sulfoxides (Kwiatkowski *et al.*, 2003, 2007; Romanowski *et al.*, 2008). A collection of such models discussed in some detail in a review (Rehder, 1999) show that they contained either N₂O₂ or NO_{4–5} set of donor atoms in the coordination sphere.

The half of the molecule, constituting the asymmetric part of the structure, is related to the other half by the center of symmetry (Fig. 1). The geometry of the coordination environment resembles two edge shared octahedrons that are significantly distorted. The V1=O1 bond length of 1.612 (4) Å is typically for the distances between vanadium and the doubly bonded oxygen atoms which are not involved in donor-acceptor interactions (Kwiatkowski et al., 2003, 2006, 2007; Romanowski *et al.*, 2008). The O2, V1, O2ⁱ, V1ⁱ atoms are situated in edges of a parallelogram with the acute O2-V1-O2ⁱ angle of 77.09 (18)° [symmetry code: (i) -x+1/2,-y+1/2,-z]. The tridentate ligand is coordinated meridionally, its oxygen (O16) and primary amine nitrogen (N1) occupy axial positions. The V1-O1 bond is shorter than V1-O2ⁱ bond (1.658 Å) due to involvement of $O2^{i}$ atom in V1...V1ⁱ bridging. The O1-V1-O2ⁱ angle of 107.6 (2)° indicate significant double bond character of this bond (Colpas et al., 1994) and is close to other cis-VO₂ units (Li et al., 1988). The five-membered ring comprising the propylenediamine moiety exhibits twofold disorder. A disorder of two carbon atoms in the aliphatic five-membered ring is interpreted assuming the presence of two conformations of the CH2-CH(CH3) fragment. The C2 and C17 atoms are disordered over two sites, with occupancy factors of 0.54 (2) and 0.46 (2) for C2A/C17A and C2B/C17B, respectively. The methyl group of the aliphatic five-membered ring assumes a pseudoequatorial position for both conformers. The ligand sites are diastereotopic and therefore the crystal of the complex may be considered as a solid solution of two covalent diastereomers (Kwiatkowski et al., 2006). A rare case of two diastereomers in one crystal was demonstrated earlier (Fulwood et al., 1995), in which is resolved the crystal structure of the monooxovanadium(V) Schiff base complex [VO(sal-Lala)Bu^s]Bu^sOH. Structures of dimeric vanadium(V) Schiff base complexes, but derived from racemic 1,2-diaminopropane, have already been reported (Root et al., 1993; Rayati et al., 2007, 2008).

Hydrogen bonds, C—H^{...} π and π - π interactions stabilize a network formed with the dimeric molecules (Fig. 2, Table 1, 2 and 3).

Experimental

The title complex were obtained in a template/complexation reactions analogous to those described for preparation of dioxovanadium(V) complexes with Schiff base ligands (Kwiatkowski *et al.*, 2003). A sample of 10 mmol of R(-)-1,2-diaminopropane in 10 ml of absolute ethanol was added with stirring to a freshly filtered solution of vanadium(V) oxytriethoxide (10 mmol) in 50 ml of absolute ethanol producing a yellow suspension. 1-Hydroxy-2-acetonaphthone (10 mmol) dissolved in 10 ml of absolute ethanol was slowly added. After refluxing of the resulting mixture for 10 h and its cooling to room temperature the separated solid was filtered off and washed. Crystals suitable for X-ray analysis were obtained by slow recrystallization from ethanol/DMSO solution.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C–H distances of 0.93–0.97 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$ (C–H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for the methyl group) and with N–H distances of 0.90 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$. The C2 and C17 atoms are disordered over two sites, the occupancy ratio was refined and converged to 0.54 (2):0.46 (2).

Figures

Fig. 1. The molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radius.

Fig. 2. The arrangement of the molecules in the crystal structure viewed approximately along the *c* axis. The N—H···O, C—H···O and C—H··· π interactions are represented by dashed lines and π - π interactions by dotted lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (i) 1/2 - x, -1/2 - y, -z, 1/2 - z; (ii) 1/2 - x, -1/2 + y, 1/2 - z; (iii) -x, -y, -z].

Di- μ -oxido-bis({(R)-(-)-2-[1-(2-aminopropylimino)ethyl]-1-naphtholato- $\kappa^3 N$,N',O}oxidovanadium(V))

Crystal data

 $F_{000} = 1344$ $[V_2(C_{15}H_{17}N_2O)_2O_4]$ $M_r = 648.49$ $D_{\rm x} = 1.497 {\rm Mg m}^{-3}$ Mo Kα radiation Monoclinic, C2/c $\lambda = 0.71073 \text{ Å}$ Hall symbol: -C 2yc Cell parameters from 2875 reflections *a* = 25.187 (5) Å $\theta=2.8{-}25.0^{o}$ b = 7.663 (2) Å $\mu = 0.70 \text{ mm}^{-1}$ c = 16.898 (3) Å T = 298 (2) K $\beta = 118.09 (3)^{\circ}$ Needle, yellow $V = 2877.3 (13) \text{ Å}^3$ $0.28 \times 0.13 \times 0.12 \text{ mm}$ Z = 4

Data collection

Oxford Diffraction Sapphire CCD diffractometer	2474 independent reflections
Radiation source: fine-focus sealed tube	2086 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.078$
T = 298(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
$\theta/2\theta$ scans	$\theta_{\min} = 2.8^{\circ}$
Absorption correction: numerical (CrysAlis RED; Oxford Diffraction, 2006)	$h = -25 \rightarrow 29$
$T_{\min} = 0.828, T_{\max} = 0.918$	$k = -9 \rightarrow 8$
9202 measured reflections	$l = -20 \rightarrow 20$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.084$	H-atom parameters constrained
$wR(F^2) = 0.153$	$w = 1/[\sigma^2(F_o^2) + (0.0144P)^2 + 24.507P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.23	$(\Delta/\sigma)_{\rm max} = 0.001$
2474 reflections	$\Delta \rho_{max} = 0.66 \text{ e } \text{\AA}^{-3}$
202 parameters	$\Delta \rho_{min} = -0.41 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
V1	0.22582 (5)	0.07588 (12)	0.02520 (6)	0.0261 (3)	
01	0.1947 (2)	-0.1142 (5)	0.0042 (3)	0.0419 (11)	
N1	0.3137 (2)	-0.0142 (6)	0.0585 (3)	0.0323 (12)	
H1A	0.3102	-0.1053	0.0226	0.039*	
H1B	0.3330	0.0713	0.0457	0.039*	
02	0.28370 (18)	0.3407 (5)	0.0711 (2)	0.0308 (9)	
C3	0.3353 (3)	0.0368 (9)	0.2130 (4)	0.0413 (16)	
H3A	0.3546	0.1468	0.2393	0.050*	
H3B	0.3476	-0.0479	0.2612	0.050*	
N4	0.2701 (2)	0.0595 (6)	0.1714 (3)	0.0266 (10)	
C5	0.2442 (3)	0.0737 (7)	0.2207 (4)	0.0307 (13)	
C6	0.1780 (3)	0.0906 (7)	0.1799 (4)	0.0301 (13)	
C7	0.1481 (3)	0.0356 (7)	0.2291 (4)	0.0361 (15)	
H7A	0.1702	-0.0160	0.2850	0.043*	
C8	0.0877 (3)	0.0571 (9)	0.1958 (4)	0.0413 (16)	
H8A	0.0691	0.0174	0.2287	0.050*	
С9	0.0529 (3)	0.1389 (8)	0.1121 (4)	0.0384 (15)	
C10	-0.0103 (3)	0.1660 (9)	0.0753 (5)	0.0475 (18)	
H10A	-0.0300	0.1282	0.1069	0.057*	
C11	-0.0422 (3)	0.2461 (10)	-0.0052 (6)	0.056 (2)	
H11A	-0.0834	0.2628	-0.0275	0.068*	
C12	-0.0147 (3)	0.3033 (10)	-0.0545 (5)	0.056 (2)	
H12A	-0.0370	0.3601	-0.1089	0.067*	
C13	0.0463 (3)	0.2751 (8)	-0.0219 (4)	0.0415 (16)	
H13A	0.0646	0.3107	-0.0558	0.050*	
C14	0.0811 (3)	0.1941 (7)	0.0611 (4)	0.0315 (13)	
C15	0.1446 (2)	0.1620 (7)	0.0945 (4)	0.0264 (12)	
O16	0.16869 (17)	0.2114 (5)	0.0436 (2)	0.0288 (9)	
C18	0.2780 (3)	0.0802 (9)	0.3211 (4)	0.0414 (15)	
H18A	0.3139	0.1484	0.3397	0.062*	
H18B	0.2887	-0.0361	0.3444	0.062*	
H18C	0.2531	0.1324	0.3436	0.062*	
C2A	0.3524 (5)	-0.070(2)	0.1537 (8)	0.042 (4)	0.54 (2)
H2A	0.3435	-0.1922	0.1590	0.051*	0.54 (2)
C17A	0.419 (2)	-0.055 (6)	0.180 (3)	0.067 (15)	0.54 (2)
H17A	0.4422	-0.1162	0.2359	0.101*	0.54 (2)
H17B	0.4306	0.0653	0.1877	0.101*	0.54 (2)
H17C	0.4262	-0.1063	0.1344	0.101*	0.54 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supplementary materials

C2B H2B C17B H17D H17E H17F	0.3583 (6) 0.3679 0.418 (3) 0.4385 0.4442 0.4084	0.041 (3) 0.1637 -0.071 (6) -0.0718 -0.0207 -0.1885		0.1485 (9) 0.1437 0.184 (4) 0.2485 0.1630 0.1622	0.029 (4)* 0.034* 0.046 (11)* 0.069* 0.069* 0.069*	0.46 (2) 0.46 (2) 0.46 (2) 0.46 (2) 0.46 (2) 0.46 (2)
Atomic displacen	nent parameters ($(Å^2)$				
	U^{11}	<i>U</i> ²²	U ³³	U^{12}	U^{13}	U ²³
V1	0.0346 (5)	0.0226 (5)	0.0201 (5)) 0.0047 (5)	0.0121 (4)	0.0020 (4)
01	0.052 (3)	0.026 (2)	0.049 (3)	0.000(2)	0.024 (2)	0.0016 (19)
N1	0.044 (3)	0.024 (3)	0.034 (3)	0.004 (2)	0.022 (3)	0.002 (2)
O2	0.042 (2)	0.028 (2)	0.023 (2)	0.0073 (18)	0.0157 (19)	0.0015 (17)
C3	0.035 (4)	0.052 (4)	0.029 (3)	0.014 (3)	0.008 (3)	0.009 (3)
N4	0.032 (3)	0.025 (3)	0.023 (2)	0.007 (2)	0.013 (2)	0.010 (2)
C5	0.045 (3)	0.022 (3)	0.025 (3)	-0.003 (3)	0.017 (3)	0.003 (3)
C6	0.043 (3)	0.021 (3)	0.032 (3)	-0.001 (3)	0.022 (3)	0.002 (3)
C7	0.053 (4)	0.026 (3)	0.036 (3)	-0.001 (3)	0.027 (3)	0.001 (3)
C8	0.054 (4)	0.040 (4)	0.042 (4)	-0.008 (3)	0.033 (3)	-0.001 (3)
C9	0.039 (4)	0.032 (3)	0.047 (4)	-0.008 (3)	0.023 (3)	-0.008 (3)
C10	0.037 (4)	0.043 (4)	0.069 (5)	-0.003 (3)	0.030 (4)	-0.001 (4)
C11	0.028 (4)	0.052 (5)	0.074 (6)	0.001 (3)	0.012 (4)	-0.006 (4)
C12	0.042 (4)	0.047 (5)	0.063 (5)	0.008 (4)	0.012 (4)	0.014 (4)
C13	0.041 (4)	0.034 (3)	0.041 (4)	0.001 (3)	0.012 (3)	0.004 (3)
C14	0.035 (3)	0.025 (3)	0.035 (3)	-0.005 (3)	0.017 (3)	-0.005 (3)
C15	0.033 (3)	0.019 (3)	0.026 (3)	-0.003 (2)	0.013 (3)	-0.003 (2)
O16	0.036 (2)	0.028 (2)	0.025 (2)	0.0029 (18)	0.0170 (18)	0.0041 (17)
C18	0.052 (4)	0.048 (4)	0.024 (3)	0.006 (3)	0.017 (3)	0.000 (3)
C2A	0.036 (7)	0.042 (10)	0.040 (7)	0.016 (6)	0.011 (6)	0.011 (6)
C17A	0.041 (13)	0.11 (3)	0.051 (13)) 0.040 (15)	0.020 (9)	0.037 (15)

Geometric parameters (Å, °)

V1—O1	1.612 (4)	C9—C14	1.413 (8)
V1—O2 ⁱ	1.658 (4)	C9—C10	1.425 (9)
V1—O16	1.915 (4)	C10—C11	1.358 (11)
V1—N1	2.127 (5)	C10—H10A	0.9300
V1—N4	2.183 (4)	C11—C12	1.382 (10)
V1—O2	2.404 (4)	C11—H11A	0.9300
N1—C2B	1.466 (14)	C12—C13	1.383 (9)
N1—C2A	1.498 (13)	C12—H12A	0.9300
N1—H1A	0.9000	C13—C14	1.401 (9)
N1—H1B	0.9000	C13—H13A	0.9300
O2—V1 ⁱ	1.658 (4)	C14—C15	1.446 (8)
С3—С2В	1.456 (14)	C15—O16	1.320 (6)
C3—N4	1.460 (7)	C18—H18A	0.9600
C3—C2A	1.502 (14)	C18—H18B	0.9600

supplementary materials

С3—НЗА	0.9700	C18—H18C	0.9600
С3—Н3В	0.9700	C2A—C17A	1.52 (6)
N4—C5	1.282 (7)	C2A—H2A	0.9800
C5—C6	1.479 (8)	C17A—H17A	0.9600
C5—C18	1.499 (8)	C17A—H17B	0.9600
C6—C15	1.395 (8)	С17А—Н17С	0.9600
C6—C7	1.424 (8)	C2B—C17B	1.59 (6)
С7—С8	1.360 (9)	C2B—H2B	0.9800
С7—Н7А	0.9300	C17B—H17D	0.9600
C8—C9	1.413 (9)	С17В—Н17Е	0.9600
C8—H8A	0.9300	C17B—H17F	0.9600
$01 - V1 - O2^{i}$	107.6 (2)	С9—С8—Н8А	119.6
01—V1—016	101.6 (2)	C14—C9—C8	119.4 (6)
02 ⁱ —V1—016	100.23 (18)	C14—C9—C10	117.9 (6)
O1—V1—N1	95.9 (2)	C8—C9—C10	122.7 (6)
O2 ⁱ —V1—N1	92.07 (19)	C11—C10—C9	121.1 (7)
O16—V1—N1	154.36 (19)	C11—C10—H10A	119.5
O1—V1—N4	97.7 (2)	C9—C10—H10A	119.5
O2 ⁱ —V1—N4	153.32 (19)	C10-C11-C12	121.2 (7)
O16—V1—N4	82.56 (17)	C10-C11-H11A	119.4
N1	76.61 (18)	C12—C11—H11A	119.4
01—V1—02	172.50 (19)	C11—C12—C13	119.3 (7)
O2 ⁱ —V1—O2	77.09 (18)	C11—C12—H12A	120.4
O16—V1—O2	82.98 (15)	C13—C12—H12A	120.4
N1—V1—O2	77.93 (17)	C12—C13—C14	121.5 (7)
N4—V1—O2	76.95 (15)	С12—С13—Н13А	119.3
C2B—N1—V1	111.9 (6)	C14—C13—H13A	119.3
C2A—N1—V1	116.4 (5)	C13—C14—C9	119.0 (6)
C2B—N1—H1A	135.2	C13—C14—C15	121.5 (6)
C2A—N1—H1A	108.2	C9—C14—C15	119.5 (5)
V1—N1—H1A	108.2	O16—C15—C6	123.2 (5)
C2B—N1—H1B	78.5	O16-C15-C14	117.4 (5)
C2A—N1—H1B	108.2	C6—C15—C14	119.2 (5)
V1—N1—H1B	108.2	C15—O16—V1	124.1 (3)
H1A—N1—H1B	107.3	C5C18H18A	109.5
V1 ⁱ —O2—V1	102.91 (18)	C5-C18-H18B	109.5
C2B—C3—N4	112.9 (7)	H18A—C18—H18B	109.5
N4—C3—C2A	110.7 (6)	C5—C18—H18C	109.5
С2В—С3—НЗА	91.7	H18A—C18—H18C	109.5
N4—C3—H3A	109.0	H18B-C18-H18C	109.5
С2А—С3—НЗА	122.4	N1—C2A—C3	108.6 (9)
C2B—C3—H3B	124.2	N1—C2A—C17A	111 (2)
N4—C3—H3B	109.1	C3—C2A—C17A	113 (2)
C2A—C3—H3B	96.8	N1—C2A—H2A	108.0
НЗА—СЗ—НЗВ	107.7	С3—С2А—Н2А	108.0
C5—N4—C3	119.9 (5)	C17A—C2A—H2A	108.0
C5—N4—V1	125.8 (4)	C3—C2B—N1	113.0 (10)

C3—N4—V1	114.3 (3)	C3—C2B—C17B	110 (3)
N4—C5—C6	120.8 (5)	N1—C2B—C17B	111 (2)
N4—C5—C18	123.2 (5)	C3—C2B—H2B	106.6
C6—C5—C18	116.0 (5)	N1—C2B—H2B	106.9
C15—C6—C7	119.5 (5)	C17B—C2B—H2B	108.7
C15—C6—C5	121.0 (5)	C2B—C17B—H17D	109.5
C7—C6—C5	119.6 (5)	C2B—C17B—H17E	109.5
C8—C7—C6	121.3 (6)	H17D—C17B—H17E	109.5
С8—С7—Н7А	119.3	C2B—C17B—H17F	109.5
С6—С7—Н7А	119.3	H17D—C17B—H17F	109.5
C7—C8—C9	120.8 (6)	H17E—C17B—H17F	109.5
С7—С8—Н8А	119.6		
O1—V1—N1—C2B	-123.4 (9)	C8—C9—C10—C11	179.6 (7)
O2 ⁱ —V1—N1—C2B	128.7 (9)	C9—C10—C11—C12	0.4 (11)
O16-V1-N1-C2B	9.6 (10)	C10-C11-C12-C13	1.3 (12)
N4—V1—N1—C2B	-26.9 (9)	C11—C12—C13—C14	-1.8 (11)
O2—V1—N1—C2B	52.3 (9)	C12—C13—C14—C9	0.6 (10)
01—V1—N1—C2A	-86.0 (9)	C12-C13-C14-C15	179.0 (6)
O2 ⁱ —V1—N1—C2A	166.1 (9)	C8—C9—C14—C13	180.0 (6)
O16—V1—N1—C2A	47.0 (10)	C10—C9—C14—C13	1.1 (9)
N4—V1—N1—C2A	10.5 (9)	C8—C9—C14—C15	1.5 (9)
O2—V1—N1—C2A	89.8 (9)	C10—C9—C14—C15	-177.4 (6)
$O2^{i}$ —V1—O2—V1 ⁱ	0.0	C7—C6—C15—O16	-178.0 (5)
O16—V1—O2—V1 ⁱ	-102.2 (2)	C5—C6—C15—O16	3.1 (8)
N1—V1—O2—V1 ⁱ	95.0 (2)	C7—C6—C15—C14	5.8 (8)
N4—V1—O2—V1 ⁱ	173.8 (2)	C5—C6—C15—C14	-173.2 (5)
C2B—C3—N4—C5	-173.8 (10)	C13-C14-C15-O16	-0.3 (8)
C2A—C3—N4—C5	149.1 (9)	C9—C14—C15—O16	178.1 (5)
C2B—C3—N4—V1	3.9 (10)	C13-C14-C15-C6	176.2 (5)
C2A—C3—N4—V1	-33.1 (9)	C9—C14—C15—C6	-5.4 (8)
O1—V1—N4—C5	-75.5 (5)	C6-C15-O16-V1	45.4 (7)
O2 ⁱ —V1—N4—C5	123.3 (5)	C14—C15—O16—V1	-138.3 (4)
O16—V1—N4—C5	25.3 (5)	O1—V1—O16—C15	47.0 (4)
N1—V1—N4—C5	-169.7 (5)	O2 ⁱ —V1—O16—C15	157.5 (4)
O2—V1—N4—C5	109.8 (5)	N1-V1-016-C15	-85.1 (6)
O1—V1—N4—C3	106.9 (4)	N4-V1-016-C15	-49.4 (4)
O2 ⁱ —V1—N4—C3	-54.3 (6)	O2-V1-O16-C15	-127.0 (4)
O16—V1—N4—C3	-152.3 (4)	C2B—N1—C2A—C3	59.9 (13)
N1—V1—N4—C3	12.7 (4)	V1—N1—C2A—C3	-30.7 (14)
O2—V1—N4—C3	-67.8 (4)	C2B—N1—C2A—C17A	-65 (2)
C3—N4—C5—C6	-177.8 (5)	V1—N1—C2A—C17A	-155 (2)
V1—N4—C5—C6	4.7 (8)	C2B-C3-C2A-N1	-60.6 (12)
C3—N4—C5—C18	4.2 (9)	N4—C3—C2A—N1	40.1 (13)
V1—N4—C5—C18	-173.3 (4)	C2B—C3—C2A—C17A	63 (2)
N4C5C6C15	-26.7 (8)	N4—C3—C2A—C17A	164 (2)
C18—C5—C6—C15	151.4 (6)	N4—C3—C2B—N1	-27.1 (16)
N4—C5—C6—C7	154.3 (6)	C2A—C3—C2B—N1	66.4 (14)

C18—C5—C6—C7	-27.6 (8)		N4—C3—C2B—C17B		-152.1 (19)
C15—C6—C7—C8	-2.4 (9)		C2A—C3—C2B—C17B		-59 (2)
C5—C6—C7—C8	176.6 (6)		C2A—N1—C2B—C3		-66.9 (14)
C6—C7—C8—C9	-1.6 (10)		V1—N1—C2B—C3		38.2 (15)
C7—C8—C9—C14	2.0 (10)		C2A—N1—C2B—C17B	5	58 (3)
C7—C8—C9—C10	-179.2 (6)		V1—N1—C2B—C17B		163 (3)
C14—C9—C10—C11	-1.6 (10)				
Symmetry codes: (i) $-x+1/2$, $-y+1/2$, $-z$	Ζ.				
Hydrogen-bond geometry (Å, °)					
D—H…A		<i>D</i> —Н	H···A	$D \cdots A$	D—H…A
N1—H1A···O1 ⁱⁱ		0.90	2.19	3.011 (6)	151
C7—H7A···O2 ⁱⁱⁱ		0.93	2.41	3.335 (7)	173
C18—H18B…O16 ⁱⁱⁱ		0.96	2.56	3.482 (8)	161
C3—H3B…Cg1 ⁱⁱⁱ		0.97	2.95	3.874 (7)	159
Symmetry codes: (ii) $-x+1/2, -y-1/2, -y-1/2,$	z; (iii) $-x+1/2,$	y-1/2, -z+1/	/2.		

Table 2

 π - π interactions (Å, °).

CgI	CgJ	Cg···Cg	Dihedral angle	Interplanar distance	Offset
Cg2	Cg2 ⁱⁱⁱ	3.518 (4)	0.0	3.365 (4)	1.025 (4)

Symmetry code: (iii) -x, -y, -z. Notes: Cg2 represents the centre of gravity of the ring C14-C19. Cg. Cg is the distance between ring centroids. The dihedral angle is that between the planes of the rings CgI and CgJ. The interplanar distance is the perpendicular distance of CgI from ring J. The offset is the offset distance of ring I from ring J.

Fig. 2

