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Abstract: Liddle syndrome is an inherited form of low-renin hypertension, transmitted with an
autosomal dominant pattern. The molecular basis of Liddle syndrome resides in germline mutations
of the SCNN1A, SCNN1B and SCNN1G genes, encoding the α, β, and γ-subunits of the epithelial
Na+ channel (ENaC), respectively. To date, 31 different causative mutations have been reported in
72 families from four continents. The majority of the substitutions cause an increased expression
of the channel at the distal nephron apical membrane, with subsequent enhanced renal sodium
reabsorption. The most common clinical presentation of the disease is early onset hypertension,
hypokalemia, metabolic alkalosis, suppressed plasma renin activity and low plasma aldosterone.
Consequently, treatment of Liddle syndrome is based on the administration of ENaC blockers,
amiloride and triamterene. Herein, we discuss the genetic basis, clinical presentation, diagnosis and
treatment of Liddle syndrome. Finally, we report a new case in an Italian family, caused by a SCNN1B
p.Pro618Leu substitution.

Keywords: hypertension; hypokalemia; low renin hypertension; monogenic hypertension; Liddle
syndrome; SCNN1A; SCNN1B; SCNN1G

1. Introduction

Arterial hypertension, affecting about one billion people worldwide, is the most prevalent
modifiable risk factor for cardiovascular diseases and related disability [1]. Essential hypertension is a
multifactorial condition, resulting from a complex interaction between lifestyle and genetic factors.
A positive family history increases the overall risk of developing high blood pressure and genetic
factors account for 30–50% of the individual risk [2]. A minority of the hypertensive patients are affected
by an inherited disease, resulting from single gene germline mutations affecting mineralocorticoid,
glucocorticoid or sympathetic pathways [2,3]. Among these diseases, Liddle syndrome (LS) is caused
by point mutations of the epithelial sodium channel (ENaC), that cause renal aldosterone-independent
sodium reabsorption. The aim of this review is to provide an update on the current knowledge of LS,
including the genetic and pathophysiological basis, the clinical features, the diagnostic and medical
management and a new case is reported.
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2. Liddle Syndrome

2.1. Historical Description

The first family affected by a new clinical syndrome that mimicked primary aldosteronism was
reported by Liddle et al. [4,5] in 1963 (pseudoaldosteronism, subsequently named Liddle syndrome,
OMIM #177200). The index case was a 16-year-old Caucasian girl, who presented with low renin
resistant hypertension (180/110 mmHg), severe hypokalemia (2.8 mmol/L) and metabolic alkalosis.
These features could resemble those of primary aldosteronism, but this disease was ruled out on
the basis of suppressed plasma aldosterone. At the time, Liddle et al. conducted many clinical and
biochemical analyses in order to further characterize this peculiar disorder. Under the condition
of low sodium intake, aldosterone secretion did not increase and urinary sodium excretion rate
decreased, but not to the level that would have been expected in a normal subject. Instead, the urinary
sodium levels fell maximally after the administration of exogenous aldosterone. These pieces of
evidence suggested an inadequate level of plasma aldosterone rather than an intrinsic renal defect
in sodium reabsorption as a cause of the incapability to maximally retain sodium. Compared with
patients affected by Addison’s disease, subjects with LS presented a lower urinary Na+ excretion,
indicating a greater renal reabsorption due to a mechanism different from mineralocorticoid activity.
Urinary mineralocorticoid and glucocorticoid metabolites resulted within the physiologic range.
Notably, spironolactone administration neither modified urinary electrolytes excretion nor corrected
hypokalemia, hence an intrinsic renal defect was hypothesized. Instead, the index case responded to
the administration of triamterene, an inhibitor of the epithelial Na+ channel, that induced an increase
in urinary sodium and a reduction in urinary potassium excretion [4,5]. Moreover, the association
of triamterene (100 mg every 8 h) and a low sodium diet normalized blood pressure (diastolic blood
pressure dropped to 80 mmHg) and hypokalemia (serum K+ rose to 5 mmol/L) [4,6]. Considering
the biochemical profile and the response to triamterene, Liddle et al. hypothesized that the distal
nephron could be the site of sodium retention. The index case developed chronic renal failure due
to hypertensive nephrosclerosis and she underwent renal transplantation in 1989. This intervention
corrected the disorder, normalizing blood pressure (140/79 mmHg) and the kalemia (4.2 mmol/L).
After the transplantation, a regimen of low salt intake resulted in a normal increase in plasma
renin activity and in plasma aldosterone concentration [6]. In 1994, Botero-Velez et al. described
the extended pedigree of the family reported by Liddle et al., thus, demonstrating the autosomal
dominant inheritance of the disorder [6]. Indeed, in the original manuscript, Liddle et al. described the
index case and her two siblings while Botero-Velez et al. studied the index case again at the age of
49 (20 months after kidney transplantation), in addition to 43 family members. They considered as
affected 18 relatives presenting with arterial hypertension, as unaffected 15 normotensive subjects with
an affected parent and ten not-at-risk subjects (partners and offspring of unaffected parents) [6]. A great
variability in clinical features (hypertension severity, age at onset, plasma potassium concentration,
urinary aldosterone excretion levels) suggested a variable penetrance of the disease [7]. Considering the
clinical response to epithelial sodium channel inhibitor triamterene and the lack of improvement using
mineralocorticoid receptor antagonist and a low sodium diet, it was hypothesized that the candidate
gene could be involved in the pathway of sodium handling in the distal nephron. Thus, in 1994,
a complete linkage of LS to the SCNN1B gene (encoding the β subunit of epithelial sodium channel,
ENaC) was demonstrated and the first causative mutation was identified in Liddle’s original kindred
as a premature stop codon, p.Arg566* (originally referred as p.Arg564* according to the homologous rat
sequence) [7]. In the following years, several different germinal mutations in the SCNN1A, SCNN1B
and SCNN1G genes, encoding, respectively, for the α, β and γ subunits of ENaC were identified,
as described below.
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2.2. Pathophysiology and Genetics

ENaC is a amiloride-sensitive epithelial sodium channel, localized in the apical portion
of epithelial cells of distal nephron, distal colon, lung and ducts of exocrine glands [8].
Under physiological conditions, its expression and activity in the distal nephron are positively
regulated by aldosterone and antidiuretic hormone and they are influenced by numerous extracellular
factors, such as sodium, chloride, protons and proteases [9,10]. This channel is crucial, together with
ROMK (renal outer medullary K+) channels and Na+/K+ ATPase, for Na+ reabsorption and, thus,
for electrolytes homeostasis [9] (Figure 1A). The channel is a heteromeric complex constituted of
three homologous subunits, α, β and γ [8,11,12], encoded by the SCNN1A, SCNN1B and SCNN1G
genes, respectively. SCNN1A is located on chromosome 12p13.31, while SCNN1B and SCNN1G are
located on chromosome 16p12.2 [9]. Although the α subunit alone is sufficient to induce a Na+ current,
the expression of the three subunits induces a maximal amiloride-sensitive Na+ current [8]. The amino
acid sequences of the three homologous subunits share 30–40% identity [8,9] and the protein structures
are very similar, composed of two short intracellular N-terminus and C-terminus, two transmembrane
domains (identified as TM1 and TM2) and a big extracellular loop [9,13]. Within the C-terminus
of all three ENaC subunits, there is a highly conserved sequence, named the PY (Proline Tyrosine)
motif [14]. This proline-rich sequence, PPxY, is a binding site for a member of the ubiquitin ligase
family, Nedd4 (Neural precursor cell expressed, developmentally down-regulated 4), that mediates
the internalization and the proteasomal degradation of the channel [9,14–16].
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Figure 1. (A) Physiopathology of ENaC. Under physiological conditions, the epithelial Na+ channel 
(ENaC) is expressed on the luminal side of distal nephron epithelium. ENaC is positively regulated 
by aldosterone and antidiuretic hormone and allows the passage of Na+ ions from lumen toward 
cytoplasm. The proline-rich sequence (indicated as PY), located at the C-terminus of each subunit, 
regulates channel internalization and degradation, through Nedd4 binding and ubiquitination. ENaC 
function is combined with K+ channel ROMK (green triangles) and Na+/K+ ATPase (blue ovals) and it 
is crucial for hydroelectrolytic homeostasis, consisting in sodium renal reabsorption and potassium 
excretion; (B) β and γ subunits mutations. The germline mutations of the SCNN1B and SCNN1G genes 
causes the loss or disruption of proline-rich sequence that has a pivotal role in negative regulation of 
the channel. These mutations are gain-of-function and determine an increased membrane density of 
ENaC and a consequent increase in renal Na+ reabsorption; (C) α subunit mutation. The germline 
mutation of the SCNN1A gene affects the extracellular domain, causing the disruption of a disulphide 
bridge. It is a gain-of-function mutation that leads to an increase of the open probability of the channel 
and a consequent increase in Na+ current, without affecting the PY motif. 

The first germinal mutation in the SCNN1G gene, resulting in the nonsense substitution 
p.Trp573*, was identified by Hansson et al. in 1995 [18]. Again, this mutation erases the γ subunit’s 
C-terminus, causing the loss of the PY motif. In the following years, 24 different mutations of the β 
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countries (Table 1). The vast majority of the reported cases are determined by missense (ten different 
in 30 families), nonsense (eight in 21 families) or frameshift mutations (12 in 20 families) in SCNN1B 
or SCNN1G genes, that cause loss or disruption of the PY motif [9,19]. The loss of the proline-rich 
sequence prevents the internalization and degradation of the channel via the ubiquitination-
proteasomal pathway and allows the accumulation of ENaC in the distal nephron apical membrane 
leading to an increase in sodium reabsorption [9,20,21]. The mutations are in fact responsible for an 
augmented apical membrane channel density and a subsequent increase in amiloride-sensitive 
inward sodium current, as demonstrated by in vitro studies in Xenopus laevis oocytes (Figure 1B) [21]. 
In 1996, Firsov et al. developed a quantitative method, based on the binding of a monoclonal antibody 
against a FLAG epitope inserted in the extracellular domain of α, β and γ subunits, and demonstrated 
a significant correlation between the entity of Na+ inward current and the number of ENaC on the 
cellular membrane [22]. 

Interestingly, additional mechanisms have been implicated in the augmented Na+ reabsorption, 
including an increase in channel open probability [23], an increase in the fraction of proteolitically 
cleaved channel (active) [24], together with a reduced feedback inhibition of ENaC by intracellular 
Na+ [25].

Figure 1. (A) Physiopathology of ENaC. Under physiological conditions, the epithelial Na+ channel
(ENaC) is expressed on the luminal side of distal nephron epithelium. ENaC is positively regulated by
aldosterone and antidiuretic hormone and allows the passage of Na+ ions from lumen toward cytoplasm.
The proline-rich sequence (indicated as PY), located at the C-terminus of each subunit, regulates
channel internalization and degradation, through Nedd4 binding and ubiquitination. ENaC function is
combined with K+ channel ROMK (green triangles) and Na+/K+ ATPase (blue ovals) and it is crucial
for hydroelectrolytic homeostasis, consisting in sodium renal reabsorption and potassium excretion;
(B) β and γ subunits mutations. The germline mutations of the SCNN1B and SCNN1G genes causes
the loss or disruption of proline-rich sequence that has a pivotal role in negative regulation of the
channel. These mutations are gain-of-function and determine an increased membrane density of ENaC
and a consequent increase in renal Na+ reabsorption; (C) α subunit mutation. The germline mutation
of the SCNN1A gene affects the extracellular domain, causing the disruption of a disulphide bridge.
It is a gain-of-function mutation that leads to an increase of the open probability of the channel and a
consequent increase in Na+ current, without affecting the PY motif.

Liddle syndrome results from germline mutations in SCNN1A, SCNN1B or SCNN1G genes.
The first mutation to be identified was the nonsense p.Arg566* substitution of the β subunit, in the
large kindred described by Liddle et al. and subsequently by Botero-Velez et al. [4,6,7,17]. This mutation
causes a truncation of the C-terminus of the β subunit with loss of the PY motif.

The first germinal mutation in the SCNN1G gene, resulting in the nonsense substitution p.Trp573*,
was identified by Hansson et al. in 1995 [18]. Again, this mutation erases the γ subunit’s C-terminus,
causing the loss of the PY motif. In the following years, 24 different mutations of the β subunit and six
different mutations of the γ subunit were identified in 72 families from different countries (Table 1).
The vast majority of the reported cases are determined by missense (ten different in 30 families),
nonsense (eight in 21 families) or frameshift mutations (12 in 20 families) in SCNN1B or SCNN1G genes,
that cause loss or disruption of the PY motif [9,19]. The loss of the proline-rich sequence prevents the
internalization and degradation of the channel via the ubiquitination-proteasomal pathway and allows
the accumulation of ENaC in the distal nephron apical membrane leading to an increase in sodium
reabsorption [9,20,21]. The mutations are in fact responsible for an augmented apical membrane channel
density and a subsequent increase in amiloride-sensitive inward sodium current, as demonstrated by
in vitro studies in Xenopus laevis oocytes (Figure 1B) [21]. In 1996, Firsov et al. developed a quantitative
method, based on the binding of a monoclonal antibody against a FLAG epitope inserted in the
extracellular domain of α, β and γ subunits, and demonstrated a significant correlation between the
entity of Na+ inward current and the number of ENaC on the cellular membrane [22].

Interestingly, additional mechanisms have been implicated in the augmented Na+ reabsorption,
including an increase in channel open probability [23], an increase in the fraction of proteolitically cleaved
channel (active) [24], together with a reduced feedback inhibition of ENaC by intracellular Na+ [25].
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Table 1. Clinical and biochemical phenotype of patients affected by Liddle’s syndrome. *—in the original manuscript the mutation is reported according to the
homologous rat sequence, HT—hypertension, SD—sudden death, LVH—left ventricular hypertrophy, TOD—target organ damage, CV—cardio vascular, n.a.—not
available. Hypokalemia defined as serum K+ <3.5 mmol/L, hypoaldosteronemia defined as serum aldosterone <5 ng/dL or urinary aldosterone <5 µg/24 h.

Study Country Families (n)
Patients

(Genetic/Clinical
Diagnosis)

Sex (M/F, not
Available)

Hypertension
(n/tot Available)

Spontaneous
Hypokalemia

(n/tot Available)

Low Aldosterone
(n/tot Available) Reported Symptoms/TOD/CV Events/Other

SCNN1A mutations (NM_001038.5→NP_001029.1 isoform 1)

p.Cys479Arg

Salih M. (2017) [26] The Netherlads 1 2/0 1/1 1/2 1/1 2/2 None

SCNN1B mutations (NM_000336.2→NP_000327.2)

p.Gln564*

Liu K. (2017) [27] China 1 1/0 1/0 1/1 0/1 0/1 Stroke

p.Arg566*

Shimkets R.A. (1994) [7] * USA 2 19/4 10/8, 1 19/19 3/3 3/3 Renal failure, history of juvenile CV accidents
Melander O. (1998) [28] * Sweden 1 6/0 2/4 4/6 2/6 3/5 None
Kyuma M. (2001) [29] * Japan 1 3/0 2/1 3/3 2/3 0/1 Muscular weakness, retinopathy

Shi J.Y. (2010) [30] * China 1 1/0 1/0 1/1 1/1 1/1 History of stroke
Gong L. (2014) [31] China 1 3/0 2/1 3/3 3/3 0/1 LVH

Wang L.P. (2015) [32] China 1 1/0 1/0 1/1 1/1 0/1 None
Polfus L.M. (2016) [33] USA 1 2/0 1/1 2/2 1/1 1/1 Asthenia, palpitation, LVH, proteinuria

Cui Y. (2017) [34] * China 3 3/6 1
2 3/3 3/3 0/3 Dizziness, headache, history of SD and stroke

Liu K. (2017) [27] China 1 3/0 2/1 3/3 3/3 0/3 LVH

p.Gln568*

Cui Y. (2017) [34] China 1 1/0 1/0 1/1 1/1 0/1 Dizziness, headache

p. Ser570Tyrfs*589

Freerks R. (2017) [35] South Africa (Black
origin) 1 1/0 1/0 1/1 1/1 1/1 Headache, muscle fatigue, exertional

dyspnoea, retinopathy, LVH

p.Pro575Argfs*591

Phoojaroenchanachai M.
(2015) [36] Thailand 1 2/1 1/1 2/2 2/2 1/1 Lightheadedness, proximal muscle weakness

p. Ala579Leufs*582

Jeunemaitre X. (1997) [37] France 1 4/0 3/1 4/4 4/4 4/4 History of SD

p.Gln591*

Shimkets R.A. (1994) [7] * USA 1 1/0 0/0, 1 1/1 0/0 0/0 n.a.

p.Thr594Hisfs*607

Shimkets R.A. (1994) [7] * USA 1 1/0 0/0, 1 1/1 0/0 0/0 n.a.

p.Ala595Argfs*607

Findling J.W. (1997) [38] * USA 1 8/2 1/7 5/8 2/7 7/7 Myocardial infarction
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Table 1. Cont.

Study Country Families (n)
Patients

(Genetic/Clinical
Diagnosis)

Sex (M/F, not
Available)

Hypertension
(n/tot Available)

Spontaneous
Hypokalemia

(n/tot Available)

Low Aldosterone
(n/tot Available) Reported Symptoms/TOD/CV Events/Other

p.Arg597Profs*607

Inoue T. (1998) [39] Japan 1 2/4 0/2 2/2 1/2 2/2 None
Jackson S.N. (1998) [40] * UK 1 4/1 3/1 3/4 1/2 4/4 None
Nakano Y. (2002) [41] * Japan 1 1/0 0/1 1/1 1/1 1/1 None

Gong L. (2014) [31] China 1 1/1 0/1 1/1 1/1 0/1 Dizziness, chronic kidney disease, SD, history
of stroke

Awadalla M. (2017) [42] USA (Black origin) 1 1/6 0/1 1/1 1/1 1/1 Proteinuria

p.Arg597Alafs*675

Shimkets R.A. (1994) [7] * USA 1 2/0 0/2 2/2 0/0 0/0 n.a.

p.Thr601Aspfs*607

Ma X. (2001) [43] China 1 8/0 5/3 8/8 4/8 8/8 Fatigue, headache, nycturia, history of
cerebral hemorrhage

Hiltunen T.P. (2002) [44] Finland 1 4/0 1/3 3/4 1/1 0/0 None

p.Pro603Alafs*607

Cui Y. (2017) [34] China 2 3/0 3/0 3/3 3/3 0/3 Headache, dizziness, history of stroke and SD

p.Pro616Leu

Gao L. (2013) [45] * China 1 7/3 5/2 7/7 7/7 0/7 Tachycardia, LVH, history of stroke
Liu K. (2017) [27] China 3 7/0 2/5 7/7 5/7 1/7 LVH

Kuang Z.M. (2017) [46] China 1 2/1 1/1 2/2 1/2 0/1 Muscular weakness, history of cerebral
hemorrhage

p.Pro617His

Sawathiparnich P. (2009) [47] * Thailand 1 4/2 0/4 4/4 1/2 3/3 Headache, LVH

p.Pro617Leu

Rossi E. (2008) [48] Italy 1 1/2 1/0 1/1 1/1 1/1 LVH
Rossi E. (2011) [49] Italy 1 4/4 2/2 4/4 0/4 4/4 LVH

Caretto A. (2014) [50] Italy 1 4/1 1/3 3/3 1/3 2/2
Headache, visual scotoma, fetal growth

retardation, history of stroke and cerebral
hemorrhage

p.Pro617Ser

Inoue J. (1998) [51] * Japan 1 4/2 4/0 1/4 3/4 0/0 None
Cui Y. (2017) [34] China 1 1/0 0/1 1/1 1/1 0/1 Headache, dizziness

p.Pro617Serfs*621

Cui Y. (2017) [34] China 1 1/0 1/0 1/1 0/1 0/1 Headache, dizziness
p.Pro618His

Freundlich M. (2005) [52] USA (Black) 1 2/0 1/1 2/2 0/1 1/1 None
Wang W. (2006) [53] * China 1 5/0 2/3 4/5 5/5 1/1 Muscular weakness

Yang K.Q. (2018) [54] China 1 6/2 3/3 4/6 4/6 6/6 Syncope, microalbuminuria, LVH, headache,
history of stroke
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Table 1. Cont.

Study Country Families (n)
Patients

(Genetic/Clinical
Diagnosis)

Sex (M/F, not
Available)

Hypertension
(n/tot Available)

Spontaneous
Hypokalemia

(n/tot Available)

Low Aldosterone
(n/tot Available) Reported Symptoms/TOD/CV Events/Other

p.Pro618Leu

Hansson J.H. (1995) [55] * USA (Black origin) 1 3/0 1/2 3/3 3/3 2/2 Stroke
Uehara Y. (1998) [56] * Japan 1 1/0 0/1 1/1 1/1 1/1 None
Takeda I. (1999) [57] * Japan 1 1/0 0/0, 1 1/1 1/1 0/0 n.a.
Gao P.J.(2001) [58] * China 1 5/2 4/1 4/5 1/5 1/5 History of stroke and SD

Yamashita Y. (2001) [59] * Japan 1 1/0 1/0 1/1 0/0 0/0 n.a.
Cui Y. (2017) [34] China 2 2/0 2/0 2/2 2/2 0/2 None

Büyükkaragöz B. (2016) [60] Turkey 1 5/0 1/4 5/5 3/5 4/4 Headache, dizziness, LVH, retinopathy,
history of SD

This manuscript Italy 1 1/1 1/0 1/1 1/1 0/1 History of SD

p.Pro618Arg

Ciechanowicz A. (2005) [61] * Czech Republic 1 2/0 2/0 2/2 2/2 2/2 None
Furuhashi M. (2005) [62] * Japan 1 2/0 0/2 1/2 2/2 2/2 Asthenia

p.Pro618Ser

Uehara Y. (1998) [56] * Japan 1 2/2 1/1 2/2 2/2 1/2 None
Bogdanović R. (2012) [63] Serbia 1 3/3 2/1 3/3 1/3 3/3 LVH, history of SD

Wang L.P. (2012) [64] * China 1 3/0 0/3 3/3 3/3 0/3 None

p. Asn619Glnfs*621

Yang K.Q. (2015) [65] China 1 1/0 1/0 1/1 1/1 1/1 None
Cui Y. (2017) [34] China 1 1/0 1/0 1/1 1/1 0/1 Headache, dizziness, history of stroke
Liu K. (2017) [27] China 1 1/0 1/0 0/1 1/1 1/1 Mild impairment of renal function

p.Tyr620His

Tamura H. (1996) [66] * Japan 1 5/0 3/2 5/5 2/4 4/4 Chronic kidney disease

SCNN1G mutations (NM_001039.3→NP_001030.2)

p.Asn530Ser

Hiltunen T.P. (2002) [44] Finland 1 2/0 1/1 2/2 1/2 0/1 None

p.Gln567*

Shi J.Y. (2010) [30] China 1 3/0 2/1 1/1 1/1 0/1 n.a.

Zhang P. (2017) [67] China 1 1/0 1/0 1/1 1/1 1/1 Muscular weakness, polyuria, polydipsia,
LVH

p.Glu571*

Wang L.P. (2015) [32] China 1 6/1 2/4 5/6 6/6 0/6 History of stroke
Liu K. (2017) [27] China 1 5/0 1/4 5/5 5/5 0/5 Stroke, aortic stenosis

p.Trp573*

Hansson J.H. (1995) [18] * Japan 1 6/0 2/4 6/6 5/6 4/6 Leg numbness

p.Trp575*

Yamashita Y. (2001) [59] * Japan 1 1/0 0/0, 1 1/1 0/0 0/0 n.a.

p.Glu583Aspfs*585

Wang Y. (2007) [68] China 1 1/0 1/0 1/1 1/1 0/1 None

TOTAL

- 72 200/51 97/98, 5 182/197 (92,4%) 117/163 (71,8%) 85/146 (58,2%) -
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As an example, the reported mutation p.Asn530Ser in the γ subunit [44] which is located in the
TM2 segment and does not affect the PY motif, causes a two-fold increase in amiloride-sensitive Na+

current, that was not associated to an increase in cell surface expression of the channel [44].
Recently, a germline mutation in the α subunit (p.Cys479Arg) was identified in a Caucasian

family affected by Liddle syndrome (Table 1) [26]. This missense mutation is localized in the highly
conserved extracellular domain of the subunit and leads to the disruption of a disulphide bridge.
The p.Cys479Arg substitution increases the open conformation of the channel, resulting in a two-fold
increase in Na+ current, without affecting channel density at the plasma membrane [26].

In vivo studies conducted on mice homozygous for the SCNN1B p.Arg566* mutation, indicate that
the transition zone between the late distal convoluted tubule and the connecting tubule, is the main
nephron site of ENaC hyperactivity in LS [69], where its activity is largely aldosterone independent [70].
However, ENaC is also expressed in several brain structures, including the supraoptic nucleus,
magnocellular paraventricular nucleus, hippocampus, choroid plexus, ependyma, and brain blood
vessels [71]. Mice lacking Nedd4-2 (Nedd4−/−) develop a phenotype of LS and display an increased
ENaC expression in the central nervous system together with an increased blood pressure response
after the infusion of Na+-rich cerebrospinal fluid compared to wild-type animals [72]. Similarly,
Nedd4-2−/− mice display a marked increase in cerebrospinal fluid Na+ concentration, following a
high sodium diet. Both effects were largely prevented by the intra-cerebro-ventricular infusion of the
ENaC blocker benzamil, raising the question as to whether a similar mechanism could be implicated
in the pathogenesis of arterial hypertension in patients affected by LS as well [72].

Interestingly, specific β ENaC single nucleotide polymorphisms (SNPs) have been associated with
arterial hypertension. In particular, the SNP rs3743966 in intron 12 (c.1543-112A>T) was significantly
associated with essential hypertension in Chinese hypertensive families [73] and the intronic variants
rs7205273 (c.-9+11091C>T) and rs8044970 (c.311+1599T>G) were associated with blood pressure in
a large Korean population [74]. The missense SNPs (rs1799979, rs149868979 and rs1799980 leading
to the substitutions p.Thr594Met, p.Arg563Gln and p.Gly442Val), have been found to be associated
with arterial hypertension and with increased markers of Na+ channel activity [75–78]. In particular,
the p.Thr594Met substitution was highly prevalent in a large population of black African origin,
its frequency increased with the severity of hypertension [77] and was significantly associated with low
plasma renin activity [76].The association of α ENaC polymorphisms (rs2228576, rs11542844, rs3741913)
(resulting in the substitutions p.Thr663Ala, p.Ala334Thr and p.Cys618Phe) have been associated with
high blood pressure in some studies, but not in others [79]. Functional studies in Xenopus laevis oocytes
showed that the p.Cys618Phe and p.Ala663Thr polymorphisms (but not the p.Thr633Ala) increased
channel activity by 3.3 and 1.6-fold, respectively [79]. Similarly, after different studies showed an
association between SCNN1G locus and blood pressure variation [80,81], four SCNN1G intronic SNPs,
rs13331086 (c.914-468T>G), rs11074553 (c.1077+2571G>A), rs4299163 (c.1077+3271C>G) and rs5740
(c.1176+14A>G) resulted to be associated to systolic blood pressure in the general Australian white
population, after adjustment for age, sex and body mass index [82]. In particular, the association of
rs13331086 was confirmed in a much larger cohort including more than 8000 individuals and the minor
allele of this SNP was associated with a 1 mmHg increase in systolic blood pressure and 0.52 mmHg
increase in diastolic blood pressure [83].

2.3. Diagnosis Prevalence and Phenotypes

The prevalence of Liddle syndrome across the general hypertensive population is unknown.
In two recent studies, including 330 and 766 Chinese patients affected by arterial hypertension, after
the exclusion of the most common secondary forms, the prevalence of Liddle syndrome resulted to be
1.52% (5/330) [32] and 0.91% (7/766) [27], respectively. Through genome-wide analysis, Pagani et al.
demonstrated the presence of a common ancestor for three apparently unrelated Italian families
carrying the p.Pro617Leu β mutation. Estimating the number of generations intervening between LS
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patients reported as unrelated, the authors suggested a much higher prevalence of LS than currently
estimated [84].

The diagnosis of Liddle syndrome is based on SCNN1A, SCNN1B and SCNN1G gene sequencing.
The genetic test is appropriate in the presence of early onset hypertension, hypokalemia, low renin
and low aldosterone, with or without a positive family history. Genetic screening has to be performed
also in first-degree relatives of a mutation carrier given the autosomal dominant inheritance (50% risk
of transmission) and the variable phenotype reported in some families.

The typical clinical feature is resistant, early onset salt-sensitive arterial hypertension, often
associated with a family history for early onset hypertension and sudden death. Biochemically,
the characteristic findings are hypokalemia, metabolic alkalosis, suppressed PRA (plasma renin activity)
and low serum aldosterone levels (Table 1). Hypertension results from increased Na+ reabsorption
at the distal nephron level, leading to volume expansion, which is also responsible for the observed
biochemical phenotype of low renin and low serum aldosterone. At the cellular level, following
ENaC opening, 3 Na+ ions are actively exchanged for 2 K+ ions across the basolateral membrane
by the Na+/K+-ATPase (Figure 1A), which exit the apical membrane through different K+ channels
and are lost in the urine (resulting in hypokalemia and metabolic alkalosis) [85]. Other signs and
symptoms frequently reported arise as a consequence of hypokalemia and include muscular weakness,
polyuria (as low K+ concentrations in the tubular fluid prevent the Na+/2Cl−/K+ pump of the thick
ascending limb of the loop of Henle and the Na+/K+ pump of the collecting duct from working
properly [86] and downregulate aquaporin-2 channels [87]), polydipsia (secondary to polyuria), and as
a consequence of hypertension, including headache, dizziness, retinopathy, chronic kidney disease, left
ventricular hypertrophy and sudden death (supposed to be caused by malignant arrhythmias elicited
by severe hypokalemia).

However, extremely severe phenotypes and mild forms can coexist, with some patients carrying
a causative mutation who are normotensive (Table 1) or in whom a clinical diagnosis of LS was made
in old age [88]. Systematic review of the reported cases revealed that hypertension is present in 92.4%
of the patients, hypokalemia (defined as serum K+ <3.5 mmol/L) in 71.8% and hypoaldosteronemia
(defined as serum aldosterone <5 ng/dL) in 58.2% of the cases. As reported for other forms of
monogenic hypertension [89,90], this variability is not only observed between kindreds carrying
different mutations, but also between affected members of the same family (Table 1). It is likely that
both environmental and genetic factors, including Na+ intake and polymorphisms in genes involved
in Na+ handling could influence the phenotypic manifestation of the disease [63].

The variable expression of the clinical phenotype can hamper the diagnosis of Liddle syndrome,
that might be overlooked in patients with a mild clinical manifestation.

The specific treatment of LS is represented by K+-sparing diuretics amiloride and triamterene,
that are ENaC blockers. According to the pathophysiology, the efficacy of the ENaC blockers is
enhanced by dietary low salt intake (2 g NaCl/day) [54]; indeed, the competition between these
molecules and sodium at the level of the ENaC ionic pore is well known [17]. ENaC blockers are
effective in normalizing both blood pressure and the typical biochemical alterations (hypokalemia,
suppressed PRA and low aldosterone level). Monitoring serum electrolytes during therapy is
worthwhile, although the incidence of hyperkalemia is rare if renal function is normal and potassium
intake is not excessive [17]. In most countries these drugs are commercialized only in association with
thiazide or loop diuretic and the fixed doses could be a disadvantage in titrating therapy. Amiloride
appears to be a safe and effective medication in pregnancy in reaching optimal blood pressure values
and normal kalemia [42,50]. Neither hypertension nor hypokalemia improve under treatment with
spironolactone (since activation of the mineralocorticoid receptor is not implicated in Na+ reabsorption)
and this might represent an additional clinical criterion to suspect Liddle syndrome [91].
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3. Description of a New Case of Liddle Syndrome

The index case is a 13-year-old Caucasian boy referred to our Hypertension Unit by the Pediatric
Endocrinology Department for arterial hypertension that had been diagnosed six months before. His
mother was normotensive and in general good health. His father, affected by arterial hypertension
and hypokalemia, died at the age of 38 of sudden cardiac death. The patient was born at term from an
uneventful pregnancy to non-consanguineous parents and his past medical history was unremarkable,
with no clinical signs of abnormal sexual development. On physical examination, his height and
weight were 165 cm (86th percentile for age and sex) and 55 kg (80th percentile for age and sex),
respectively. At diagnosis, blood pressure was 184/109 mmHg (>99th percentile for age, gender and
height (SBP, 90th percentile: 125 mmHg; 95th percentile: 129 mmHg; 99th percentile: 136 mmHg. DBP,
90th percentile: 79 mmHG; 95th percentile: 83 mmHg; 99th percentile: 91 mmHg) [92] and serum
potassium was 3.2 mmol/L (normal range 3.5–5.0 mmol/L). Assessment of target organ damage
revealed neither left ventricular hypertrophy nor microalbuminuria.

The patient was investigated to exclude secondary forms of hypertension. Low PRA (<0.1 ng/mL/h)
and low serum aldosterone were detected on different occasions (1.0–5.9 ng/dL). 17-OH-progesterone,
dehydroepiandrosterone, 4-δ-androstenedione, urinary cortisol and urinary androgen catabolites
resulted in normal range for sex and age. The urinary steroid profile for apparent mineralocorticoid
excess syndrome resulted negative (tetra-hydrocortisol + allo-tetra-hydrocortisol/tetra-hydrocortisone
= 1.45). After three months of therapy with spironolactone (50 mg daily) without clinical and
biochemical response, Liddle syndrome was hypothesized. The patient was treated with amiloride
(5 mg daily) that successfully controlled blood pressure (120/65 mmHg) and normalized plasma K+

(4.8 mmol/L). The diagnosis of Liddle syndrome was confirmed by genetic analysis that identified
the β ENaC germline mutation p.Pro618Leu. Considering the clinical presentation of the index case’s
father, the inheritance of the mutation by paternal lineage is highly probable. However, a DNA sample
from his father was not available.

4. Conclusions

Liddle syndrome is genetic autosomal dominant form of low renin arterial hypertension caused
by germline mutations in the SCNN1A, SCNN1B and SCNN1G genes, encoding, respectively, the α, β
and γ subunits of the epithelial sodium channel ENaC. Despite the typical phenotype presenting with
severe hypertension and hypokalemia, the disease can be clinically heterogeneous, even with mild
phenotypes. Herein, we report a new case caused by the germline p.Pro618Leu mutation of the gene
SCNN1B. The index case presented with high blood pressure and hypokalemia at the age of 13 and a
family history of sudden death. Hypertension and hypokalemia were well controlled by amiloride.

Considering the frequency of early-onset hypertension and severity of correlated complications,
a well-timed diagnosis of LS is very important in order to administer the proper therapy.

In conclusion, further studies are needed to better define the clinical manifestations and the real
prevalence of LS, an example of actionable genetic disease that warrant a proper therapy in order to
prevent target organ damage and associated cardiovascular complications.
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