
Vol. 30 ISMB 2014, pages i293–i301
BIOINFORMATICS doi:10.1093/bioinformatics/btu266

ExSPAnder: a universal repeat resolver for DNA fragment

assembly
Andrey D. Prjibelski1,y,*, Irina Vasilinetc1,y, Anton Bankevich1, Alexey Gurevich1,
Tatiana Krivosheeva1, Sergey Nurk1, Son Pham4, Anton Korobeynikov1,2, Alla Lapidus1,3

and Pavel A. Pevzner1,4

1Algorithmic Biology Lab, St. Petersburg Academic University, St. Petersburg, Russia, 2Department of Mathematics and
Mechanics, 3Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University,
St. Petersburg, Russia and 4Department of Computer Science and Engineering, University of California, San Diego, USA

ABSTRACT

Next-generation sequencing (NGS) technologies have raised a chal-

lenging de novo genome assembly problem that is further amplified in

recently emerged single-cell sequencing projects. While various NGS

assemblers can use information from several libraries of read-pairs,

most of them were originally developed for a single library and do

not fully benefit from multiple libraries. Moreover, most assemblers

assume uniform read coverage, condition that does not hold for

single-cell projects where utilization of read-pairs is even more chal-

lenging. We have developed an exSPAnder algorithm that accurately

resolves repeats in the case of both single and multiple libraries of

read-pairs in both standard and single-cell assembly projects.

Availability and implementation: http://bioinf.spbau.ru/en/spades

Contact: ap@bioinf.spbau.ru

1 INTRODUCTION

Most of existing next-generation sequencing (NGS) platforms

generate read-pairs—pairs of reads (called mates) that are

sequenced from different ends of a genomic fragment with ap-

proximately known length (called the insert size). Because the

insert size usually exceeds the length of a single read, read-

pairs may match up unique regions surrounding repeats that

are longer than the read length. A combination of several

libraries of read-pairs with different insert sizes is often used to

produce high-quality assemblies (Butler et al. 2008; Bresler et al.,

2012). Paired-end libraries usually have insert size51 kb and are

used for resolving relatively short repeats. Jumping libraries are

characterized by an average insert size of anywhere from 1 to 20

kb and are helpful in resolving longer repeats and contig scaf-
folding (inferring the order of contigs in the genome). However,

because of a high insert size variation, information from jumping

libraries is rather difficult to use for the purpose of assembly.

The problem of using multiple read-pair libraries was previ-

ously addressed by ALLPATHS-LG (Gnerre et al., 2011), Ray
(Boisvert et al., 2010), Velvet (Zerbino and Birney, 2008) and

some other assemblers. However, these tools are designed for

standard (mutlicell) assemblies and do not perform well on

single-cell datasets. On the other hand, the single-cell assemblers

ESC (Chitsaz et al., 2011), IDBA-UD (Peng et al., 2012) and

SPAdes (Bankevich et al., 2012) are designed for a single

read-pair library. In addition, the recently proposed Paired de

Bruijn Graph algorithms for repeat resolution (Medvedev et al.,

2011; Pham et al., 2013; Vyahhi et al., 2012) also focus on

a single library and it remains unclear how to extend them to

multiple libraries.

We present EXSPANDER algorithm that works with both single

and multiple libraries in standard and single-cell assembly pro-

jects. EXSPANDER uses a simple path extension approach for

repeat resolution that was originally proposed in the Ray assem-

bler [and later used in Telescoper (Bresler et al., 2012)] and com-

bines it with some ideas from the Rectangle Graph approach

(Bankevich et al., 2012; Vyahhi et al., 2012). Given a set of

paths in the assembly graph (Bankevich et al., 2012) (i.e. simpli-

fied de Bruijn graph (Compeau et al., 2011; Pevzner et al., 2001)

of k-mers in reads after removal of bulges, tips and chimeric

edges), EXSPANDER attempts to extend each path with the goal

to generate longer paths. For a path P ending in a vertex v, we

consider all edges starting at v (referred to as extension edges) and

compute ScoreP(e) for each extension edge. To compute

ScoreP(e) we analyze all reads that map to path P and whose

mates map to e. Thus, ScoreP(e) reflects our confidence that an

extension of the path P by the edge e is correct. We note that to

properly map read-pairs and calculate ScoreP(e), the total length

of path P and edge e should be longer than the insert size.
In addition to function ScoreP(e), EXSPANDER uses a decision

rule Extend(P) that either chooses one of the extension edges to

extend the path P or makes the decision to stop growing this

path beyond the ending vertex of P. The procedure is iterated

over all the paths until no path can be further extended. To

initiate this algorithm one can start with a set of single-edge

paths formed by all sufficiently long edges in the assembly

graph. The resulting paths are output as contigs after removing

the paths that are contained within other paths as well as remov-

ing non-informative overlaps (i.e. suffixes of paths that represent

prefixes of other paths).

This simple approach is merely a framework and, depending

on the specifics of the scoring function and the decision rule, it

can be either efficient (like in the Ray assembler) or disastrous.

The authors of Telescoper made an attempt to improve on Ray’s

scoring function and to substantiate it with rigorous statistical

analysis. However, scoring functions in both Ray and Telescoper

are not universal, e.g. they assume the uniform genome coverage

by reads, condition that does not hold for single-cell data.
We demonstrate that EXSPANDER works well on single-cell

datasets with multiple libraries. We also show that EXSPANDER

*To whom correspondence should be addressed.
yThe authors wish it to be known that, in their opinion, the first two
authors should be regarded as Joint First Authors.

� The Author 2014. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial

re-use, please contact journals.permissions@oup.com

http://bioinf.spbau.ru/en/spades
mailto:ap@bioinf.spbau.ru
-
Since
-
-
[
1
2
]
less than
p
kb
p
up
p
tiliz
3
]
4
]
5
]
6
]
7
]
8
]
-
9
10
11
]
(
2
)
8
11
]
8
]
,
12
;
13
]
-
XPath error Undefined namespace prefix
XPath error Undefined namespace prefix

[implemented as a part of SPAdes (Bankevich et al., 2012)] im-

proves on existing assemblers on standard bacterial datasets and

outperforms such popular assemblers as ABySS (Simpson et al.,

2009), Ray (Boisvert et al., 2010), SOAPdenovo (Li et al., 2010)

and Velvet (Zerbino and Birney, 2008). ALLPATHS-LG

(Gnerre et al., 2011) is an excellent assembler whose applications,

however, are limited to specially constructed read-pair libraries.

On such libraries EXSPANDER and ALLPATHS-LG generate

comparable results (EXSPANDER generates longer contigs but

ALLPATHS-LG generates longer scaffolds).

2 ANALYSIS OF READ-PAIR LIBRARIES

As we mentioned in the introduction, jumping libraries present

additional challenges for genome assembly owing to their high

variations in the insert size. Additionally, jumping libraries have

high rate of chimeric read-pairs—read-pairs that either have ab-

normal insert size or incorrect orientation. Chimeric read-pairs

further complicate utilization of such libraries while resolving

repeats.
Below we present analysis of the insert size distributions for

the following data: Brachybacterium faecium isolate dataset (read

length 150 bp) and Staphylococcus aureus single-cell dataset (read

length 101bp). Both datasets contain one paired-end and one

jumping library. To analyze read-pair libraries we aligned reads

to the B.faecium and S.aureus reference genomes using Bowtie 2

(Langmead and Salzberg, 2012) and computed the chimeric read-

pair rates and insert size distributions.
As Figure 1 and Table 1 demonstrate, both isolate and single-

cell paired-end libraries have small variations of the insert size. In

contrast, the jumping library from the B.faecium dataset has a

much higher variation in the insert size and higher rate of chi-

meric read-pairs (Table 1). At the same time, in addition to the

large insert size variations, S.aureus jumping library contains

only 22% of all read-pairs aligned with the proper reverse–

forward orientation. Thirty-six percent of all read-pairs have

incorrect forward–reverse orientation (correspond to the left

peak in Fig. 1d) and 14% are classified as chimeric read-pairs

of other types. Forward–reverse read-pairs in jumping libraries

represent an artifact of the sample preparation and are common

for datasets of different types.
Despite the fact that various artifacts of jumping libraries

make it difficult to incorporate them into existing assembly

tools, EXSPANDER uses jumping libraries to generate high-quality

assemblies.

3 EXSPANDER ALGORITHM

EXSPANDER uses an assembly graph constructed by SPAdes

(Bankevich et al., 2012) and a set of read-pair libraries. For

each library, we map read-pairs to the long edges of the assembly

graph and estimate the average insert size along with its confi-

dence interval—a shortest insert size interval that contains at least

80% of properly aligned read-pairs. These estimates are used as

parameters of the scoring function and the decision rule.

3.1 The decision rule

3.1.1 Single library Given a path P, we define a winner as an

edge e with the maximal score ScoreP(e) among all extension

edges for P. Similarly, a contender is defined as an extension edge

with the second best score. The winner edge is called the strong

winner if (i) ScoreP(winner) 4� and (ii) ScoreP(winner)4C �

ScoreP(contender), where � and C are parameters of the algo-

rithm, which are discussed below. If the path P has a single

extension edge (which is obviously the winner), only the first

condition is used. The decision rule is defined as follows:

ExtendðPÞ=
e; if edge e is the strong winner for path P

;; if there is no strong winner for path P

(

3.1.2 Multiple libraries The decision rule described above can

be generalized for several read-pair libraries. Consider M read-

pair libraries, which are sorted in the order of increasing insert

(a) (b)

(c) (d)

Fig. 1. Plots of the insert size distributions for B.faecium isolate

(a) paired-end and (b) jumping library, and S.aureus single-cell dataset

with (c) paired-end and (d) jumping library. The distributions were com-

puted by mapping reads to the B.faecium str. DSM4810 (Lapidus et al.,

2009) and S. aureus str. USA300 substr. FPR3757 (Diep et al., 2006)

reference genomes, respectively. All plots are in the logarithmic scale

Table 1. Information on the B.faecium isolate dataset and the S.aureus

single-cell dataset

Dataset B.faecium S.aureus

Library Paired-end Jumping Paired-end Jumping

Number of reads 13 M 41 M 38 M 41 M

Average coverage 400� 1100� 1050� 1050�

Coverage span 210–570� 0–3000� 0–3500� 0–3500�

Insert size 270bp 7.5kb 210bp 1.8kb

Insert span 150–400bp 6–10kb 180–230bp 0.5–4kb

Chimeric read-pairs (%) 1 9 3 50

Unaligned read-pairs (%) 16 10 6 28

Note: Insert span is the shortest insert size interval that contains at least 95% of

properly aligned read-pairs. Unaligned reads refer to the percentage of read-pairs

that have at least one read unaligned. Chimeric read-pairs refer to the percentage of

chimeric read-pairs among all read-pairs. All statistics was obtained using Bowtie 2

(Langmead and Salzberg, 2012). Coverage span is the smallest coverage interval that

includes a least 95% of all genomic positions

i294

A.D.Prjibelski et al.

(
8
])
14
]
4
]
15
]
5
]
3
]
-
due
s
.
-
16
]
-
-
-
36%
-
-
-
-
-
8
]
-
-

sizes and the associated decision rules Extendi(P) for 1� i�M.

We process the libraries in this order because our analysis re-

vealed that the smaller is the insert size of a library (and its

variation), the more reliable is the decision rule for this individual

library. We thus select the library with the smallest index i that

has the strong winner and define the decision rule for multiple

libraries Extend(P) as simply Extendi(P). If neither library has a

strong winner, we define ExtendðPÞ=;.

3.2 The scoring function

3.2.1 The support function We first consider an idealized case
when the genome defines a genomic path in the assembly graph.

We say that an edge e0 follows edge e at a distance D if the

distance between starts of these edges in the genomic path is

D. We define a boolean function SupportD(e,e
0) that reflects

our confidence that edge e0 follows edge e in the genome at dis-

tance D. Below we describe how to calculate SupportD(e,e
0).

Let I and [Imin,Imax] be the mean and the confidence interval of

the insert size for a read-pair library formed by reads of length

ReadLength. Consider consecutive edges e and e0 in the assembly

graph and a read-pair (r,r0) such that read r maps to e at position

x0 and read r0 maps to e0 in position y0 (Fig. 2a). We say that the

read-pair (r,r0) connects edges e and e0. Figure 2b shows a rect-

angle formed by the edges e and e0 [further simply referred to as

rectangle (e,e0)] with the read-pair (r,r0) represented as a point

(x0,y0) within the rectangle. If edges e and e0 represent consecu-

tive regions in the genome, then the genomic distance from the

start of read r to the start of read r0 equals to LengthðeÞ � x0+y0,

where Length(e) stands for the length of edge e. Therefore, in the

case of an ‘ideal read-pair’ (r,r0) (e.g. a read-pair with the exact

insert size I), y0=x0 � d, where d=LengthðeÞ � I+ReadLength.

Thus all ‘ideal read-pairs’ mapping to edges e and e0 form a set

of integer points on the 45� line y= x– d within the rectangle

(Fig. 2c). Because the read-pairs from the real sequencing data

have variations in the insert size, their corresponding points are

typically scattered in the strip between the 45� lines y= x – dmin

and y=x – dmax, where

dmin=LengthðeÞ � Imin+ReadLength;

dmax=LengthðeÞ � Imax+ReadLength:

This strip in the rectangle is further referred to as the confidence

strip (Fig. 2d).

Let F(x) be the empirical distribution of the insert size and S

be a set of all integer points within the confidence strip in the

rectangle (e,e0). We define the expected number of read-pairs

within the confidence strip (under the assumption of the uniform

coverage) as

Expectedðe; e0Þ=
X
ðx;yÞ2S

FðIðx; yÞÞ;

where Iðx; yÞ=LengthðeÞ � x+y+ReadLength represents the

insert size of a read-pair that corresponds to the point (x, y).

We also define Points(e,e0) as the total number of read-pairs

(from the real dataset) that correspond to the points within the

confidence strip. The notion of density is defined as

Densityðe; e0Þ=
Pointsðe; e0Þ

Expectedðe; e0Þ
:

We setDensity(e,e0)=0, if Expected(e,e0)=0. The points outside

the confidence strip may represent read-pairs with somewhat

larger deviations from the mean insert sizes or chimeric read-

pairs. Our analysis revealed that being conservative (e.g. limiting

analysis to the confidence strip) allows one to avoid most of the

assembly errors caused by chimeric read-pairs, particularly in

single-cell projects.

We distinguish between notions of genome-consecutive and

graph-consecutive edges and emphasize that graph-consecutive

edges are not necessarily genome-consecutive. The decision

about which graph-consecutive edges are genome-consecutive is

an important part of any assembler. Figure 2d and e illus-

trate how rectangles help us to make such decisions: both rect-

angles correspond to graph-consecutive edges, but only rectangle

in Figure 2d is formed by the pair of genome-consecutive edges.
The described notions of Expected(e,e0), Points(e,e0) and

Density(e,e0) (defined for the case when edges e and e0 are

genome-consecutive) can be generalized for the case when e

and e0 are not consecutive genomic edges under the assumption

that genomic distance between them is D. In this case the confi-

dence strip [further referred to as StripD(e,e
0)] is bounded by the

lines y=x – dmin and y= x – dmax, where

dmin=D� Imin+ReadLength;

dmax=D� Imax+ReadLength:

PointsD(e,e
0) similarly represents the number of points within

strip StripD(e,e
0). ExpectedD(e,e

0) and DensityD(e,e
0) are defined

(a)

(b) (c)

(d) (e)

Fig. 2. (a) Reads r and r0 form a read-pair mapping to consecutive edges e

and e0 in the assembly graph at positions x0 and y0, respectively.

(b) Representation of a read-pair (r,r0) as a point in a rectangle (e,e0).

(c) ‘Ideal read-pairs’ with the exact insert size I connecting edges e and e0

form a 45� line within a rectangle. (d) Read-pairs from the real sequencing

data with variations in the insert size represented as points within a rect-

angle. Most points are located within the confidence strip providing the

evidence that edges e and e0 are supported by the read-pairs and are

genome-consecutive. (e) A rectangle formed by a pair of edges that has

few points falling into the confidence strip revealing that e and e0 are not

genome-consecutive edges

i295

ExSPAnder

since
-
-
(
)
-
``
-
''
,
``
''
&Unicode_x2218;
Since
&Unicode_x2218;
,
2
(
)

using the same formulas and the corresponding confidence strip.

Clearly, for two genome-consecutive edges Expected(e,e0)=
ExpectedL(e,e

0) and Density(e,e0)=DensityL(e,e
0), where

L=Length(e).
The support function reflects whether the number of read-

pairs connecting edges e and e0 supports the conjecture that e0

follows e in the genome at distance D:

SupportDðe; e
0Þ=

1; DensityDðe; e
0Þ4�

0; otherwise

(

where � is a parameter of the algorithm, which is automatically
computed for each read-pair library based on the chimeric read-

pair rate (see below). For the standard isolate datasets this par-
ameter corresponds to the coverage cutoff for read-pairs. For
single-cell datasets this parameter is usually set to be very low

to retain the regions with low coverage, which are typical for sin-
gle-cell projects. If SupportD(e,e

0)=1, we say that the rectangle

(e,e0) is supported by the read-pairs.

3.2.2 The naive scoring function To explain the intuition behind
EXSPANDER, we first introduce the naive scoring function. We

further modify the naive scoring function to arrive to the
advanced scoring function used in the real EXSPANDER

implementation.

A path P=(p1, . . . ,pm) and its extension edge e can be repre-
sented as a composite rectangle formed by m simple rectangles

(pj,e) containing points that correspond to read-pairs connecting
edges of P and e. Figure 3b shows an example of a composite
rectangle, which is formed by a path (p1, p2, p3) and its extension

edge e1 and consists of three simple rectangles. The notion of the

confidence strip remains (it now consists of up to m substrips

within simple rectangles), except that it is bounded by the lines

y= x – dmin and y=x – dmax, where

dmin=LengthðPÞ � Imin+ReadLength;

dmax=LengthðPÞ � Imax+ReadLength:

For an edge pj from the path P we define the expected number

of points in the confidence substrip within the simple rectangle

(pj,e) as ExpectedDj
ðpj; eÞ, where Dj is the distance between

start of pj and start of e according to the path P

(i.e. Dj=
Pm

i=j LengthðpiÞ). We consider rectangles ðpj; eÞ; j=star

t; . . . ; end such that ExpectedDj
ðpj; eÞ40 and introduce the func-

tion ScoreP(e) as the fraction of the total number of expected

read-pairs in these rectangles with SupportDj
ðpj; eÞ=1:

ScorePðeÞ=

Xend
j=start

SupportDj
ðpj; eÞ � ExpectedDj

ðpj; eÞ

Xend
j=start

ExpectedDj
ðpj; eÞ

:

We set ScoreP(e)=0 if all simple rectangle have zero expected

read-pairs.
Figure 3a shows paths P=(p1, p2, p3) and P

0

=ðp1; p
0

2; p3Þ
and its extension edges e1,e2. Let (p1, p2, p3, e1) and ðp1; p

0
2; p3;

e2Þ be the true (but unknown) genomic paths. Figure 3b shows

the composite rectangle for path P and its correct extension e1, in

which points within the confidence strip are rather evenly dis-

tributed resulting in ScoreP(e1)=1. Figure 3c shows the com-

posite rectangle for path P=(p1, p2, p3) and its incorrect

extension edge e2. Because ðp1; p
0
2; p3; e2Þ is a genomic path, dens-

ity of the points in the sectors of the confidence strip correspond-

ing to edges p1 and p3 is high. However, edge p2 of the path P

does not support extension edge e2 because there are few points

in the rectangle (p2, e2). Additionally, Figure 3d and e shows

composite rectangles for all possible extension edges for path

P0=ðp1; p02; p3Þ.
Because the defined scoring function does not linearly depend

on read coverage, it is well suitable for both single-cell and stand-

ard sequencing projects. At the same time, considering only read-

pairs with insert size in [Imin,Imax] (which correspond to points

within the confidence strip) allows one to filter out most of the

chimeric read-pairs (common for single-cell datasets) and to min-

imize their influence on the scoring function.

3.2.3 The advanced scoring function The naive scoring function
ScoreP(e) described above works well in many cases but may be

too conservative when the path P contains repetitive edges (edges

that are visited more than once by the genomic traversal).

Figure 4 illustrates the case when the path P has a repetitive

edge and motivates the need for further improvements in the

scoring function.

Figure 4a shows an assembly graph with four unique edges

(p, p0, e and e0) and a single repetitive edge pr with multiplicity 2.

We assume that paths (p,pr,e) and (p0,pr,e
0) are genomic and

paths (p,pr,e
0) and (p0,pr,e) are non-genomic. Our goal is to

design an algorithm that correctly extends genomic paths (p,pr)

(a)

(b) (c)

(d) (e)

Fig. 3. (a) An example of an assembly graph with the genomic paths (p1,

p2, p3, e1) and ðp1; p
0
2; p3; e2Þ. (b, e) The composite rectangles for correct

genomic extension of each path: in these cases the points are evenly

distributed within the confidence strip and the resulting score is equal

to 1. (c, d) The composite rectangles that correspond to incorrect exten-

sions edges of these two paths. In each of these cases, at least one simple

rectangle contains few points within the confidence strip

i296

A.D.Prjibelski et al.

,
Since
since
very
3
Since

and (p0,pr) into longer genomic paths (p,pr,e) and (p0,pr,e
0),

respectively.

Consider a path P=(p,pr) and composite rectangles (P,e) and

(P,e0) (Fig. 4b and c). As Figure 4 illustrates, ScoreP(e) is similar

to ScoreP(e
0), implying that there is no strong winner for path P

and preventing us from extending the path P by edge e.

However, because the repetitive edge pr supports both extension

edges e and e0, it does not provide any valuable information

about the correct extension of the path P. Therefore, to make

a decision about extending the path P by an extension edge e, we

should have excluded pr from the consideration as a repetitive

edge. Because we do not know in advance which edges of the

assembly graph correspond to repeats in the genome, we classify

pr as repetitive because it supports both extension edges e and e0.
Below we present the EXSPANDER algorithm that allows us

to exclude repetitive edges from contributing to scoring. An

extension edge e of path P is called an active edge if

C � ScorePðeÞ � ScorePðwinnerÞ. At the first step of the algorithm

we score all extension edges and form a set of active edges A. An

edge pj in path P is classified as repetitive if it supports all active

edges, i.e. SupportDj
ðpj; eiÞ=1 for all ei 2 A. At the second step

we mark all repetitive edges pj 2 P and recalculate scores of all

edges in A ignoring these repetitive edges. We then update A by

removing all non-active edges and iterate the process. The pro-

cess continues until yet another iteration does not change the set

of active edges A. IfA=feg and ScoreP(e)4� (which means that

e satisfies both conditions in the decision rule) the extension edge

e is considered to be a strong winner and added to the path P.

Otherwise, we stop extending path P.

We further demonstrate the work of the EXSPANDER algo-

rithm using a simple assembly graph shown in Figure 5. The

paths ðp1; p2; p3; e1Þ; ðp
0
1; p2; p3; e2Þ and ðp

0
2; p3; e3Þ are genomic

paths, which means that edges p2 and p3 are repetitive and have

multiplicities 2 and 3, respectively.
Let P=(p1, p2, p3) be a path we aim to extend. We first cal-

culate scores of all extension edges using the composite rectangles

(Fig. 6a–c) and form a set of active edges A=fe1; e2; e3g
based on their scores (marked red in Fig. 6d). Because SupportD3

ðp3; eiÞ=1 for i=1, 2, 3, edge p3 is classified as repetitive and is

removed from further consideration (Fig. 6e). We now recalcu-

late scores for the extension edges inA ignoring repetitive edge p3
(Fig. 6f–h) and remove non-active edge e3 from A (Fig. 6i).
Using the updated set A=fe1; e2g we again proceed to the

repeat detection step and mark edge p2 as repetitive because Su

pportD2
ðp2; eiÞ=1 for i=1, 2 (Fig. 6j). Finally, we once again

recalculate scores of the extension edges in A (Fig. 6k–m) and
remove e2 as non-active (Fig. 6n). The extension edge e1 remains

the only active edge in and is used to extend path P.
Extensive tests of the advanced scoring function revealed that

it works well across diverse datasets including single-cell jumping

libraries with high variations in the insert size, extremely non-

uniform coverage and large number of chimeric reads and chi-
meric read-pairs (see Section 4).

3.3 Scaffolding

After all paths are constructed, we consider all pairs of paths

that form composite rectangles with non-zero number of points

(Fig. 7). For each such pair of paths P and P0 we can check
whether points in the corresponding composite rectangle are

scattered around a certain 45� line using SPAdes distance esti-

mation procedure (Nurk et al., 2013). When SPAdes provides the

estimated distance D between P and P0, we use EXSPANDER to
verify the conjecture that P0 follows P at distance D. If this con-

jecture is supported and does not contradict to any other con-

jectures about these paths, we extend the path P by P0 (the

scaffolding step). We estimate the gap length between the paths
as D� LengthðPÞ and insert the appropriate number of ‘N’ sym-

bols (unspecified nucleotide) between end of P and start of P0. If

paths P and P0 overlap, we construct their overlap alignment to

correct distance D.

3.4 Choice of the parameters

3.4.1 The scoring function We select the parameter � as a
threshold for the density of the read-pairs within the confidence

strip. We therefore assume that rectangles with the density below

� contain mostly chimeric read-pairs and should be ignored
while calculating the score of an extension edge. To select �

for a particular read-pair library, we estimate the distribution

of the densities for rectangles that contain only chimeric read-

pairs (false rectangles) and for rectangles that contain only non-
chimeric read-pairs (true rectangles).

To partition all read-pairs into chimeric and non-chimeric, one
needs the complete genome that is unavailable. To get around

this, we identify a subset of chimeric reads using the long edges in

the assembly graph (e.g. edges longer than N50) that can be

(a)

(b) (c)

Fig. 4. Scoring a path that contains repetitive edges. (a) An example of

the assembly graph with a repetitive edge pr. (b) A composite rectangle for

the correct extension e of path (p,pr). (c) A composite rectangle for the

incorrect extension e0 of the path (p,pr)

Fig. 5. An example of the assembly graph with repetitive edges p2 and p3

i297

ExSPAnder

4
since
Since
, 6b and 6
Since
,
6
g and
6
since
, 6l and 6
&Unicode_x2218;
19
]
``
''
,

(a)

(d)

(f)

(b)

(g) (h)

(i)

(k) (l)

(n)

(m)

(j)

(c)

(e)

Fig. 6. A step-by-step example of the EXSPANDER algorithm. (a–c) Forming a set of active edges {e1, e2, e3} (marked red) for the path P=(p1, p2, p3)

using the corresponding composite rectangles. (d, e) Classifying of edge p3 as repetitive and removing it from further consideration (marking gray). Edges

that are not classified as repetitive are colored in blue. (f–h) Recalculating scores of the extension edges and updating the set of active edges. (i, j)

Removing repetitive edge p2. (k–m) Recalculating scores for the remaining active edges {e1, e2} and removing e2 as non-active. (n) Selecting the only

active edge e1 as an extension for the path P

i298

A.D.Prjibelski et al.

viewed as subgenomes of the complete genome. By mapping a

read-pair to a long edge we can compute its insert size and thus

classify read-pairs with abnormally large insert sizes as chimeric.
To estimate the parameter �, we generate a large number of

equally sized rectangles by artificially ‘splitting’ each long edge

into shorter edges of equal length (e.g. 100bp) called uni-edges.

We then consider rectangles formed by all pairs of uni-edges

within the same long edge. Because we know the exact distance

between such uni-edges, we can calculate the expected number of

read-pairs ExpectedD(e1,e2) for all pairs of uni-edges within the

same long edge. If uni-edges e1 and e2 come from the same long

edge and ExpectedD(e1,e2)=0, then all points in the confidence

strip StripD(e1,e2) represent chimeric read-pairs connecting e1
and e2. Such edge-pair (e1,e2) is classified as a false edge-pair.

Otherwise, if ExpectedDðe1; e2Þ40, we assume that all points

within StripDðe1; e2Þ represent correct read-pairs and classify

(e1,e2) as a true edge-pair.
Edges e1 and e2 and a parameter D define the strip

StripD(e1,e2) with the number of points PointsD(e1,e2). For a

pair of edges e1 and e2, we define

D�=argmax
D

PointsDðe1; e2Þ:

When (e1,e2) is a false edge-pair, D* defines a confidence strip S

tripD� ðe1; e2Þ with the maximum number of chimeric read-pairs.

To compute the threshold �, we assume this worst-case scenario

for all pairs of uni-edges (within the same long edge) by using

distance D* (rather than the known genomic distance) for calcu-

lating the densities DensityD� ðe1; e2Þ.
For a certain value of � we define false positives (false nega-

tives) as the false (true) edge-pairs that have density higher

(lower) than �0. Figures 8a and b illustrate how false-positive

rate (green) and false-negative rate (blue) depend on the param-

eter �. EXSPANDER selects � that corresponds to the intersection

point of the false-positive and false-negative plots. Our bench-

marking revealed that such choice of the parameter � allows one

to filter out the rectangles containing only chimeric reads-pairs

based on their densities. Additional analysis revealed that esti-

mating the parameter � is an important step in the EXSPANDER

algorithm because varying this parameter may significantly affect

the assembly quality (see Section 3 in Appendix).

3.4.2 The decision rule Our analysis revealed that varying par-

ameters C and � within specified ranges (see Section 3 of the

Appendix) hardly affects the quality of the resulting assemblies.

However, selecting inappropriate C and � may result in a dete-

riorated performance of EXSPANDER. Thus, we arbitrarily select

these parameters within the ranges specified in Section 3 of

Appendix (analysis of diverse sequencing datasets supports the

default values C=1.5 and �=0.5).

4 RESULTS

4.1.1 Datasets We have compared EXSPANDER (coupled with
SPAdes assembler) with several popular assemblers on the

B.faecium isolate dataset (genome size 3.6 Mb) and the

S.aureus single-cell dataset (genome size 2.9 Mb). For each

dataset we have generated assemblies of (i) only paired-end

library and (ii) both paired-end and jumping libraries. Section

1 of Appendix provides a detailed description of both datasets.

4.1.2 Benchmarking assemblies ABySS 1.3.6, Ray 2.0.0, Velvet,
Velvet-SC and SOAPdenovo 2.0.4 were run with k-mer size 55.

IDBA-UD 1.1.1 was run in its default iterative mode. The

authors of (Peng et al., 2012) released this new version of

IDBA-UD that is capable of using several paired-end libraries,

but there is no manuscript yet covering this new development.

ALLPATHS-LG was run with the default parameters; however,

we down-sampled jumping library for the B.faecium dataset to

generate 100� coverage required by ALLPATHS-LG. SPAdes

2.4 (previous version of SPAdes that did not include EXSPANDER

and did not support multiple libraries) was run in its default

iterative mode with k=21, 33, 55, 77 for the B.faecium dataset

and k=21, 33, 55 for the S.aureus dataset. EXSPANDER (coupled

with SPAdes) was run using the default parameters.

To analyze the resulting assemblies we used QUAST 2.2

(Gurevich et al., 2013) that reports various parameters including

NG50 (similar to N50, but is calculated with respect to the

reference genome size), the total number of contigs/scaffolds,

the length of the longest assembled contig/scaffold, the number

of misassemblies and the fraction of genome mapped. QUAST

defines a misassembly breakpoint as a position in the contig/

scaffold, such that its left and right flanking sequences either

align to the reference genome over 1 kb away from each other,

or overlap by41 kb, or align on opposite strands or different

chromosomes (Gurevich et al., 2013). To compare assemblers we

used both contigs and scaffolds of length exceeding 500 bp.

Fig. 7. An example of a composite rectangle formed by paths (p1, p2, p3)

and ðp01; p
0
2; p
0
3Þ

Fig. 8. Plots of the false-positive (green) and false-negative (blue) rates

for (a) B.facium and (b) S.aureus paired-end libraries

i299

ExSPAnder

-
-
``
''
Since
8
since
p
p
7
]
,
x
20
]
p
p
20
]

Tables 2 and 3 show the benchmarking results for the

B.faecium isolate dataset. Interestingly, the single-cell assemblers

(IDBA-UD and EXSPANDER coupled with SPAdes) as well as

ABySS performed well on the B.faecium isolate dataset and pro-

duced contigs with the largest NG50 in the case of a single

library. While AbySS generated the assembly with the maximal

genome fraction, manual inspection revealed that it reflects the

specifics of ABySS and QUAST reporting (mapping each repeat

to a single position in the genome) rather than real superiority of

ABySS by this metric.
In the case of two libraries, EXSPANDER produced the best

contigs while ALLPATHS-LG produced the best scaffolds.

The complexity of using jumping libraries is reflected in a dete-

riorated performance of ABySS and Ray (reduction in NG50) as

well as Velvet and Velvet-SC (dramatic increase in the number of

misassemblies).

Tables 4 and 5 compare various assemblers on the S.aureus

single-cell dataset. This comparison highlights the complexity of

both (i) assembling single-cell datasets and (ii) using jumping

libraries. For example, SOAPdenovo produced assemblies of

poor quality for single-cell data (we decided not to include it in

Tables 4 and 5). Similarly, ABySS produced assemblies with high

number of misassemblies for the single-cell data. Velvet and

Velvet-SC are not included in the benchmark experiment for

jumping libraries testing because they also produce low-quality

assemblies when both paired-end and jumping libraries are used

simultaneously. IDBA-UD performed well on a single paired-

end library, but produced an assembly of lower quality when

both libraries were provided (decreased NG50). EXSPANDER

produced assemblies with the highest NG50 and largest

assembled contig/scaffold.
Using only paired-end library IDBA-UD, SPAdes 2.4 and

EXSPANDER recovered the largest fraction of the genome

(498.5%). However, the highest genome fraction of the assembly

Table 2. Comparison of contigs for the B.faecium isolate dataset

Assembler NG50 Number

of contigs

Largest Number

of mis

GF

Only paired-end library

ABySS 203 40 672 0 99.9

Ray 114 51 436 1 98.9

SOAPdenovo 20 333 61 0 98.8

Velvet 144 47 550 0 99.4

Velvet-SC 163 46 550 0 99.4

IDBA-UD 202 39 483 0 99.4

SPAdes 2.4 361 24 635 1 99.7

EXSPANDER 380 22 672 1 99.5

Both paired-end and jumping libraries

ABySS 203 40 672 0 99.9

ALLPATHS-LG 313 21 686 0 99.5

Ray 87 88 416 2 96.8

SOAPdenovo 20 333 61 0 98.8

Velvet 103 75 242 11 99.0

Velvet-SC 253 40 545 15 99.8

IDBA-UD 207 41 483 0 99.4

EXSPANDER 3268 2 3268 1 99.9

Note: NG50 is given in kb; number of contigs is the total number of contigs

4500bp; largest stands for the length (in kb) of the longest contig assembled;

number of mis is the number of misassemblies; GF stands for the fraction of

genome mapped given in percent. In each column, the best value is indicated

in bold.

Table 3. Comparison of scaffolds for the B.faecium isolate dataset

Assembler NG50 Number of

scaffolds

Largest Number

of mis

GF

Only paired-end library

ABySS 383 24 676 0 99.9

Ray 204 31 553 1 98.9

SOAPdenovo 477 26 724 0 99.3

Velvet 477 28 724 0 99.4

Velvet-SC 477 28 724 0 99.4

IDBA-UD 250 30 671 0 99.4

SPAdes 2.4 361 22 671 1 99.7

EXSPANDER 380 22 672 1 99.5

Both paired-end and jumping libraries

ABySS 250 30 739 1 99.9

ALLPATHS-LG 3610 7 3610 1 99.5

Ray 106 75 416 2 96.8

SOAPdenovo 480 28 810 2 99.4

Velvet 2651 14 2651 78 99.1

Velvet-SC 945 102 1381 500 98.9

IDBA-UD 1002 9 1692 0 99.4

EXSPANDER 3268 2 3268 1 99.9

Note: NG50 is given in kb; number of scaffolds is the total number of scaffolds

4500 bp; largest stands for the length (in kb) of the longest scaffold assembled;

number of mis is the number of misassemblies; GF stands for the fraction of

genome mapped given in percent. In each column, the best value is indicated in

bold.

Table 4. Comparison of contigs for the S.aureus single-cell dataset

Assembler NG50 Number of

contigs

Largest Number

of mis

GF

Only paired-end library

ABySS 27 914 91 262 98.0

Ray 21 306 108 14 88.7

Velvet 10 538 56 2 93.2

Velvet-SC 9 616 56 4 94.2

IDBA-UD 75 390 161 7 98.6

SPAdes 2.4 98 400 230 8 99.1

EXSPANDER 148 366 275 3 98.6

Both paired-end and jumping libraries

ABySS 27 914 91 262 98.0

ALLPATHS-LG 15 283 75 26 79.9

Ray 100 178 486 21 93.5

IDBA-UD 47 415 161 7 98.6

EXSPANDER 314 322 603 9 99.3

Note: NG50 is given in kb; number of contigs is the total number of contigs4500bp;

largest stands for the length (in kb) of the longest contig assembled; number of mis is

the number of misassemblies; GF stands for the fraction of genome mapped given in

percent. In each column, the best value is indicated in bold.

i300

A.D.Prjibelski et al.

tiliz
tiliz
very
very
since
more than

generated by SPAdes 2.4 reflects the specifics of SPAdes 2.4 and

QUAST reporting (some artifacts with reporting of repetitive

regions) rather than real advantage of SPAdes 2.4 with respect

to this parameter.
When using both libraries simultaneously, EXSPANDER pro-

duced assemblies with the highest genome fraction exceeding

99%, the largest genome fraction we saw across dozens of

single-cell datasets assembled with SPAdes in the past 2 years.

Moreover, Tables 4 and 5 show that EXSPANDER successfully

deals with the high rate of the chimeric read-pairs and relatively

high variations in the insert size.

5 CONCLUSION

We have presented EXSPANDER algorithm for resolving

repeats using either a single or multiple read-pair libraries with

different insert sizes, which is applicable for both single-cell and

isolate bacterial datasets. Benchmarks across eight popular

assemblers demonstrate that EXSPANDER produces high-quality

assemblies for datasets of different types. Additionally, as

illustrated by recent integration of Illumina and PacBio reads

in SPAdes 3.0, EXSPANDER is a flexible approach that can be

easily modified to work with diverse types of sequencing data.

ACKNOWLEDGEMENTS

The B.faecium sequencing data were produced by the Joint

Genome Institute in collaboration with the user community.
The S.aureus dataset was provided by the Human Microbiome
Project (bioproject ID PRJNA236734).

Funding: This work was supported by the Government of the
Russian Federation [grant numbers 11.G34.31.0018,
11.G34.31.0068]; the National Institutes of Health
[3P41RR024851-02S1]; and the Russian Fund for Basic

Research [12-01-00747-a to A.K.].

Conflict of Interest: none declared.

REFERENCES

Bankevich,A. et al. (2012) SPAdes: a new genome assembly algorithm and its ap-

plications to single-cell sequencing. J. Comput. Biol., 19, 455–477.

Boisvert,S. et al. (2010) Ray: simultaneous assembly of reads from a mix of high-

throughput sequencing technologies. J. Comput. Biol., 17, 1519–1533.

Bresler,M. et al. (2012) Telescoper: de novo assembly of highly repetitive regions.

Bioinformatics, 28, 311–317.

Butler,J. et al. (2008) ALLPATHS: de novo assembly of whole-genome shotgun

microreads. Genome Res, 18, 810–820.

Chitsaz,H. et al. (2011) Efficient de novo assembly of single-cell bacterial genomes

from short-read data sets. Nat. Biotechnol., 29, 915–921.

Compeau,F. et al. (2011) How to apply de Bruijn graphs to genome assembly. Nat.

Biotechnol., 29, 987–991.

Diep,B. et al. (2006) Complete genome sequence of USA300, an epidemic clone of

community-acquired meticillin-resistant Staphylococcus aureus. Lancet, 367,

731–739.

Gnerre,S. et al. (2011) High-quality draft assemblies of mammalian genomes from

massively parallel sequence data. Proc. Natl Acad. Sci. USA, 108, 1513–1518.

Gurevich,A. et al. (2013) QUAST: quality assessment tool for genome assemblies.

Bioinformatics, 29, 1072–1075.

Langmead,B. and Salzberg,S. (2012) Fast gapped-read alignment with bowtie 2.

Nat. Methods, 9, 357–359.

Lapidus,A. et al. (2009) Complete genome sequence of Brachybacterium faecium

type strain (Schefferle 6-10). Standards Genomic Sci., 1, 3–11.

Li,R. et al. (2010) De novo assembly of human genomes with massively parallel

short read sequencing. Genome Res., 20, 265–272.

Nurk,S. et al. (2013) Assembling single-cell genomes and mini-metagenomes from

chimeric MDA products. J. Comput. Biol., 20, 1–24.

Medvedev,P. et al. (2011) Paired de bruijn graphs: a novel approach for incorporating

mate pair information into genome assemblers. J. Comput. Biol., 18, 1625–1634.

Peng,Y. et al. (2012) IDBA-UD: a de novo assembler for single-cell and metage-

nomic sequencing data with highly uneven depth. Bioinformatics, 28, 1–8.

Pevzner,P.A. et al. (2001) An Eulerian path approach to DNA fragment assembly.

Proc. Natl Acad. Sci. USA, 98, 9748–9753.

Pham,S. et al. (2013) Pathset graphs: a novel approach for comprehensive utilization

of paired reads in genome assembly. J. Comput. Biol., 20, 259–371.

Simpson,J. et al. (2009) ABySS: a parallel assembler for short read sequence data.

Genome Res., 19, 1117–1123.

Vyahhi,N. et al. (2012) From de Bruijn graphs to rectangle graphs for genome

assembly,” in Workshop on Algorithms in Bioinformatics 2012. Lecture Notes

Comput Sci, 7534, 200–212.

Zerbino,D.R. and Birney,E. (2008) Velvet: algorithms for de novo short read assem-

bly using de Bruijn graphs. Genome Res., 18, 821–829.

Table 5. Comparison of scaffolds for the S.aureus single-cell dataset

Assembler NG50 Number of

scaffolds

Largest Number

of mis

GF

Only paired-end library

ABySS 28 910 91 270 98.2

Ray 21 306 108 14 88.7

Velvet 10 538 56 2 93.2

Velvet-SC 10 620 56 5 94.2

IDBA-UD 88 382 161 8 98.2

SPAdes 2.4 99 391 230 8 99.2

EXSPANDER 148 357 426 4 98.6

Both paired-end and jumping libraries

ABySS 30 852 91 275 98.0

ALLPATHS-LG 40 165 132 69 79.9

Ray 100 169 486 25 93.5

IDBA-UD 55 397 161 9 98.6

EXSPANDER 314 302 603 9 99.3

Note: NG50 is given in kb; number of scaffolds is the total number of scaffolds

4500 bp; largest stands for the length (in kb) of the longest scaffold assembled;

number of mis is the number of misassemblies; GF stands for the fraction of

genome mapped given in percent. In each column, the best value is indicated in

bold.

i301

ExSPAnder

l
two
8

