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ABSTRACT

Antigen-dependent stimulation of T cells plays a
critical role in adaptive immunity and host defense.
Activation of major histocompatibility complex II
(MHC II) molecules, dictated by Class II transact-
ivator (CIITA), is considered a pivotal step in this
process. The mechanism underlying differential
regulation of CIITA activity by the post-translational
modification machinery (PTM) and its implications
are not clearly appreciated. Here, we report that
SIRT1, a type III deacetylase, interacts with and de-
acetylates CIITA. SIRT1 activation augments MHC II
transcription by shielding CIITA from proteasomal
degradation and promoting nuclear accumulation
and target binding of CIITA. In contrast, depletion of
SIRT1 upregulates CIITA acetylation and attenuates
its activity. Nicotinamide phosphoribosyltransferase
(NAMPT) that synthesizes NAD+ required for SIRT1
activation exerts similar effects on CIITA activity.
Two different types of stress stimuli, hypobaric hyp-
oxia and oxidized low-density lipoprotein (oxLDL),
induce the acetylation of CIITA and suppress its ac-
tivity by inhibiting the SIRT1 expression and activity.
Thus, our data link SIRT1-mediated deacetylation of
CIITA to MHC II transactivation in macrophages and
highlight a novel strategy stress cues may employ to
manipulate host adaptive immune system.

INTRODUCTION

The development of the adaptive immune system affords
higher eukaryotes much specificity and intricacy in

combating pathogens and protecting the physiological in-
tegrity of the host (1). Central to this system is the activa-
tion of helper T lymphocytes (Th1 and Th2) bearing the
surface marker CD4 that are specialized in eliminating
intracellular pathogens (2). A prerequisite to CD4+ Th

stimulation is the expression of Class II major histocom-
patibility complex (MHC II) genes on antigen presenting
cells (APCs) that include B lymphocytes, dendritic cells
and macrophages. Therefore, transcriptional regulation
of the MHC II genes provides a critical step in modulating
Th activity and hence, the adaptive immune response.
Many genetic and environmental insults, ranging from
aging to hyperlipidemia to hypoxia, target this process by
down-regulating MHC II transcription in APCs and ren-
dering the host susceptible to opportunistic microbes (3,4).
There is, however, no unified model to account for im-
paired MHC II expression in response to these challenges.
MHC II transactivator (CIITA), referred to as the

master regulator of MHC II transactivation, was first
identified in patients with the hereditary disease bare
lymphocyte syndrome (BLS) characterized by the
absence of circulating CD4+ T lymphocytes owing to the
silencing of the MHC II loci (5). Mice deficient in CIITA
also showed marked reduction in MHC II levels with
severe immune deficiency (6,7). CIITA drives MHC II
transactivation by engaging several sequence-specific tran-
scription factors into a multi-protein enhanceosome on
the MHC II promoter (8). The post-transcriptional modi-
fication (PTM) machinery is considered a key regulatory
layer that refines CIITA-dependent MHC II activation by
altering its binding partners, subcellular localization and/
or protein stability in response to intrinsic and extrinsic
stimuli (9). For instance, phosphorylation within the
proline/serine/threonine region of CIITA favors its oligo-
merization and nuclear accumulation resulting in
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enhanced MHC II expression, whereas deacetylation by
the class I deacetylase HDAC2 targets CIITA to
proteasomal degradation, hence abrogating MHC II
transactivation (10,11).
Silencing information regulator 1 (SIRT1) is a NAD+-

dependent deacetylase and the mammalian ortholog of the
yeast Sir2 gene that controls life span (12). SIRT1, by
deacetylating histones and more often non-histone protein
factors, has been implicated in a number of physiological
and pathological processes, including heterochromatin
formation, apoptosis, DNA repair, type 2 diabetes,
tumorigenesis and cardiovascular disease (13). Recent in-
vestigations have pointed to a pivotal role for SIRT1 in
fine-tuning the immune system both in the innate and the
adaptive branches. Deacetylation by SIRT1 inhibits DNA
binding ability of NF-kB reining in the chronic inflamma-
tion response, whereas deacetylation of FoxP3 by SIRT1
promotes its destruction and suppresses the activity
of regulatory T cells (14,15). We report here that SIRT1
interacts with and deacetylates CIITA, stabilizing CIITA
protein and enhancing MHC II transactivation. The
SIRT1 agonist resveratrol rescues MHC II expression in
macrophages confronted with hypobaric hypoxia and oxi-
dized low-density lipoprotein (oxLDL). Therefore, our
data highlight a critical link that various injurious
signals share in common to undercut the host defense
system.

MATERIALS AND METHODS

Briefly, human embryonic kidney cell (293), human leuke-
mia monocytic/macrophage (THP-1) and murine macro-
phage (RAW264.7) were maintained according to the
vendors’ recommendations. Promoter activity was mea-
sured by transfection reporter assays. Expression of
mRNA and protein was measured by real-time quanti-
tative PCR, western blotting and/or flow cytometry.
Protein–protein interaction was evaluated by co-
immunoprecipitation (Co-IP). Knockdown of endogenous
proteins was mediated by short hairpin RNA (shRNA).
Protein–DNA interaction was assayed by chromatin
immunoprecipitation (ChIP). For more details, see
‘Materials and Methods’ section in Supplementary Data.

RESULTS

SIRT1 potentiates the activation of MHC II transcription
by CIITA in macrophages

We have previously demonstrated that HDAC2, a class I
deacetylase, interacts with CIITA and suppresses its
activity by targeting it to proteasomal degradation (11).
Several recent investigations have implicated the class III
deacetylase SIRT1 in regulating the immune system
(14–16), therefore we set to determine whether MHC II
transcription, a key pathophysiological process controlled
by CIITA, was affected. Co-transfection of SIRT1
enhanced activation of MHC II promoter activity by
CIITA in a dose response manner (Figure 1A).
Interestingly, other members of the sirtuin family did
not impact significantly MHC II transactivation by

CIITA (Supplementary Figure S1A). In contrast, knock-
down of SIRT1 expression relieved the activation of
MHC II transcription (Figure 1B and Supplementary
Figure S1B). Of note, regulation of CIITA transcrip-
tional activity by SIRT1 clearly requires its deacetylase
moiety because the mutation (HY) that abolishes this
function failed to stimulate the DRa promoter and when
present in high doses, even repressed the promoter
acting as a dominant negative mutant (Figure 1C and
Supplementary Figure S1C), indicating that active
deacetylation by SIRT1 is required for MHC II transcrip-
tion. In further support of this notion, pharmaceutical
activation of SIRT1 enzyme activity by resveratrol signifi-
cantly boosted, whereas, inhibition of SIRT1 activity by
both nicotinamide (NAM) and sirtinol attenuated MHC
II transcription (Figure 1D). Similar observations were
also made for the endogenous MHC II mRNA levels in
human and murine cultured macrophages (Figure 1E–G
and Supplementary Figure S1D). To further probe the
physiological relevance of these findings, we isolated
primary murine primary peritoneal macrophages.
Treatment with resveratrol upregulated, whereas treat-
ment with sirtinol downregulated MHC II message levels
(Supplementary Figure S1E). Intriguingly, HDAC2, a
class I deacetylase previously found to suppress CIITA
activity, antagonized elevation of MHC II transactiva-
tion by CIITA in the presence of SIRT1 (Supplementary
Figure S1E). Collectively, these data indicate that SIRT1
specifically upregulates the transcriptional activation of
MHC II genes by CIITA.

SIRT1 interacts with and deacetylates CIITA

Since we observed that SIRT1 potentiated CIITA-
dependent transactivation of MHC II, we examined
whether SIRT1 could interact with CIITA. FLAG-
tagged CIITA and Myc-tagged SIRT1 were transfected
into 293 cells either alone or together. SIRT1 was co-
precipitated with CIITA by the anti-FLAG antibody,
whereas CIITA was co-precipitated with SIRT1 by the
anti-Myc antibody (Figure 2A). Similarly, endogenous
CIITA and SIRT1 also formed a complex in THP-1
cells (Supplementary Figure S2A). Next, we examined
whether CIITA acetylation was impacted by SIRT1.
Overexpression of wild-type (WT), but not an enzyme de-
ficient (HY), SIRT1 markedly decreased CIITA acetyl-
ation levels (Figure 2B). Conversely, depletion of
endogenous SIRT1 by shRNA-mediated knockdown aug-
mented CIITA acetylation (Figure 2C). Alternatively, ac-
tivation of SIRT1 by resveratrol downregulated, whereas
suppression of SIRT1 activity by NAM or sirtinol,
upregulated CIITA acetylation in 293 cells (Figure2D
and Supplementary Figure S2B and C) and THP-1 cells
(Supplementary Figure S2D). Together, our data suggest
that SIRT1 interacts with, and regulates the acetylation
levels of CIITA.

SIRT1 promotes the accumulation and promoter binding
of CIITA in the nucleus

Next, we sought to tackle, whereby SIRT1 fine-tunes
CIITA activity. Our previous data demonstrate that
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deacetylation by HDAC2 targets CIITA to degradation
by the 26S proteasome (11). Therefore, we examined the
impact of SIRT1 on the stability of CIITA.
Overexpression of WT, but not mutated SIRT1, or treat-
ment with resveratrol markedly enhanced the half-life of
CIITA (Figure 3A and Supplementary Figure S3A). As
a result, CIITA protein accumulated in the nucleus
(Figure 3B and Supplementary Figure S3B). In accord-
ance, enhancing SIRT1 activity achieved by either over-
expression or resveratrol treatment also promoted
the occupancy of the MHC II promoter by CIITA
(Figure 3C and Supplementary Figure S3C). In sharp con-
trast, depletion of SIRT1 expression by shRNA or treat-
ment with sirtinol, attenuated CIITA stability and severely
disrupted CIITA recruitment to the MHC II promoter
(Figure 3E and F, Supplementary Figure S3B–D).
HDAC2, on the other hand, blocked the stabilization of
CIITA protein by SIRT1 (Supplementary Figure S3E).
Together, our data suggest that SIRT1 regulates CIITA

activity by augmenting its stability, nuclear accumulation
and target binding.

NAM phosphoribosyltransferase augments MHC II
transactivation by CIITA

SIRT1 activity depends on intracellular levels of NAD+,
which is synthesized primarily by NAM phosphoribosyl-
transferase (NAMPT). Therefore, we evaluated the role
of NAMPT in CIITA-dependent MHC II transactivation.
First, we assessed whether NAMPT could impact
the acetylation levels of CIITA. Similar to SIRT1, WT
but not enzyme defective (W247A) NAMPT potently re-
duced CIITA acetylation (Figure 4A). In contrast, deple-
tion of endogenous NAMPT expression with shRNA
(Supplementary Figure S4A) markedly induced CIITA
acetylation. Moreover, treatment with the NAMPT-
specific inhibitor, FK866 also increased CIITA acetylation
(Supplementary Figure S4B), further confirming that
NAMPT indeed contributes to the regulation of CIITA
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Figure 1. SIRT1 augments MHC II transactivation by CIITA. (A and B) An HLA-DRa promoter construct (0.1 mg) was transfected into THP-1
cells with CIITA (0.1 mg) and either SIRT1 expression plasmid (0.2 mg, A) or two different shRNA plasmids targeting SIRT1 (0.5 mg, B). Luciferase
activities were normalized by both protein concentration and GFP fluorescence. Data are presented as normalized relative luciferase unit (NRLU).
(C) An HLA-DRa promoter construct (0.1 mg) was transfected into THP-1 with CIITA (0.1 mg) and either wild-type (WT) or mutant SIRT1 (0.2 mg).
Luciferase activities are presented as NRLU. (D) An HLA-DRa promoter construct (0.1mg) was transfected into THP-1 cells with CIITA (0.1 mg),
followed by treatment with different concentrations of resveratrol (RSV, 5–50 mM) or nicotinamide (NAM, 5–50mM) Luciferase activities are
presented as NRLU. (E and F) THP-1 cells were infected with virus carrying either WT or mutant SIRT1 (E) or SIRT1 shRNA (F) followed
by treatment with IFN-g. MHC II mRNA levels were measured by qPCR. (G) THP-1 cells were treated with IFN-g, RSV or NAM as indicated.
MHC II mRNA levels were measured by qPCR.
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acetylation levels. In keeping with the notion that SIRT1-
mediated deacetylation protects CIITA from proteasomal
degradation, we also found that NAMPT overexpression
resulted in increased CIITA protein stability (Figure 4B)
and promoter recruitment (Figure 4C), whereas, NAMPT
elimination by shRNA expedited CIITA destruction
(Supplementary Figure S4C) and disrupted promoter oc-
cupancy by CIITA (Supplementary Figure S4D).
Next, we examined whether NAMPT could modulate

the activation of MHC II transcription by CIITA.
Co-transfection of NAMPT WT caused a small, but sig-
nificant increase in HLA-DRa promoter activity (Figure
4D). Conversely, treatment with FK866 (Supplementary
Figure S4E), or knockdown of NAMPT by shRNA
(Supplementary Figure S4F), all attenuated activation of
MHC II transcription by CIITA. Similarly, endogenous
HLA-DRa message was upregulated with ectopic
NAMPT (Figure 4E), whereas it was downregulated in
the absence of NAMPT (Supplementary Figure S4G) or
when NAMPT activity was inhibited (Supplementary
Figure S4H). In aggregate, this line of evidence supports
the notion that NAMPT contributes to CIITA-dependent
MHC II transactivation.

Hypoxic stress attenuates activation of MHC II
transcription by CIITA

Hypoxia is believed to play an important role in pathogen
infection and impaired host defense, primarily by weaken-
ing the innate immunity system (17). We set to determine
whether the adaptive immune system may be affected by
hypoxic stress. Activation of the HLA-DRa promoter

activity by CIITA and IFN-g induced mRNA levels of
MHC II were significantly downregulated in macrophage
cells that were subject to 1% O2 (Figure 5A and B). In
parallel, acetylation of CIITA was upregulated by
hypobaric hypoxia stress (Figure 5C). Concomitantly,
mRNA and protein levels of SIRT1 were attenuated by
hypobaric hypoxia (Supplementary Figure S5A and B). In
the meantime, intracellular NAD+ levels, as well as,
SIRT1 activity were dampened (Supplementary Figure
S5C and D) likely due to a combination of reduced
SIRT1 expression and reduced NAMPT expression
(Supplementary Figure S5E).

Therefore, we hypothesized that hypoxia may abolish
CIITA-dependent MHC II transcription by targeting
SIRT1 activity. Indeed, activation of SIRT1 by resveratrol
restored CIITA deacetylation and prevented CIITA deg-
radation (Figure 5D and E). More importantly,
resveratrol rescued the binding of CIITA to the
promoter disrupted by hypoxia and activation of MHC
II transcription (Figure 5F and G). In aggregate, this line
of data clearly demonstrates that hypoxic stress suppresses
CIITA-dependent transcriptional activation of MHC II
genes via attenuating the expression and activity of
SIRT1 in macrophages.

oxLDL suppresses MHC II expression by targeting
SIRT1

oxLDL is one of the major risk factors for atherosclerosis.
Antigen presentation by macrophage plays an important
role in host defense and eliminating excess oxLDL.
Therefore, we examined the effect of oxLDL on
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CIITA-dependent MHC II transcription. oxLDL, but not
native LDL (nLDL), stimulated the acetylation of CIITA
while simultaneously promoted its degradation (Figure 6A
and Supplementary Figure S6A). Concomitantly, binding
of CIITA to the MHC II gene promoter was impaired

(Figure 6B and Supplementary Figure S6B). As a result,
oxLDL alleviated the activation of MHC II transcription
by CIITA as demonstrated by both promoter assay
(Figure 6C and Supplementary Figure S6C) and quantita-
tive PCR (Figure 6D). Pre-treatment with resveratrol

0

1

2

3

4

5

6

7

8

P
re

ci
p

it
at

ed
 g

en
o

m
ic

 D
N

A
 (

p
g

/n
g

) 

∗

IFN-γ
SIRT1 WT
SIRT1 HY

CIITA IgG

C
HLA-DRα ChIP

IFN-γ
shLuc

shSIRT1-1
shSIRT1-2

CIITA IgG

∗ ∗

F

0

0.5

1

1.5

2

2.5

3

3.5

4

P
re

ci
p

it
at

ed
 g

en
o

m
ic

 D
N

A
 (

p
g

/n
g

) 

HLA-DRα ChIP

0

0.2

0.4

0.6

0.8

1

1.2

CHX (h)     0         2         4         8

R
el

at
iv

e 
d

en
si

to
m

et
ry

 
Mock
SIRT1 WT
SIRT1 HY

∗

∗

0

0.2

0.4

0.6

0.8

1

1.2

R
el

at
iv

e 
d

en
si

to
m

et
ry

 

LUC-shRNA

SIRT1-shRNA

∗

∗

∗

CHX (h)     0         2         4         8

CHX (h)     0    2    4    8     0    2    4    8

LUC-shRNA SIRT1-shRNA

CIITA

β-actin

SIRT1

D

CIITA
SIRT1 WT
SIRT1 HY

α-tubulin

Brg1

CIITA

B
Cytoplasmic Nucleus

α-tubulin

Brg1

CIITA

LUC-shRNA
SIRT1-shRNA#1
SIRT1-shRNA#2

E Cytoplasmic Nucleus

Myc-SIRT1

β-actin

CIITA

CHX (h)     0   2   4   8    0   2   4   8    0   2   4   8

Mock SIRT1 WT SIRT1 HY

A

Figure 3. SIRT1 promotes nuclear accumulation and target promoter binding of CIITA. (A) pcDNA3-CIITA was transfected into 293 cells with
Myc-tagged SIRT1 (WT or HY). Cycloheximide was added 24 h post-transfection and cells were harvested at different time points as indicated. (B)
293 cells were transfected with CIITA, SIRT1 WT or SIRT1 HY. Cells were harvested, fractionated and probed for CIITA. (C) THP-1 cells were
infected with retrovirus carrying SIRT1 plasmids (WT or HY) followed by treatment with IFN-g as indicated. ChIP assays were performed with
anti-CIITA. Data are presented as pictogram of DNA precipitated per nanogram input. (D) 293 cells were transfected with CIITA, SIRT1 shRNA
or shRNA targeting luciferase (LUC-shRNA). Cycloheximide was added 24 h post-transfection and cells were harvested at different time points as
indicated. (E) CIITA was transfected into 293 cells with SIRT1-shRNA or LUC-shRNA. Cells were harvested, fractionated and probed for CIITA.
(F) THP-1 cells were infected with retrovirus carrying SIRT1-shRNA or LUC-shRNA followed by treatment with IFN-g as indicated. ChIP assays
were performed with anti-CIITA.

Nucleic Acids Research, 2011, Vol. 39, No. 22 9553



restored the acetylation levels of CIITA (Figure 6E),
enhanced the stability of CIITA (Supplementary
Figure S6A), binding of CIITA to the MHC II
promoter (Figure 6B), as well as the transcriptional acti-
vation of MHC II (Figure 6C and D).
To assess the possibility that oxLDL may target SIRT1

to suppress CIITA-mediated MHC II activation, we
examined the expression and activity of SIRT1 in macro-
phages challenged with oxLDL. The oxLDL treatment sig-
nificantly downregulated both mRNA and protein levels
of SIRT1 in macrophages (Supplementary Figure S6D
and E). In addition, SIRT1 activity was also suppressed

by oxLDL (Supplementary Figure S6F). Thus, oxLDL
acting as a stress stimulus impairs MHC II transactivation
by limiting the cellular pool of active SIRT1.

DISCUSSION

Antigen presentation by MHC II molecules expressed on
the surfaces of macrophages constitutes a pivotal circuit to
the integrity of the adaptive immune system. This process
is constantly challenged by various stress cues, either ex-
trinsic or intrinsic, that leave the host paralyzed in com-
bating and eliminating pathogens (18,19). There have been
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numerous reports highlighting the different strategies
stress stimuli employ to cripple the adaptive immune
system. Our data presented here suggest that suppression
of the type III deacetylase SIRT1 may provide a common
mechanism that links stress signals to impaired antigen
presentation by macrophages.

SIRT1 is a well-known target for manipulation by
stress. Expression and/or activity of SIRT1 can be
altered by, among others, ionizing radiation (20), cigarette
smoke (21), mechanic stretch (22), excessive nutrition (23)
and malignancy (24). We demonstrate here that SIRT1
is targeted in macrophages by chronic hypoxia, which
is associated with pulmonary hypertension (HPH)
and chronic obstructive pulmonary disease (COPD) and
oxLDL, a primary risk factor for atherosclerosis. Animal
models as well as population studies have correlated HPH,

COPD and atherosclerosis with increased incidence of in-
fection (25–27). Interestingly, aging-triggered immuno-
senescence is also associated with compromised adaptive
immunity and increased susceptibility to infection (28).
Several independent investigations have shown that
aging renders macrophages less competent in presenting
antigens and activating T lymphocytes to combat invading
pathogens in both mice and humans (29–31). Among the
possible mechanisms underlying macrophage dysfunction
as result of aging is reduced expression of MHC II mol-
ecules. Herrero et al. (4) have reported that bone
marrow-derived macrophages isolated from old mice fail
to express H2-IA compared with younger mice. In the
same study, it was found that expression levels of CIITA
were not altered by advanced age, alluding to a post-
transcriptional scheme that modifies CIITA activity. Our
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preliminary data also indicate that IFN-g fail to elicit
MHC II expression in macrophages of higher passages
(Wu,X.Y. and Xu,Y., unpublished data). SIRT1 has
long been considered as a key factor in the aging process
playing primarily a protective role in defying senescence
associated pathologies; conversely, aging down-regulates
the expression and/or activity of SIRT1 (32). Therefore,
our data add to the list of pathways wherein antigen pres-
entation by macrophages is targeted by stress signals and
point to a scenario in which SIRT1 functions as a central
mediator that, by fine-tuning the activity of CIITA, main-
tains the adaptive immune system of the host and prevents
immune evasion.
One intriguing finding in the current investigation is

that the NAD+ synthesizing enzyme NAMPT is also

necessary for CIITA-dependent MHC II transactivation.
Initially known as pre-B cell colony enhancing factor
(PBEF), NAMPT is implicated in a range of pathophysio-
logical processes including lineage specification of immune
cells and longevity. Recently, it has been demonstrated
that NAMPT protects cells from genotoxic stress (33)
and excessive nutrient uptake (34), raising the possibility
that NAMPT, similar to SIRT1, may sense and coordin-
ate response to alterations in cellular microenvironment.
Of note, circulating NAMPT is associated with metabolic
disorder, consistent with the concept that aberrant activa-
tion of MHC II contributes chronic inflammation (35,36).
It remains to be determined how NAMPT balances the
need for MHC II expression in vivo and whether the effect
of NAMPT requires SIRT1. Also noteworthy is the fact
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that NAMPT produces NAD+ that is necessary for not
only SIRT1, but also for other members of the sirtuin
family including SIRT6 and SIRT7. Both SIRT6 and
SIRT7 have been reported to influence the immune
response by curbing the production and release of
pro-inflammatory cytokines (37,38). Thus, NAMPT may
be a coordinator in the immune system by activating dif-
ferent sirtuins.

Post-translational modification has emerged as potent
machinery that modulates CIITA-mediated transcription-
al activation of MHC II (9). One outstanding question
regarding the present study is whether pan-acetyl levels
of CIITA could be used as an accurate predictor for its
activity. It has been reported that PCAF-dependent
acetylation of CIITA promotes its nuclear accumulation
that is associated with enhanced MHC II transactivation
(39). Alternatively, CIITA possesses an acetyltransferases
activity that is required for its activity (40). Both reports
are consistent with our previous data demonstrating that
HDAC2, a class I deacetylase, antagonizes CIITA-
mediated MHC II transactivation by deacetylating
CIITA (11). Our novel finding presented here, however,
suggests that acetylation/deacetylation of specific residues
of CITIA, rather than, overall acetylation levels of CIITA,
herald specific outcomes. Similar observation has been
made for the pro-inflammatory transcription factor
NF-kB/p65. Whereas acetylation of lysines 310 and 221
correlates with enhanced p65 activity (41), acetylation of
p65 on lysines 122 and 123 reduces its affinity for target
DNA (42). Consistently, deacetylation by SIRT1 and
HDAC3 exert antagonizing effects on p65 (14,42). Thus,
our data echo the notion that dynamic regulation of
acetylation by different deacetylases may result in differ-
ent consequences. Indeed, class I and III HDACs have
been shown to function in both cooperating and
opposing manners. For instance, HDAC2 and SIRT1
are able to synergistically deacetylate and activate the
proto-oncogene BCL6, implicated in the pathogenesis of
B cell lymphoma (43). On the other hand, SIRT1
upregulates, whereas, HDAC3 downregulates eNOS
activity by differential deacetylation (44,45). Future inves-
tigations employing proteomic tools would lead to the de-
termination of the precise lysine residues targeted by
SIRT1 and HDAC2 and allow a context-specific analysis
of the role of SIRT1 and HDAC2 in MHC II
transactivation

A macrophage-specific SIRT1 knock-out mouse model
has been made available recently. In these mice, there is
increased synthesis of pro-inflammatory genes and ac-
celerated development of insulin resistance, owing to
hyperacetylated p65 (46). It would be interesting to
assess the overall wholesomeness of the adaptive immune
system in these mice and in particular, the ability of
macrophages to transcribe MHC II molecules and present
antigens in response to stress. In summary, our data de-
lineate a potential mechanism, whereby stress renders the
adaptive immune system of the host less efficient in coping
with pathogens and allude to a potential therapeutic
strategy for deficient antigen presentation since the
SIRT1 agonist resveratrol can potently restore MHC II

expression in macrophages confronted with hypoxia and
oxLDL.
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