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This article presents a preference accumulation model that can be used to implement a
number of different multi-attribute heuristic choice rules, including the lexicographic
rule, the majority of confirming dimensions (tallying) rule and the equal weights rule.
The proposed model differs from existing accumulators in terms of attribute represen-
tation: Leakage and competition, typically applied only to preference accumulation, are
also assumed to be involved in processing attribute values. This allows the model to
perform a range of sophisticated attribute-wise comparisons, including comparisons
that compute relative rank. The ability of a preference accumulation model composed
of leaky competitive networks to mimic symbolic models of heuristic choice suggests
that these 2 approaches are not incompatible, and that a unitary cognitive model of
preferential choice, based on insights from both these approaches, may be feasible.
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One of the primary approaches to studying
the cognitive underpinnings of decision making
involves heuristic choice rules. Heuristics are
short cuts for solving problems. Within the do-
main of decision making, heuristics specify
simple algorithms for accessing and manipulat-
ing attribute values. For example, instead of
considering the values of all alternatives on a
given attribute, many heuristic rules only utilize
rank-based information, such as information re-
garding which alternative is the best on the
attribute. Although the behavior generated by
heuristics often departs from strict economic

rationality, many researchers consider heuristics
to be accurate descriptions of how humans ac-
tually make choices (Gigerenzer & Goldstein,
1996; Gigerenzer, Todd, & the ABC Research
Group, 1999; Gilovich, Griffin, & Kahneman,
2002; Marewski & Schooler, 2011; Newell &
Simon, 1972; Payne, Bettman, & Johnson,
1993; Simon, 1956; Tversky, 1972; Tversky &
Kahneman, 1974).

An alternate approach to studying decision
making involves the accumulation of prefer-
ences, often modeled using neural networks
(Bhatia, 2013, 2014; Bogacz, Usher, Zhang, &
McClelland, 2007; Busemeyer & Townsend,
1993; Krajbich, Armel & Rangel, 2010; Rangel
& Hare, 2010; Roe, Busemeyer, & Townsend,
2001; Usher & McClelland, 2004). According
to this approach, decision makers sample attri-
bute values sequentially, and integrate these
values in neuron-like units representing prefer-
ences for choice alternatives. Decisions are
made when the preference for an alternative
crosses a threshold level of activation. Many of
these models also assume leaky competitive
accumulation (Roe et al., 2001; Usher & Mc-
Clelland, 2004; see also Usher & McClelland,
2001), that is lateral inhibition between prefer-
ence nodes, and the feedback of information
from these nodes to themselves—two biological
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properties that allow these networks to explain a
wide range of human behavior.

These two important and influential ap-
proaches are usually studied separately. This is
because of differences in the types of represen-
tations and computations that they assume are
active in the decision process. Theories of heu-
ristic choice are symbolic, consisting of sophis-
ticated decision rules applied to abstracted vari-
ables, whereas preference accumulation is often
best understood using dynamic, stochastic con-
nectionist models, constrained by the simple
structure of human neural circuitry. Both ap-
proaches warrant merit, and a convergence of
these approaches is desirable. Such a conver-
gence can contribute greatly to the goal of the-
ory integration in decision making, and in doing
so, shed light on the elementary information
processing mechanisms that guide decision
making across different domains. Beyond this,
it can provide important organizing principles
for the study of heuristics, and can subsequently
constrain the range of possible heuristic rules at
play in any given scenario. By specifying heu-
ristic rules using a framework that is naturally
suited to making probabilistic choice predic-
tions and predictions regarding decision time,
such a convergence can also greatly enhance the
descriptive scope of the heuristics approach.

A convergence of heuristic and accumulator
models can also enrich models of preference
accumulation. Current accumulator networks,
for example, are unable to explicitly model so-
phisticated attribute comparisons and transfor-
mations, such as those based on relative rank.
Examining how these networks could be mod-
ified to incorporate this type of heuristic com-
putation would contribute to the creation of
more detailed and realistic models of preference
accumulation.

We present a model of multi-attribute choice
that allows for a convergence of heuristic and
accumulator models. As with prior work on
preference accumulation, we assume that pref-
erences are represented in leaky competitive
neurons that integrate attribute values over time.
Unlike this work, we make explicit assumptions
about the representation of the attributes that the
available alternatives are composed off. Partic-
ularly, we assume that information about the
values of available alternatives on various attri-
butes is processed in different attribute sublay-
ers, and that these attribute sublayers, like the

preference accumulation layer, feature leakage
and competition. Finally we assume that all
nodes in the network have piecewise-linear ac-
tivation functions bounded at 0 and 1.

Overall, our model is a two layered neural
network with recurrent connectivity within each
layer. This connectivity generates rich and com-
plex dynamics, which for various connection
weights can emulate a variety of well-known
heuristic rules. Unlike many previous heuristic
models, the behavior of proposed model is
probabilistic, generating heuristic choice pre-
dictions that are vulnerable to error. This behav-
ior is also dynamic, and the proposed model can
easily be used to make decision time predic-
tions. Our model is of course not only a model
of heuristic choice: Specific parameter combi-
nations in our model allow it to mimic existing
accumulators as well.

Heuristic Choice Rules

Consider a simple multi-attribute multi-
alternative choice. A prosaic example of this
problem involves the selection of a car. Each
available car is defined on a number of attri-
butes, such as mileage, horsepower, price, car-
bon emissions and so on. Rational decision
making requires the evaluation of each attribute
in each available car, the subsequent aggrega-
tion of each car’s attribute values, weighted by
the importance of these attributes, and finally
the selection of the car with the highest total
value.

This problem can be very difficult. As the
number of available alternatives or the number
of attributes increases, more calculations are
required, and identifying the highest value al-
ternative becomes increasingly time consuming
and effortful. It is in this setting that decision
makers are likely to use heuristic rules, or cog-
nitive shortcuts, to make their selections. The
relevance of heuristic rules for preferential
choice was first noted by Simon (1956), who
proposed bounded rationality as a behavioral
alternative to standard, value maximizing ratio-
nality. According to Simon, decision makers do
not use all the information available to them in
any given choice task; rather, they are likely to
use only a subset of this information, manipu-
lated in ways that are computationally feasible
for humans. Heuristic rules, according to Si-
mon, specify these manipulations, and are
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therefore the appropriate descriptors of the cog-
nitive underpinnings of choice behavior (see
also Simon, 1955; Newell & Simon, 1972).

The idea of heuristic rules as appropriate
descriptors of choice is the foundational as-
sumption in many other approaches as well.
Tversky and Kahneman’s (1974) heuristics and
biases framework, for example, proposes that
heuristics form the basis of decision making,
and that the use of these heuristics can lead to
irrational behaviors (Gilovich et al., 2002; Tver-
sky & Kahneman, 1974). The fast and frugal
framework, proposed by Gigerenzer and col-
leagues (Gigerenzer & Goldstein, 1996; Giger-
enzer et al., 1999), also assumes that heuristic
rules underlie choice, though, unlike the heuris-
tics and biases approach, the focus here is on
formally modeling heuristics, and additionally
examining the conditions where the use of heu-
ristics is beneficial to decision making. An em-
phasis on the advantages of heuristic decision
making is also a property of the adaptive deci-
sion maker framework, which examines the
ways in which different heuristic rules can re-
duce the effort involved in preferential choice
(Payne et al., 1993).

In this article, we attempt to implement some
of the specific heuristic rules proposed in these
(and other) frameworks in dynamic, stochastic
connectionist networks. As there are a large
number of qualitatively distinct heuristic rules
that are currently studied, two restrictions to our
task are in order. First, we limit ourselves to
studying heuristic rules in preferential choice
involving the manipulation and aggregation of
attribute values, and will not study heuristics
based on emotional or social cues. Second, we
will consider only heuristics using attribute
based processing, in which the values of several
alternatives on a single attribute are processed
before the examination of a second attribute.
This is in contrast to alternative based process-
ing, in which the values of several attributes in
a single alternative are processed before the
examination of a second alternative. Most heu-
ristic rules for preferential choice rely on attri-
bute based processing. Additionally, attribute
based processing is considered to be cognitively
simpler (Russo & Dosher, 1983), and has been
shown to be efficient in settings involving un-
correlated attribute structures, and in settings
requiring quick decisions (Payne, Bettman, &
Johnson, 1988).

Given these two restrictions, we can now
select a number of well-known heuristics to
study. These are as follows:

1. Lexicographic. The lexicographic heuris-
tic (LEX) is one of the earliest and best
known choice rules. According to LEX,
decision makers select the choice alterna-
tive with the highest value on the most
important attribute (Fishburn, 1967; Gig-
erenzer & Goldstein, 1996; Hogarth &
Karelaia, 2005a, 2007; Tversky, 1969).

2. CONF. The CONF heuristic is a variant
of LEX. According to CONF, decision
makers sample the attributes until an al-
ternative that is the best on two attributes
emerges. This alternative is then selected
(Karelaia, 2006). The CONF heuristic can
be extended to a more general choice rule,
k-CONF, which requires the selected al-
ternative to have the highest value on k
attributes.

3. Weighted pros. According to weighted
pros heuristic (WP), all attributes are sam-
pled and each alternative is classified as
best, with a value of one, or not best, with
a value of zero, on each attribute. These
binary values are then weighted and
added, and the alternative with the highest
total weighted sum is selected (Huber,
1979).

4. Majority of confirming dimensions. The
majority of confirming dimensions
(MCD) heuristic (also known as the tally-
ing heuristic) is nearly identical to WP: it
samples all attributes and processes only
information pertaining to the best alterna-
tive on each attribute. It also, however,
further simplifies the choice process by
using equal weights for all attributes. Ac-
cording to MCD, the alternative that is the
best on the most number of attributes is
the one that is selected (Russo & Dosher,
1983).

5. Equal weights. The equal weights heuris-
tic (EW) involves the sampling of all at-
tributes and the consideration of the val-
ues of all alternatives on these attributes.
Each attribute is, however, given an equal
weight, so that the alternative with the
highest total (nonweighted) attribute value
is selected (Dawes, 1979; Dawes & Cor-
rigan, 1974).
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6. Weighted additive. The weighted addi-
tive rule (WAD) is not strictly a heuristic.
Rather it is a rule that leads to the selec-
tion of the most desirable alternative
(when the correct weights are known for
certain). According to WAD decision
makers sample, weigh and aggregate the
attribute values of all alternatives.

Three Principles of Bounded Rationality

There are three principles of bounded ratio-
nality that are particularly useful for character-
izing heuristic decision making. All three of
these principles reduce the amount of informa-
tion processed in the decision task, and together
they form the basis of a large number of choice
rules involving attribute based processing, in-
cluding the ones discussed above. The first prin-
ciple involves the examination of fewer attri-
butes and fewer alternatives: when attributes are
examined sequentially, as with attribute based
processing, decision makers often accept an al-
ternative after only a few attributes have been
sampled. As the order in which these attributes
are sampled is often independent of the choice
set, this principle also implies that interattribute
dependencies at play in the choice task are
ignored. The second principle involves the sim-
plification of attribute weighting: instead of as-
cribing different weights to different attributes,
decision makers often give all attributes the
same weight in their decision. The third princi-
ple involves less complicated attribute compar-
isons across alternatives: instead of processing
the exact values of all alternatives on a partic-
ular attribute, decision makers often identify
only the best alternative on that attribute, and
use this to accept alternatives in the choice set
(see also Gigerenzer & Brighton, 2009; Shah &
Oppenheimer, 2008).

These principles can all be observed in the
heuristics listed in the previous section. The first
principle, for example, is satisfied by LEX and
CONF, which reduce the effort and time re-
quired to make a decision, by limiting the total
number of attributes that are sampled, and by
ordering sampling probabilities independently
of interattribute dependencies. We can observe
the second principle at play in MCD and EW.
Whereas these heuristics sample all attributes,
each attribute is weighted equally in the subse-
quent decision. The final principle is satisfied by

LEX, CONF, WP, and MCD. Instead of pro-
cessing the values of all alternatives on a par-
ticular attribute, these heuristics only identify
and process information about the best alterna-
tive on the attribute. Ordinal comparisons re-
duce the amount of information needed to make
a decision, thereby simplifying the choice and
reducing effort, and potentially time. Note that
WAD does not satisfy any of these principles.
As it leads to the selection of the most desirable
alternative from the available choice set, it
needs to process all of the information available
in the decision task.

Although the three principles mentioned in
preceding text are useful in explaining the key
components of various heuristic choice rules,
none of these principles are fundamentally rule
based or symbolic in nature. Information reduc-
tion by considering fewer attribute and alterna-
tives, by giving each attribute an equal weight,
or by making ordinal comparison within attri-
butes, can be implemented by a variety of cog-
nitive models. Indeed a model that can instan-
tiate these three principles may also be able to
generate the many heuristic choice rules that are
based on these principles.

Preference Accumulation Networks

Connectionist networks provide a powerful
approach to studying the decision process (Bha-
tia, 2013, 2014; Bogacz et al., 2007; Buse-
meyer, Jessup, Johnson, & Townsend, 2006;
Glöckner & Betsch, 2008a; Roe et al., 2001;
Usher & McClelland, 2004). Many of these
networks involve leaky competitive accumula-
tion, with self-feedback within preference nodes
and lateral inhibition between preference nodes.
These networks also use decision thresholds to
determine choice, with choice options being
chosen if their corresponding accumulator node
exceeds a certain level of activation.

There are many benefits to using accumula-
tion networks to study preferential choice. Be-
sides being neurally plausible, the preference
accumulation framework can instantiate opti-
mal speed–accuracy trade-offs, as a special case
(Bogacz, Brown, Moehlis, Holmes, & Cohen,
2006). Beyond this, preference accumulation is
closely related to sequential sampling ap-
proaches in other domains, such as perceptual
choice (Link & Heath, 1975; Usher & McClel-
land, 2001), sensory detection (Smith, 1995),
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memory retrieval (Ratcliff, 1978), categoriza-
tion (Nosofsky & Palmeri, 1997), and lexical
choice (Ratcliff et al., 2004). Finally, theories of
preference accumulation have an extensive de-
scriptive scope. They have been used to explain
behavioral findings as diverse as context depen-
dence, reference dependence, risky choice, re-
sponse time effects, speed–accuracy trade-offs,
and task framing (Bhatia, 2013, 2014; Buse-
meyer & Townsend, 1993; Diederich, 1997,
2003; Johnson & Busemeyer, 2005; Krajbich et
al., 2010; Roe et al., 2001; Tsetsos, Chater, &
Usher, 2012; Usher & McClelland, 2004), and
stochastic accumulation based computations
have been observed in the brain (Basten, Biele,
Heekeren, & Fiebach, 2010; Hare, Schultz,
Camerer, O’Doherty, & Rangel, 2011; Lim,
O’Doherty, & Rangel, 2011).

An influential theory of how preference ac-
cumulation can describe individual decision
making has been proposed by Busemeyer and
Townsend (1993), in a model titled decision
field theory (DFT). Since its publication, DFT
has been implemented in a connectionist net-
work (Busemeyer et al., 2006; Roe et al., 2001),
and a number of closely related theories have
likewise formalized preference accumulation
within connectionist networks (Bhatia, 2013;
Bogacz et al., 2007; Usher & McClelland,
2004). All of these approaches can easily in-
stantiate the first principle of bounded rational-
ity discussed above: decision thresholds allow
for the consideration of only a few attributes,
greatly simplifying the decision process. Indeed
Lee and Cummins (2004) have already shown
how an accumulation model can capture lexico-
graphic decision making in binary choice
(though their implementation cannot be ex-
tended to the general case with more than two
choice alternatives).

Whereas these theories provide valuable in-
sights about how preferences are represented
and computed, they do not generally study the
representation and computation of the attribute
values that are accumulated into preferences.
It is unclear, for example, how existing accu-
mulator networks could be modified to inte-
grate attribute ranks rather than continuous
attribute values. These details are required for
a complete theory of preferential choice. In this
article, we formalize the representation of dif-
ferent attributes in separate neural layers, each
with leakage and competition (an assumption

traditionally applied only to preference repre-
sentation). We show that formalizing attribute
representation in this manner can instantiate the
second and third principle of bounded rational-
ity, thereby generating behavior that mimics
that specified by the heuristic rules discussed in
this article.

Model

Let us consider choices between a set of
alternatives defined on M attributes. The value
of alternative i on attribute j is written as xij, and
weight given to attribute j is written as wj.
Given this, the weighted total value of alterna-
tive i is Ui � �j�1

M wj · xij . The most desirable
alternative in a choice set is the one with the
largest value of Ui. This is the alternative that
would be selected by decision makers were they
completely rational, and is the alternative pre-
dicted to be chosen by the WAD rule. Without
loss of generality, we will assume that 0 � xij �
1 for all i and j.

The decision process is implemented in a two
layer neural network. The first layer formalizes
attribute representation, and consists of M sub-
layers, with each sublayer corresponding to
each of the M different attributes that the alter-
natives are defined on. We assume that each
sublayer itself consists of N nodes, with each
node representing the value of a possible choice
alternative on that attribute. The values of the
alternatives available in a particular task, on an
attribute, are represented by a subset of nodes in
that attribute’s corresponding sublayer. The sec-
ond layer represents preferences, and consists of
N nodes, each representing the preference for a
possible choice alternative. Preferences for the
alternatives available in the task at hand are
represented by a subset of nodes within this
layer.

We assume that every node in this network
has the same piecewise linear activation func-
tion, bounded at 0 and 1. More specifically,
given an input y, the activation of a node is
determined by the function f(y), with

f�y� � �
1 y � 1

y 0 � y � 1

0 y � 0

(1)
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We assume that the nodes in the attribute
layer corresponding to the considered alterna-
tives receive exogenous inputs based on the
amounts of these attributes in the available al-
ternatives. Thus the node representing the value
of attribute j in alternative i in the first layer
receives inputs xij if i is available in the choice
set. If an alternative is not a part of the available
choice set then the inputs to its attribute nodes
are zero. We also assume that connections be-
tween the sublayers in the first layer and the
second layer are equal to the weight given to the
attribute represented in the sublayer. Particu-
larly, the connection from the node representing
attribute j in alternative i, to the node representing the
preference for alternative i, is wj.

In addition to connectivity between the lay-
ers, we assume connectivity within the layers.
This connectivity involves leakage and compe-
tition. Particularly, as with prior preference ac-
cumulation networks, nodes in the preference
accumulation layer are assumed to excite them-
selves, with self-feedback parameter sP, which
is identical across all preference nodes. Nodes
in this layer are also assumed to inhibit other
nodes, with inhibition parameter lP, also identi-
cal across all preference nodes. Unlike prior
networks, however, we assume that this type of
connectivity is also active within each attribute
representation sublayer with, sAj and lAj repre-
senting self-feedback and inhibition in the attri-
bute representation sublayer j. If we write the
activation of node i in the preference accumu-
lation layer, or any given attribute representa-
tion sublayer, at time t (in the time scale of the
layer) as Xi(t), the inputs to node i from other
layers, at time t, as Yi(t), and the self-feedback
and lateral inhibition parameters of that layer as
s and l, then we have:

Xi(t) � f [s · Xi(t � 1) � l · �k�i Xk(t � 1)

� Yi(t)] (2)

We shall assume that the attribute representa-
tion layer operates at a different time scale
relative to the other layers, with the attribute
representation layer reaching its equilibrium ac-
tivation almost immediately. This allows us to
use the stable equilibrium activation states of
the nodes in each attribute sublayer, as that
sublayer’s outputs, greatly simplifying our un-
derstanding of the network’s properties.1 This

assumption is not just mathematically conve-
nient, it is also justified by the functional dif-
ferences between these layers: the preference
accumulation layer holds information pertain-
ing to the considered alternatives in memory so
that these alternatives can be compared to make
a decision, whereas the attribute representation
sublayers retrieve information pertaining to
stored attribute values. It is not unlikely that
these layers differ in terms of their structural
properties, such as the time they take to reach
their equilibrium activation state.

Prior preference accumulation theories have
assumed that each attribute’s values are sam-
pled and accumulated stochastically and se-
quentially. We shall maintain this assumption:
at each time step (in the time scale of the pref-
erence accumulation layer), one attribute sub-
layer is selected at random, and its stable acti-
vation states serve as weighted inputs to the
preference accumulation layer. This process re-
peats at the next time step. In this article, we
will refer to this time scale as the time scale of
attribute sampling. We will also assume that
attribute sampling is uniform and independent,
with each attribute equally likely to be sampled.
This can be easily modified to incorporate in-
sights from related approaches that assume that
attribute sampling is a function of the available
choice set (e.g., Bhatia, 2013 see also Bhatia,
2014).

Finally, we need to specify the decision rules
used by this network. Prior work has assumed
that alternatives are chosen when the activation
of their corresponding preference node goes
above a fixed acceptance threshold. Again, we
will maintain this assumption, and will write the
acceptance threshold as Q. The first alternative
to cross Q is the one that is selected. Figure 1
illustrates the structure of the proposed network.

Let us now examine a decision. Before the
decision begins, all nodes in the network are off,
and all inputs to these nodes are 0. At the start
of the decision, the nodes in the attribute sub-
layers corresponding to the available alterna-
tives receive inputs xij. These inputs are passed

1 Note that stability is guaranteed through the Cohen–
Grossberg theorem (Cohen & Grossberg, 1983). Although f
is not differentiable at 0 and 1, a requirement for the
theorem, we can replace f with an appropriate differentiable
approximation, while maintaining all the properties of the
accumulation network, discussed in this article.
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through the activation function f to determine
the activation in the different layers. As the time
scale on the attribute sublayers is much quicker
than the time scale of attribute sampling, the
attribute sublayers stabilize immediately. The
stable activation state for nodes corresponding
to nonavailable alternatives is 0, as these nodes
do not receive any exogenous inputs. The stable
activation states for nodes corresponding to
available alternatives in layer j depend on sAj
and lAj, as well as the values of all the other alter-
natives on attribute j.

Some attribute is now sampled at random,
and the preference accumulation nodes corre-
sponding to available alternatives receive inputs
equal to the weighted activation states of their
corresponding nodes this attribute’s sublayer.
These are passed through the activation func-
tion f to generate the preference activations for
the alternatives at t � 1. Note that the prefer-
ence nodes corresponding to nonavailable alter-
natives will get no inputs and thus will remain
off. If the activation of a preference node
crosses the acceptance threshold, Q, then its
corresponding alternative is selected and the
decision terminates. If not, then this process
repeats from the beginning. Particularly, an-
other attribute is sampled, and the weighted
equilibrium activations of the nodes in this at-
tribute’s sublayer enter as inputs into corre-
sponding preference accumulation nodes. Pref-
erence accumulation nodes also receive
excitatory inputs from themselves from the pre-
vious time period, weighted by sP, and inhibi-

tory inputs from competing preference nodes,
weighted by lP. Acceptance decisions are made
based on whether the resulting activation values
of these preference nodes cross the threshold,
and this process repeats itself until the decision
terminates.

Properties

The type of processing that the proposed
model accomplishes is similar to that of a stan-
dard preference accumulation network. Particu-
larly, this network stochastically samples,
weighs and accumulates information regarding
attribute values into preferences. Recurrent con-
nectivity and threshold decision making in the
preference accumulation layer generate rich dy-
namics that can be used to model the time
course of the decision process. Additionally,
connections between the preference accumula-
tion and attribute representation layer weigh the
outputs of the attribute representation layer pro-
portionally to attribute importance. Finally, re-
current connectivity in the attribute representa-
tion layer serves to modify the attribute values
that are used in the accumulation process. Al-
though this connectivity is based on the same
principles as that in the preference accumulation
layer, we assume that it operates on a fast
enough time scale that we do not have to worry
about the time dynamics of attribute represen-
tation. The modified attribute values that are
eventually accumulated, are simply the equilib-
rium activation states generated by processing
actual attribute values in the attribute sublayers.

We can understand the emergent properties
of this network if we understand the types of
computations performed by these components
of the network. The followings sections will
explore how these computations depend on the
connection weights between and within the lay-
ers, and will demonstrate how varying these
connections can lead to computations specified
by the three principles of bounded rationality,
subsequently generating behavior predicted by
each of the specific heuristic rules explored in
the article. These sections will also discuss the
relationship between the parameters of the
model and randomness in its behavior, as well
as the effect of this randomness on heuristic
behavior.

Figure 1. The proposed network, which consists of two
layers corresponding to attribute representation and prefer-
ence accumulation, with the attribute representation layer
further divided into M sublayers, each corresponding to an
attribute. The preference accumulation layer and the attri-
bute representation sublayers each consist of N nodes, with
each node corresponding to a possible choice alternative.
Additionally, each layer has self-feedback and lateral inhi-
bition, and attribute sublayers are sampled sequentially
(with the third sublayer beings sampled here).
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The Preference Accumulation Layer

Recurrent connectivity and threshold deci-
sion making in the preference accumulation
layer produce computations resembling the first
principle of heuristic choice. Appropriate values
of Q lead to the acceptance of alternatives be-
fore all attributes have been sampled, and self-
feedback and lateral inhibition, in conjunction
with the specific thresholds in use, perform the
computations guiding this acceptance. This re-
duces the number of attributes and alternatives
considered during the decision, subsequently
reducing the effort, time and complexity in-
volved in the decision.

Self-feedback for example, determines the
dependence of the decision at a particular time
period on information sampled in previous time
periods. If sP � 0, then weighted information
regarding attribute values for each alternative,
sampled in any particular time period, is con-
sidered independently from similar information
sampled in previous time periods. This is a
property of heuristics such as LEX, which spec-
ifies the acceptance of an alternative based only
on absolute or relative attribute values of the
attribute sampled in that time period. In con-
trast, if the self-feedback term sP � 1, then
weighted information regarding attribute values
for each alternative, sampled in any particular
time period, is added to similar information
sampled in previous time periods. This is a
property of heuristics such as CONF, WP,
MCD, and WAD, which specify the acceptance
of an alternative based on all sampled the attri-
bute values.

Thresholds in the preference accumulation
layer operate in conjunction with the self-
feedback parameters, as well as the outputs of
the attribute representation layer, to instantiate
specific acceptance rules. If, for example, the
attribute representation layer can identify the
best alternative on an attribute (as, e.g., required
by LEX) by having its equilibrium activation in
that attribute’s sublayer equal to 1, and the
equilibrium activation of all other alternatives
less than 1, then if we set sP � lP � 0, and
choose an acceptance threshold Q � max(wj),
our model would be able to select the best
alternative on the most important attribute.

Different thresholds do not only allow us to
instantiate the various properties of heuristic
rules, they also allow us to control the time that

it takes to make a decision, and subsequently
modify the level of noise that characterizes each
decision. As with other models of preference
accumulation, stochastic attribute sampling
generates variability in the change in prefer-
ence, and the effect of this variability is greater
if preferences are allowed to accumulate for
only a short period of time. Decisions are ex-
tremely noisy (and take very little time) if the
decision thresholds are relatively small com-
pared with the inputs to the preference accumu-
lation layer.

Lateral inhibition can be seen to have a sim-
ilar role in the model. Whereas self-feedback
establishes a dependency between the prefer-
ence activation for an alternative in one time
period and its activation in the previous time
period, lateral inhibition establishes a depen-
dency between the preference activation for an
alternative in one time period and the activation
of other alternatives in the previous time period.
As lateral inhibition involves negative connec-
tion strengths, the preference for an alternative
reduces with higher preferences for its compet-
itors. This allows the decision maker to accu-
mulate information pertaining to relative pref-
erences (rather than absolute preferences) for
the competing alternatives. Relative accumula-
tion makes it more likely that the accumulator
node that receives the highest input is the one
that is chosen. Whereas many existing accumu-
lator models feature lateral inhibition between
their accumulators, we will, for simplicity,
avoid this assumption in our analysis. This is
because the key insights of this article do not
depend critically on lateral inhibition in the
preference accumulation layer.

Finally note that the above dynamics also
ignore interattribute dependencies. As attribute
sampling is independent of the choice set, and
because the preference accumulation layer ag-
gregates information about different attribute
identically (i.e., with the same decay and inhi-
bition), the model does not process the desir-
ability of an attribute conditional on the other
attributes in the choice alternative.

Attribute-Preference Connection Weights

The connections, wj, between the attribute
representation and preference accumulation lay-
ers serve perhaps the simplest role in the pro-
posed network. These connections merely re-
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weigh the equilibrium activations of the
attribute sublayer before these activations are
aggregated by the preference accumulation
nodes. If all connections are equal, then each
attribute would be given an equal weight, as, for
example required by MCD or EW. If connec-
tions correspond to attribute importance, then
different attributes will receive different
weights, as required by WP or WAD. This
corresponds to the second principle of heuristic
choice.

These connections also play a role in heuris-
tics that do not sample all attributes. Here, how-
ever, they do not necessarily facilitate the
weighted aggregation of attribute values, rather
they modify the rules that are applied to each
attribute. Connection weights are identical for
all attribute sublayers, for rules such as CONF,
where the acceptance criteria do not vary based
on the attribute that is sampled. Connection
weights vary for different attributes sublayers,
for heuristics such as LEX, which specify the
selection of an alternative only if it is the best on
the most important attribute.

Connection weights also play another role in
our model: They allow us to scale the inputs
into the preference accumulation layer, control-
ling the extent of accumulation that is possible
before node activation in this layer hits its upper
or lower bounds. Very small connection
weights allow the network continue accumulat-
ing evidence for longer periods of time. This, as
discussed above, reduces the amounts noise in
the decision while also increasing the amount of
time required by the model to make a decision.

Attribute Representation Sublayers

The leaky competitive connectivity in the
attribute representation sublayers is able to in-
stantiate the third principle of heuristic choice.
Varying values of self-feedback and inhibition
in these layers can transform inputs pertaining
to absolute attribute values in the alternatives,
xij, into activation states identifying the best
alternatives on these attribute values. These
types of ordinal comparisons on attributes un-
derlie heuristics such as LEX, CONF, WP, and
MCD, and are a key component of the choice
rules known to be at play in decision making.

To understand the properties of the attribute
representation sublayers, one must recall that
we are assuming that the processing dynamics

on these sublayers are fast enough, so that only
equilibrium activation states are accumulated
when the appropriate attributes are sampled.
This assumption allows us to conveniently char-
acterize computations on each attribute sublayer
in terms of a mapping transforming attribute
value inputs into stable modified outputs, with
the same dimensionality as the inputs. More
formally the sublayer corresponding to attribute
j receives an N dimensional input yj � (y1j, y2j,
. . . , yNj). Here we have yij � xij if alternative i
is considered, and yij � 0 otherwise. Given the
self-feedback and inhibition parameters sAj and
lAj, this input is transformed by the function
�(yj, sAj, lAj), giving an N dimensional output
�j � (�1j, �2j, . . . , �Nj), corresponding to the
stable activation states of the nodes in the sub-
layer. Both yij and �ij are in the interval [0, 1]
for all i and j, as we have 0 � xij � 1 and the
activation function f is bounded at 0 and 1.

For convenience let us order our n considered
alternatives in terms of decreasing values on
attribute j. Hence yj can be written as yj � (x1j,
x2j, . . . , xnj, 0, 0 . . . , 0), with 1 � x1j � x2j �
. . . � xnj � 0. Now, how do different values of
sAj and lAj affect � and determine �j? Let us start
our analysis with the simplest case, holding
sAj � lAj � 0. As there is no self-feedback or
inhibition, and the activation function is linear
with slope equal to 1, in the interval [0, 1], the
sublayer’s stable activation state will be equal to
its inputs, and � will simply be the identity
function �(yj, sAj, lAj) � yj.

Let us now incrementally increase sAj, and
hold lAj constant at lAj � 0. As positive activa-
tion, weighted by sAj, feeds back from a node to
itself, the equilibrium activation states of all
nodes corresponding to considered alternatives
increase. If sAj is very small, then the stable
activation value of these nodes will be in-
creased, but will still remain below the activa-
tion upper bound, 1. Now further increasing the
value of sAj will increase �ij for considered
alternatives, ultimately causing the activation
state of alternative i � 1 (the considered alter-
native with the highest xij) to saturate at 1. At
this point increasing sAj has no further effect on
�1j. Increasing sAj does however alter �ij for i �
1, ultimately causing the activation state of al-
ternative i � 2 (the considered alternative with
the second highest xij) to also saturate at 1.
Further increases to sAj will have the same effect
on the remaining nodes: these nodes will satu-
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rate at 1, in order of the magnitude of their
inputs. Eventually for large enough sAj we will
have �ij � 1 for all i � n, and �ij � 0 for all i �
n; that is, nodes corresponding to considered
alternatives will have the maximal activation,
whereas nodes corresponding to nonconsidered
alternatives will be deactivated.

What does the inhibition parameter do? To
explore this, let us incrementally increase lAj,
and hold sAj constant at sAj � 0. A positive
value of lAj leads to negative inputs from all
positively activated nodes into all other nodes.
This reduces the activation value of all posi-
tively activated nodes in the attribute sublayer.
If lAj is very small, then the stable activation
values for nodes corresponding to considered
alternatives will be decreased, but not decreased
strongly enough for any of these nodes to hit the
activation lower bound, 0. Further increasing lAj
will however further decrease �ij for all of these
alternatives, ultimately restricting the stable ac-
tivation state of alternative i � n (the considered
alternative with the lowest xij) to 0. At 0 �nj is
stable, and does not send inhibitory inputs into
other nodes. In this setting, the dynamics of the
remaining attribute nodes resemble the dynam-
ics generated if alternative n was not being
considered. Even further increases to lAj will
restrict the activation of the node corresponding
to alternative i � n �1 to 0 and the dynamics of
the layer will resemble the setting where both
alternative n and n-1 are not considered. Even-
tually large enough values of lAj will keep all
nodes deactivated, except for the node corre-
sponding to alternative i � 1 (the node with the
highest input).

The effects of self-feedback and inhibition on
the equilibrium states in an attribute represen-
tation sublayer can thus be understood as fol-
lows. Increasing sAj increases the equilibrium
activation of all nodes corresponding to consid-
ered alternatives. Eventually high enough val-
ues of sAj cause these nodes to saturate at the
maximal activation, 1. This happens in order of
the strength of their inputs, so that the node with
the highest input saturates first (needing the
lowest value of sAj to saturate), the node with
the second highest input saturates second (need-
ing the second lowest value of sAj to saturate),
and so on. Inhibition has a similar effect. In-
creasing lAj decreases the equilibrium activation
of all nodes corresponding to considered alter-
natives. Eventually high enough values of lAj
cause these nodes to saturate at the lowest ac-
tivation, 0. This happens in order of the strength
of their inputs, so that the node with the lowest
input saturates first (needing the lowest value of
lAj to saturate), the node with the second lowest
input saturates second (needing the second low-
est value of lAj to saturate), and so on. Although
we have explored the effects of sAj and lAj
keeping one or the other fixed at 0, this insight
also holds if both are varied together.

An illustration of this property is provided in
Figure 2. Figure 2 considers three alternatives
on an attribute j, such that x1j � 0.75, x2j � 0.5
and x3j � 0.25. It varies sAj and lAj from 0 to 1,
and displays the resulting equilibrium activation
states of the nodes corresponding to these alter-
natives. These states are indicated by the shades
on each of the three plots, with lighter shades
corresponding to higher equilibrium activation

Figure 2. Equilibrium activation states for nodes in attribute representation sublayer j, as a
function of sAj and lAj. Here we have x1j � 0.75, x2j � 0.5, and x3j � 0.25.
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states. Notice that increasing sAj always in-
creases �ij for all alternatives, whereas increas-
ing lAj always decreases �ij for alternatives 2
and 3, and almost always decreases �ij for al-
ternative 1. Alternative 1 is also never actually
deactivated, unlike alternatives 2 and 3, which
are deactivated for large enough values of lAj.

We can use these insights to understand how
the attribute representation layer can implement
computations corresponding to ordinal compar-
isons on an attribute. Note that these computa-
tions require the attribute representation layer to
set both �ij � 1 for the best alternative and �ij �
0 for other alternatives. Using the above in-
sights we can show that high enough values of
sAj and lAj ensure both that the best alternative
saturates at 1, and that all other alternatives
are suppressed to 0. Figure 3 demonstrates these
insights, with the same choice options that are
used in Figure 2. White areas on Figure 3 cor-
respond to parameter combinations for which
the network sublayer is able to compute the best
alternative on attribute j, with equilibrium acti-
vations �1j � 1, �2j � 0 and �3j � 0. Parameter
combinations shaded black, give us either �2j �
0 or �1j � 1, or both. A formal demonstration of
how, given any vector of inputs yj, we can find
some values of sAj and lAj that implement these
computations, is provided in the Appendix (see
the online supplemental Appendix).

Implementing Heuristic Rules

Thus far we have shown how varying con-
nection weights between and within the two
layers of the proposed network allow the net-
work to implement each of the three proposed
principles of bounded rationality. Appropriate
threshold, self-feedback and inhibition parame-
ters, in the preference accumulation layer, per-
mit the acceptance of alternatives before all
attributes have been sampled. This leads to the
examination of fewer attributes and alternatives
than required by rational decision making, and
corresponds to the first principle of heuristic
choice. Connection weights between the attri-
bute representation and preference accumula-
tion layers specify attribute weighting, and can
be used to implement attribute specific decision
rules. Equal connection weights lead to equal
attribute weighting (and the same decision rule
for each attribute), corresponding to the second
principle of heuristic choice. Finally the recur-
rent connectivity on the attribute representation
sublayers allows the network to make ordinal
comparisons of the alternatives on the various
attributes. This simplifies the attribute values
that are used in the decision process, corre-
sponding to the third principle of heuristic
choice.

Now each of the heuristic rules introduced in
this article involves a specific combination of
these three principles. Here we shall show that
appropriate parameters in the proposed model
can generate each of these specific combina-
tions, leading to the accurate implementation of
all of these rules. Note that we will explicitly
derive the preference accumulation layer pa-
rameters (sP, lP, Q) and connection weights (wj)
that are required to implement each of these
rules. We will not however explicitly derive the
required attribute representation layer parame-
ters (sAj, lAj), as these parameters depend on the
set of alternatives offered to the decision maker.
Instead we will rely on the result introduced in
the previous section, and shown in the Appen-
dix (see the online supplemental Appendix),
that states that for any set of considered alter-
natives there exist some values of sAj and lAj that
allow attribute sublayer j to identify the best
alternative in the set. Also note that the pro-
posed model’s behavior is stochastic, whereas
most of the heuristic rules considered are deter-
ministic. Our implementation will demonstrate

Figure 3. Parameter values identifying the best alternative
on an attribute j (�1j � 1, �2j � 0 and �3j � 0) in the
attribute representation sublayer j, as a function of sAj and
lAj. White values indicate parameter values that can make
the correct identification. Here we have x1j � 0.75, x2j �
0.5, and x3j � 0.25.
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how the proposed model can be used to place
these deterministic heuristic rules within a prob-
abilistic framework.

Lexicographic. According to LEX, deci-
sion makers select the choice alternative with
the highest value on the highest weighted attri-
bute. Recall that for high values sAj and lAj, the
attribute representation layer can identify the
best alternative on an attribute. The outputs
given by this layer, for attribute j, for these
values of sAj and lAj, are �ij � 1 if alternative i
has the largest amount of attribute j, and �ij �
0 otherwise. If we set sAj and lAj for the attribute
with the highest weight to be such that its layer
is able to identify the best alternative, and ad-
ditionally select an acceptance threshold Q �
max(wj) and self-feedback parameter sP � 0
then the alternative specified by LEX will be the
one that is chosen by the network. This is be-
cause sP � 0 will ensure that the network does
not aggregate attribute values over time, but
instead considers each attribute individually, in-
dependent of attributes sampled in the past. Q �
max(wj) and our chosen values of sAj and lAj
further ensure that a threshold is crossed only if
the attribute that has the highest weight is sam-
pled.

Note that lower values of Q than Q �
max(wj) introduce noise into our decision. For
example, if Q is equal to the second highest
weight, then the object that is the strongest on
the second most important dimension is equally
likely to be chosen than the object that is the
strongest on the most important dimension. Fur-
ther reducing Q makes it more likely that alter-
natives that are the strongest on less important
attributes are chosen, and very low values of Q
lead to the selection of the alternative that is the
best on the first sampled attribute.

Finally, note that as both wj and attribute
sampling probabilities are independent of the
choice set, the proposed instantiation of the
LEX heuristic cannot process interattribute de-
pendencies: The specific attribute that plays the
key role in this heuristic does not vary with the
other attributes involved in the choice task. This
is also a property of existing lexicographic heu-
ristics, which involve the use of nonconditional
cue validities as weights.

CONF. The CONF heuristic is a variant of
LEX, and can be implemented using similar
principles as LEX. According to CONF, deci-
sion makers sample the attributes until an alter-

native that is the best on two attributes emerges.
This alternative is then selected. Recall that for
high values of sAj and lAj, the computations on
the attribute representation sublayer j can iden-
tify the best alternative on attribute j by giving
outputs �ij � 1 if alternative i has the largest
amount of attribute j, and �ij � 0 otherwise.
Also recall that sP � 1 and lP � 0 allow for the
addition of preferences over time, in the prefer-
ence accumulation layer. If we set wj � w �
0.5, and Q � 2 · w, then each alternative would
increase by w if it is the best alternative on the
sampled attribute, and increase by 0 if it is not.
Because sP � 1, preference accumulation would
have perfect memory, and every increase will
be added to every previous increase. Eventu-
ally, the alternative that is the first to be best on
two attributes will have an activation 2 · w and
will cross Q. This will lead to it being selected.

The generalization of CONF, k-CONF can
also be implemented using this method. We
would require the same values of sAj and lAj as
in CONF, and furthermore set wj � w � 1/k,
and Q � k · w. With these parameters, the
alternative that is the first to be the best on k
attributes, will reach an activation level of k · w,
crossing the threshold Q. This alternative will
be the one that is chosen.

Weighted pros. WP requires the sampling
of all attributes, and the classification of each
alternative as the best, with a value of 1, or not
the best, with a value of 0, on each attribute.
These binary values are then weighted and
added, and the alternative with the highest total
weighted value is selected. This heuristic is
quite easy to implement in our network. Unlike
the heuristics discussed thus far, it samples all
attributes and does not require the early accep-
tance of any alternative. We thus need to set the
acceptance threshold Q to be sufficiently close
to 1, and set our weights wj to be sufficiently
small (but proportional to the weights we wish
to place on the attributes), so that a large num-
ber of attributes can be (repeatedly) sampled
and accumulated before the decision is made.
WP also requires interattribute comparisons that
identify the best alternative on an attribute.
Hence we need to choose high values of sAj and
lAj, so that the attribute representation sublayer j
gives outputs �ij � 1 if alternative i has the
largest amount of attribute j, and �ij � 0 other-
wise. Finally as we need to aggregate weighted
information for all attributes, we can set sP � 1.
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WP can now be implemented. Particularly, if
attribute j is sampled at time t, the node corre-
sponding to the considered alternative i, gets an
input �ij � 1 if alternative i is the best on
attribute j, and an input of �ij � 0 otherwise.
This is weighted and added to the sum of similar
inputs from previous time periods. Over time,
the choice option specified by WP gets the
highest activation and is most likely to cross Q.

Note again that Q determines that amount of
noise in the network’s behavior. High values of
Q with relatively small wj generate nearly de-
terministic decisions, accurately implementing
WP. In contrast, moderate values of Q generate
probabilistic decisions, in which the modal
choice is nonetheless the choice specified by
WP. Finally small values of Q lead to choices
that deviate significantly from those specified
by WP.

Majority of confirming dimensions.
MCD is nearly identical to WP: it samples all
attributes and processes only information per-
taining to the best alternative on each attribute.
It also however further simplifies the choice
process by using equal weights for all attributes.
As a result, MCD can be implemented in a
manner identical to WP, with the added as-
sumption that attribute weights are equal, with
wj � w for all j. Additionally, as with WP, high
values of Q generate deterministic behavior,
moderate values of Q generate probabilistic be-
havior in which the choice specified by MCD is
the modal response, and low values of Q gen-
erate probabilistic behavior that departs signif-
icantly from that predicted by MCD. Indeed low
enough value of Q ultimately lead to the types
of choices predicted by the CONF heuristic.

Equal weights. EW involves the selection
of the alternative with the highest total non-
weighted attribute value. EW can be imple-
mented in much the same way as MCD, how-
ever as EW does not involve interattribute
comparisons, we set sAj � lAj � 0. Thus at time
t if attribute j is sampled, the attribute represen-
tation layer sends an output of �ij � xij for the
considered alternative i. This is weighted by the
constant weighting term wj � w and added to
similar outputs summed over previous time pe-
riods in the preference accumulation node cor-
responding to alternative i. Once again, as with
WP and MCD we need to set Q to be high
enough to ensure that decisions are made with
relatively little noise.

Weighted additive rule. According to
WAD decision makers sample, weigh and ag-
gregate the attribute values of all alternatives.
As this rule does not require interattribute com-
parisons, it can be implemented by setting sAj �
lAj � 0, to give outputs �ij � xij from the
attribute representation sublayer corresponding
to attribute j, for the considered alternative i.
Additionally wj are set proportional to the
weights we wish to place on required attributes.
Finally, we set sP � 1 so that all attribute values
are aggregated over time, and a high value of Q
so that the decision is relatively noiseless.

Additional Attribute Transformations

One of the key insights that drive the results
in this article pertain to ordinal comparisons on
the attribute representation sublayers: We have
shown that high self-feedback and high lateral
inhibition within these layers allow them to
identify the strongest alternative on an attribute
by having its stable activation at 1, and the
stable activation of all other alternatives at 0. In
contrast, when there is no feedback or inhibition
within these layers, they are able to process the
attribute values of all alternatives without trans-
forming them based on their rank.

Leakage and competition on these sublayers
are, however, able to accomplish more than just
an identify-the-best transformation. These lay-
ers can, for example, also identify the worst
alternative on an attribute by having its stable
activation at 0, and the stable activation of all
other alternatives greater than 0. This type of
comparison is a property of heuristics such as
the elimination by least attractive heuristic,
which samples attributes sequentially and elim-
inates the alternative that is the lowest valued on
the sampled attribute (Svenson, 1979).

To see how the proposed model can perform
these types of transformations recall again that
increasing lAj decreases the equilibrium activa-
tion of all nodes corresponding to considered
attribute, with high enough values of lAj causing
these nodes to saturate at the lowest activation,
0. This happens in order of the strength of their
inputs, so that the node with the lowest input
saturates first, needing the lowest value of lAj to
saturate. If we choose moderate values of lAj,
values that are high enough to suppress the node
corresponding to alternative n to 0, but not high
enough to suppress a node corresponding to
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alternative i � n to 0, then we can easily capture
this type of processing.

Figure 4 illustrates these insights, with x1j �
0.75, x2j � 0.5 and x3j � 0.25. As in Figure 2,
sAj and lAj are varied from 0 to 1. White areas on
Figure 3 correspond to parameter combinations
for which the network sublayer j is able to
compute the worst alternative on attribute j. For
these parameter combinations, we have equilib-
rium activations �3j � 0, but �1j � 0 and �2j �
0. Parameter combinations shaded black, for
low values of lAj give us �3j � 0 (as well as
�1j � 0 and �2j � 0), whereas parameter com-
binations shaded black, for high values of lAj
give us �3j � 0 but also �2j � 0 (and �1j � 0).
A formal demonstration of how, given any vec-
tor of inputs yj, we can find some values of sAj
and lAj that implement these computations, is
provided in the Appendix (see the online sup-
plemental Appendix).

There is also a third type of transformation
that the proposed model can accomplish. This
does not involve ordinal comparisons, but in-
stead normalizes attributes based on the average
attribute values in the choice set. Decision field
theory (Busemeyer & Townsend, 1993; Roe et
al., 2001), for example, assumes that decision
makes do not accumulate absolute attribute val-
ues for each alternative, but rather attribute val-
ues relative to the average of all other alterna-

tives on the attribute. This is typically
accomplished by feed-forward inhibition. In the
proposed model, however, it can also be accom-
plished by choosing appropriate values of sAj

and lAj, without requiring any feed-forward in-
hibition. Recall that low values of self-feedback
increase the equilibrium activation of all nodes
without saturating the activation of any node at
1. Likewise low values of inhibition reduce the
equilibrium activation of all nodes without sat-
urating the activation of any node at 0. The
stable activation states that emerge from these
settings are in fact relative, and the activation of
any given attribute node can be written as a
linear function that is increasing in its inputs but
decreasing in the average inputs of all other
nodes. More specifically, for these parameter
combinations, we have equilibrium activations
	ij � 
1 · xij � 
2 · �k�i xkj where �1 and �2
are positive constants that depend on sAj and lAj.
This is nearly identical to the feed-forward in-
hibition based relative accumulation of decision
field theory. Figure 5 illustrates these insights,
with x1j � 0.75, x2j � 0.5 and x3j � 0.25. As in
Figure 2, sAj and lAj are varied from 0 to 1.
White areas on Figure 5 correspond to param-
eter combinations for which the network sub-
layer is able to compute normalized attribute
values for attribute j. A formal demonstration of
how, given any vector of inputs yj, we can find
some values of sAj and lAj that implement these
computations, is provided in the Appendix (see
the online supplemental Appendix).

Parameter Recovery

Parameter uniqueness. The above sec-
tions show that various parameter combinations
on the attribute representation sublayers can
perform ordinal and relativistic attribute trans-
formations. This allows the proposed model to
mimic a range of heuristic rules as well as
mimic some existing accumulator models. One
thing to note, however, is that the correspon-
dence between parameter combinations and re-
sulting behavior is not one-to-one. For a given
choice set, there exist numerous parameters that
are able to transform the attribute values in the
choice set in a certain ordinal manner. For ex-
ample, in Figure 3, we see that all sAj � 0.24
and lAj � 0.48 lead to stable activation states
�1j � 1, �2j � 0 and �3j � 0.

Figure 4. Parameter values identifying the worst alterna-
tive on an attribute j (�1j � 0, �2j � 0 and �3j � 0) in the
attribute representation sublayer j, as a function of sAj and
lAj. White values indicate parameter values that can make
the correct identification. Here we have x1j � 0.75, x2j �
0.5, and x3j � 0.25.
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Whereas this property is fairly common in
nonlinear systems, it can nonetheless be prob-
lematic from an empirical standpoint. It is dif-
ficult to use choice data to recover a decision
maker’s underlying parameters, if numerous pa-
rameter values generate the same behavior. For-
tunately, however, this problem is mitigated
when the model is applied to multiple choices.
Whereas different parameters can generate the
same behavior when applied to one choice set, it
is unlikely that they do so when applied to
another. Thus data that contains choices made
on a large number of choice sets can be used to
accurately recover a decision maker’s true pa-
rameters.

In this section we demonstrate this insight in
a parameter recovery study, which generates
choice predictions from the model for various
parameter values, and then attempts to recover
these parameters using standard model fitting
tools. We consider values of sAj, lAj and the
threshold parameter Q in the interval [0.1, 0.9]
in increments of 0.1, with sP � 1 and lP � 0.
For simplicity we set self-feedback and inhibi-
tion to be identical for all sublayers so that sAj �
sA and lAj � lA. We consider three-alternative
choice sets, with each alternative defined on two
attributes. Our weights for these attribute are set
to w1 � w2 � 0.01. Note these parameter values
do not capture the LEX heuristic, thus we also

consider one additional parameter combina-
tion2: sP � lP � 0, sAj � lAj � 1, and Q � w1 �
0.01. This set up gives us 93 � 1 � 730 unique
parameter combinations to examine in our pa-
rameter recoverability study.

The choice sets that we consider are gener-
ated randomly, with the attribute values for each
alternative being drawn from a uniform distri-
bution on the interval [0, 1]. We generate choice
probabilities for our model for each of the 730
parameter combinations, on varying numbers of
these randomly generated choice sets, and at-
tempt to recover the true parameters based on
the resulting data. Choice probabilities are gen-
erated by simulating the model on the choice
sets 10,000 times. For our study we consider
only other parameter combinations in our set of
730 considered parameter combinations, and at-
tempt to find the parameter combinations that
minimize the mean-squared-error on our data.
Each parameter combination is simulated twice
on each choice set: once to generate a choice
probability for our data, and a second time to
generate a choice probability for model fits on
the data (note that we do not reuse the choice
probabilities in our data when performing our
model fits, so as to allow for noisy parameter
recovery).

Using the above techniques we are able to
specify a measure of the parameter uniqueness
of our model for each combination of choices
that it is applied to. We define parameter
uniqueness as the proportion of the 730 param-
eter combinations that are recovered success-
fully and uniquely. We would obtain 100% pa-
rameter uniqueness if each of the 730 parameter
combinations were the unique best-fit parameter
combinations on the choice data that they gen-
erate. Parameter uniqueness would be less than
100% if two or more parameter combinations
were both best-fit parameter combinations on
the data (because they generate the same choice
predictions), or if some parameter combination
was not the best-fit combination on the data that
it generated.

Figure 6 displays the parameter uniqueness
of the proposed model as a function of the total

2 The model will not cross the threshold if sp � 0 with
Q � w1 or if sp � 0 for small enough sA. Thus, to have
well-defined predictions for parameters capable of mimick-
ing LEX heuristic, we need to specify these parameters
separately.

Figure 5. Parameter values that are able to normalize
attributes (	ij � 
1 · xij � 
2 · �k�ixkj where �1 and �2 are
positive constants) in the attribute representation sublayer j,
as a function of sAj and lAj. White values indicate parameter
values that can perform the correct normalization. Here we
have x1j � 0.75, x2j � 0.5, and x3j � 0.25.
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number of randomly generated choice sets the
model is applied to. Parameters are fairly nonu-
nique and confusable when the model is applied
to only a small number of choices. For example,
only 101 out of the 730 parameter combinations
give unique predictions when they are applied
to two choices. In contrast 724 out of the 730
parameter combinations give unique predictions
when they are applied to 200 choices. Thus the
problem of parameter recovery is mitigated if
the model is applied to a large dataset.

Identifying Heuristics

Besides the parameter uniqueness issue dis-
cussed above, it is also not clear whether the
proposed model can be used to identify the
heuristic being used in any given setting. To
what extent are the parameters that describe
different heuristics confusable with each other?
Can parameters that describe one heuristic also
adequately describe other heuristics? This sec-
tion addresses this issue with a simulation
study. Particularly it applies the LEX, WP,
MCD, EW, and WAD heuristics to 100 ran-
domly generated three alternative choice sets.
The available alternatives in these choice sets
have three attributes, with attribute weights
w1 � 0.03, w2 � 0.015 and w3 � 0.01. The
attribute amounts in these alternatives are ob-
tained using a uniform distribution with range
[0, 1]. For each of the choice sets, this study

generates choices made by idealized, determin-
istic versions of these heuristics (e.g., choices
according to the LEX heuristic always choose
alternatives with the highest values on Attribute
1). As it considers only deterministic choices,
the CONF heuristic is excluded from the study.

This study then simulates the model on these
100 choice sets using five different combina-
tions of parameter values. These five combina-
tions correspond to the parameters that that al-
low the proposed model to mimic LEX, WP,
MCD, EW, and WAD respectively (as shown in
the above sections). The parameters used for
LEX are sP � lP � 0, sAj � lAj � 1, Q � 0.03,
w1 � 0.03, w2 � 0.015 and w3 � 0.01; the
parameters used for WP are sP � 1, lP � 0,
sAj � lAj � 1, Q � 0.99, w1 � 0.03, w2 � 0.015
and w3 � 0.01; the parameters used for MCD
are sP � 1, lP � 0, sAj � lAj � 1, Q � 0.99, and
w1 � w2 � w3 � 0.01; the parameters used for
EW are sP � 1, lP � 0, sAj � lAj � 0, Q � 0.99,
and w1 � w2 � w3 � 0.01; and the parameters
used for WAD are sP � 1, lP � 0, sAj � lAj �
0, Q � 0.99, w1 � 0.03, w2 � 0.015 and w3 �
0.01. For each set of parameter values, the
model is simulated 10,000 times to generate the
choice probabilities predicted by these parame-
ter combinations. These choice probabilities are
compared with the choices generated by the
actual idealized heuristics to test both the accu-
racy of the model parameters in mimicking the
heuristics that they are assumed to mimic, and
the extent to which these parameters can mimic
other heuristics, and thus be confused with the
parameters used to describe these others heuris-
tics. Note that we have set the threshold Q to be
considerably higher than the weights for all the
heuristics (except for LEX) so that the model’s
choices for these heuristics are made with al-
most no noise.

A combination of parameters is assumed to
accurately describe a heuristic rule on a partic-
ular choice if the modal choice predicted by the
set of parameters is the same as that generated
by the idealized heuristic (the use of modal
choices is necessary as the model is probabilis-
tic but the heuristics being studied are determin-
istic). Parameter combinations fully describe a
heuristic if their modal choice prediction is the
same as the idealized heuristic’s prediction in
all of the different choice sets being considered
in this study.

Figure 6. Parameter uniqueness as a function of the num-
ber of choices the model is applied to. Parameter uniqueness
captures the proportion of considered parameter combina-
tions that are the unique best-fit parameters to the data that
they generate, in the parameter recovery study.
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The results of the simulation are summarized
in Table 1, which presents the accuracy of each
of the parameter combinations in capturing be-
havior generated by each of the idealized heu-
ristics. In order to evaluate parameter accuracy
for LEX, EW, and WAD we use all 100 of the
randomly generated choice sets. However, to
evaluate the parameter accuracy for MCD we
use only 68 of the choice sets. This is because
this heuristic does not make unique choice pre-
dictions on some choice sets where each alter-
native is the best on an equal number of attri-
butes.

As expected, parameter combinations hy-
pothesized to mimic an idealized heuristic can
describe the behavior generated by the heuristic
with 100% accuracy. In every case, they are
unable to do so for other heuristics. However
model predictions do sometimes overlap based
on the similarities of the different heuristics. For
example, EW and WAD are nearly identical
heuristics except for their assumptions about
weighting. The model is able to capture this
relationship, by the relatively high accuracy of
EW and WAD parameter combinations in de-
scribing idealized WAD and EW choices re-
spectively. This is also the case for LEX, WP,
and MCD, which all involve ordinal compari-
son on individual attributes.

Discussion

A large number of heuristic rules, including
the rules explored in this article, can be de-

scribed in terms of the following three princi-
ples of bounded rationality: (1) The attributes of
all alternatives are not evaluated. (2) The
weighting of attributes is simplified. (3) Abso-
lute attribute values are replaced with ordinal
comparisons on the attributes. This article has
shown that extending existing preference accu-
mulation networks by assuming that leaky com-
petitive accumulation is also at play in attribute
representation, allows these networks to capture
these three principles, and subsequently imple-
ment a number of heuristic rules based on these
principles.

A Neural Level of Analysis

An important research tradition in psychol-
ogy involves understanding cognition and be-
havior using parallel distributed processes
(Rogers & McClelland, 2014; Rumelhart, Mc-
Clelland, & the PDP Research Group 1986).
Models within this framework formalize cogni-
tive processes using ensembles of neuron-like
units, in an attempt to understand how a range
of psychological tasks could be performed by
the human brain. The model presented in this
article is a product of this research tradition. By
studying the emergence of sophisticated heuris-
tic rules using a connectionist model, it shows
how these important heuristic rules can be cap-
tured using the key assumptions of the connec-
tionist framework; assumptions that stem from
the neurophysiological properties of the brain,
and assumptions that have already been used to
successfully model a diverse array of cognitive
and behavioral findings.

The model in this article most directly relates
to the leaky competitive accumulation model
proposed by Usher and McClelland (2001), and
further applied to preferential choice by Usher
and McClelland (2004). As in these models, this
article considers neural networks with lateral
inhibition and self-feedback. Both of these
types of recurrent connections are fundamental
properties of neurophysiological processing,
and both inhibition and feedback are frequently
assumed be active in psychological neural net-
works (e.g., Amari, 1977; Elman, 1990; Mc-
Clelland & Rumelhart, 1981; see also Usher &
McClelland, 2001 for a detailed discussion).
Indeed, in their 2001 article, Usher and McClel-
land suggested that studying how leakage and
competition play out in complex multilayer de-

Table 1
Accuracy of Various Parameter Combinations Used
to Mimic the Heuristic Rules in Describing Choices
Generated by Idealized Heuristic Rules

Implemented
heuristic

Idealized heuristic

LEX WP MCD EW WAD

LEX 1.00 0.85 0.78 0.59 0.68
WP 0.85 1.00 0.93 0.71 0.72
MCD 0.75 0.89 1.00 0.73 0.71
EW 0.59 0.71 0.84 1.00 0.87
WAD 0.68 0.72 0.82 0.87 1.00

Note. The accuracy of different parameter combinations
are displayed across rows. Accuracy is defined by the pro-
portion of unique choices correctly captured using modal
model choice predictions. MCD � majority of confirming
dimensions; EW � equal weights heuristic; WAD �
weighted additive rule.
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cision models is the reasonable next step in their
research agenda (see p. 554). The heuristic
model proposed here directly addresses this is-
sue: it shows that multilayer networks com-
posed of leaky competitive accumulators are
able to generate the types of sophisticated com-
putations associated with symbolic heurist ic
rules (see also Hunt, Dolan, & Behrens, 2014
for a related approach).

Extending the assumption of leakage and
competition to multilayer accumulation net-
works primarily involves formally modeling at-
tribute-level connectivity, which is an assump-
tion that is largely absent in existing
accumulation networks. Interattribute connec-
tivity is necessary to understand how the attri-
bute values of one alternative influence how
those of another are processed. In this article, it
is the key mechanism that allows the model to
generate ordinal transformations of attribute
values, which are necessary to implement the
various heuristic rules within the proposed
framework.

Within-attribute connectivity also allows the
model to normalize attributes based on the av-
erage value of other attributes. As discussed in
an earlier section in this article, attribute nor-
malization is a key assumption in many accu-
mulator networks, including decision field the-
ory (Roe et al., 2001). Decision field theory and
related approaches normalize attributes using
feed-forward connectivity between the attribute
layer and a valence processing layer. For an M
attribute and N alternative choice space, this
requires a total of M · N2 feed-forward connec-
tions, as well as a separate layer to process
these connections. This article’s assumption
of within-attribute leaky competitive connec-
tivity is comparatively more parsimonious. It
requires only M · N feed-forward connections
and does not need an additional layer. This
assumption is also biologically plausible, as
considerable evidence suggests that inhibitory
connections are primarily of the lateral type
(again, see Usher & McClelland, 2001 for an
overview).

Other Heuristic Networks

This article is not the first to implement heu-
ristic choice rules in a neural network. Usher
and Zakay (1993) present an attractor neural
network with dynamic thresholds, which can

approximate some of the heuristics discussed
above. This article is, however, the first to im-
plement heuristic choice rules in leaky compet-
itive accumulation networks, which are, as dis-
cussed above, are often considered to provide
realistic descriptions of the neurocognitive un-
derpinnings of preferential choice (Roe et al.,
2001; Usher & McClelland, 2004). This model
is additionally able to implement heuristic rules
that rely on ordinal processing. That said, the
approaches discussed in this article and in Usher
and Zakay (1993) are complementary. Allowing
for dynamic thresholds in attribute activation
can, for example, provide a neurocomputational
justification for the sequential sampling as-
sumption made in this article. Besides introduc-
ing additional biological realism to the pro-
posed model, these thresholds can also be used
to predict when the sequential sampling as-
sumption will be violated, thereby expanding
the model’s descriptive scope.

This article is also related to a connectionist
framework proposed by Glöckner and Betsch
(2008a). Glöckner and Betsch suggest that pref-
erential choice involves both an automatic sys-
tem, which guides the integration of informa-
tion, and a deliberative system, which guides
information search. In their framework, both the
automatic and deliberative systems are modeled
using neural networks, though the deliberative
system can be seen as processing heuristic rules
for information search. The model proposed in
this article can benefit from many of the insights
presented in Glöckner and Betsch (2008a). This
model does not, for example, specify the deter-
minants of attribute sampling. It is highly likely
that a secondary network, similar to the delib-
erative system proposed by Glöckner and Bet-
sch, is involved at this stage. Likewise the
proposed model does not feature feedback
from preferences to attributes, a feature that a
natural part of many neural network modeling
approaches, including the one proposed by
Glöckner and Betsch (2008a).

Note that there are a number of behaviors that
are predicted by heuristic network approaches
such as Glöckner and Betsch (2008a), which
contradict the assumptions of symbolic heuris-
tic approaches. These include findings regard-
ing information intrusion (Söllner, Bröder,
Glöckner, & Betsch, 2014), eye-tracking behav-
ior (Glöckner & Herbold, 2011), and the inte-
gration of multiple attributes (Glöckner & Bet-
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sch, 2008b). Generally these findings indicate
that decision makers sample more than a single
attribute when making their choices. The pro-
posed model can capture these findings if the
threshold parameter Q is set to be sufficiently
high.

Decision by Sampling

The proposed model is able to implement
heuristic rules in part by exploiting the ability of
leaky competitive accumulator layers to make
ordinal comparisons between attribute values.
This property of the model can also allow it to
implement other choice rules that are not tradi-
tionally considered to be heuristics. One such
rule involves rank based comparison, as speci-
fied by the decision by sampling model (Stew-
art, Chater, & Brown, 2006; Stewart & Simp-
son, 2008). According to the decision by
sampling model, decision makers evaluate an
alternative using its rank within a sample of
attribute values. Particularly, at each time step
decision makers choose an attribute and draw a
sample of a value on this attribute from mem-
ory. The value of the considered alternative on
this attribute is then compared against the mem-
ory sample. If it is higher than the memory
sample, the preference for the alternative in-
creases by one unit; if not, the preference re-
mains the same. Ultimately, decision makers
aggregate the total number of attribute compar-
isons on which the considered alternative is
better than the alternatives stored in memory, a
number that is closely associated with the rela-
tive rank of the considered alternative in the
memory sample. One of the most powerful in-
sights of the decision by sampling model is that
this relative rank can be used to explain the
cognitive basis of nonlinear value scales, as
well as to predict the way in which these scales
differ across attribute and choice domains.

The decision by sampling model can be im-
plemented in the proposed neural network with
additional assumptions about how nonavailable
comparison alternatives are selected. We can,
for example, assume that decision makers ran-
domly send inputs into the nodes of nonavail-
able alternatives in the attribute representation
layer, in each time period. With appropriate
self-feedback and inhibition parameters, deci-
sion makers would then be able to make ordinal
judgments involving the considered alternative

and its nonavailable comparison sample. These
judgments would be aggregated in the prefer-
ence accumulation layer in much the same way
as the MCD and WP heuristics. Whereas such a
model differs in important ways from the net-
work discussed in this article, it nonetheless
provides valuable insights about the neurocog-
nitive basis of decision by sampling, and the
ways decision by sampling relates to both ex-
isting heuristic choice rules and existing models
of preference accumulation.

Heuristic Selection

Although the proposed network is able to
accurately generate a number of existing heu-
ristic rules, it relies on fundamentally different
properties than the algorithmic approaches pre-
viously used to model these rules. One implica-
tion of this is that measures of effort assumed by
these existing approaches (e.g., Johnson &
Payne, 1985; Payne et al., 1993) do not translate
easily into the proposed framework. As a result,
this network may not be able to generate effort-
accuracy relations, and subsequent results re-
garding heuristic learning and selection, ob-
tained in prior work.

That said, the proposed network does provide
novel insights regarding heuristic learning and
selection. The heuristics emerging from the dy-
namics of the network depend, for example, on
both the parameters of the network and the
attribute values of the alternatives being consid-
ered. Parameters that implement a particular
heuristic, for a given choice set, may not imple-
ment this heuristic for a different choice set.
Thus the properties of the proposed network are
not only parameter dependent, but also alterna-
tive dependent. This dependence allows the net-
work to learn heuristics based on the reward
structures of the domains (that is, the choice
sets) it is applied to (see Payne et al., 1988). A
learning rule which changes connection weights
as a function of the experienced value of the
chosen item, the bias and variance involved in
predicting this experienced value, and also pos-
sibly the time taken to make the decision, will
often be able to determine the heuristic that is
best-adapted for use in a given domain, thereby
generating behavior that is not only boundedly
rational, but ecologically rational as well (Gold-
stein & Gigerenzer, 2002).
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This property of the model can also allow it
to learn the settings where it is best not to use
any heuristic at all. Both heuristics and standard
accumulators networks (such as decision field
theory) are in the mind’s toolbox, and will per-
form differently under different conditions. As
shown above, these preference accumulation
networks are a special case of the proposed
model, implying that the model could learn to
generate behavior resembling these accumula-
tor networks, when this behavior is adaptive.
Further work should examine how this type of
learning can be accomplished, and whether it
differs in important ways from existing theories
of heuristic selection (e.g., Marewski &
Schooler, 2011; Payne et al., 1993).

Stochastic Choice and Decision Time

Another important difference between the
proposed model and current approaches to
studying heuristic choice involves probabilistic
choice and decision time predictions. Many
heuristic rules are deterministic in nature,
though choice, of course, is probabilistic. Ad-
ditionally, the probabilistic nature of choice
extends beyond variability in the final chosen
option; it applies also to the time that is taken
to make the decision. Modifying the heuristic
framework to allow for stochastic and dy-
namic choice, in a cognitively plausible man-
ner, is an important challenge for decision
researchers (see, e.g., Bröder & Schiffer,
2003).

The proposed model addresses this challenge.
Accumulator networks are stochastic and dy-
namic and are subsequently able to make pow-
erful predictions regarding choice probabilities
and their associations with decision time (see,
e.g., Busemeyer & Townsend, 1993). By em-
bedding heuristic rules within an accumulator
framework, the proposed model provides a use-
ful new extension of the heuristic framework.
This extension involves more than just adding
random additive noise or tremble noise to the
output of a heuristic. Noise is a fundamental
feature of preference accumulation, and inter-
acts in sophisticated ways with both the choice
options in the available decision set and the time
that the model takes to decide between these
options. The proposed instantiation of LEX, for
example, links decision time and error to the
height of the threshold. Thresholds that are

smaller than the weight placed on the most
important attribute will, at times, lead to the
selection of alternatives that are the best on the
second or third most important attribute. Deci-
sions with these reduced thresholds will also,
on average, be quicker than decisions when
the threshold is set at a higher level. Like-
wise, decision time and error are both a func-
tion of the threshold for heuristics like MCD.
This relationship is systematic: With small
enough thresholds, errors in MCD generate
behavior that resembles k-CONF. Finally, as
with other preference accumulation models
(Roe et al., 2001; Usher & McClelland,
2004), choice probability is sensitive to the
similarity of the options within the choice set.
This implies that the probabilistic behavior of
heuristics like EW and WAD should depend
strongly on the overlap of the attributes in the
alternatives that the decision maker is pre-
sented with.

The dynamics and the stochasticity of the
proposed model allow it to generate new test-
able predictions that cannot be accommodated
within the classical heuristic framework. These
predictions are necessary to differentiate the
proposed model from existing heuristics. They
are also valuable for fitting heuristic models to
choice data, and for comparing heuristic and
nonheuristic approaches using more than just
choice data. This type of examination should be
the focus of future work.

Novel Rules

The rules discussed in this article are only a
small portion of the entire set of rules that can
be generated by the proposed framework. Novel
decision rules can easily be obtained by com-
bining the various features of these heuristics.
Allowing for decision criteria to differ across
attributes can also create alternate, potentially
more complex rules. Whereas many of these
novel rules may not fit the intuitive algorith-
mic structures of LEX, CONF, WP, MCD,
EW, or WAD, they may prove to be equally
(if not more) suitable for describing choice
behavior. These rules may also prove to be
theoretically desirable, instantiating proper-
ties not easily captured by current heuristic
structures.

Consider for example a decision rule called
ignore the worst (ITW). Such a rule considers
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the values of the available alternatives on the
various attributes, but then aggregates only
the values of the alternatives that are not the
worst on the attribute dimension being exam-
ined. Another possible rule is k majority of
confirming dimensions (k-MCD) which tal-
lies up ones and zeros based on whether an
alternative is one of the k-best on an attribute.
Such rules may be used by decision makers,
but current heuristic approaches offer no way
of predicting or fitting behavior that is gener-
ated by these rules. Both these types of rules
can be generated by the proposed model, and
examining whether decision makers can use
these rules provides another way to test the
proposed model against existing heuristic ap-
proaches.

Feasible Rules

Is the proposed network flexible enough
that it can implement any heuristic rule? No is
it not. For example, the network is unable to
implement a dominance based heuristic,
which only selects options if they dominate
others (e.g., Hogarth & Karelaia, 2005b).
Such a heuristic requires decision makers to
keep track of ordinal attribute relationships
between each pair of options, which is some-
thing that an accumulator model cannot easily
do. Likewise the current model cannot imple-
ment heuristics that involve elimination, such
as fast and frugal trees or the elimination by
aspects heuristic (Dhami, 2003; Luan et al.,
2011; Tversky, 1972).

In general there are countless other rules,
such as those involving different decision crite-
ria for different alternatives, comparisons across
different attributes, or comparisons between
multiple pairs of alternatives, that also cannot
be implemented in the proposed network.
Whereas some may consider this to be a lim-
itation of the model, we believe that it is
highly desirable. The space of possible heu-
ristic choice rules is incredibly vast and the
unconstrained application of these rules to
model behavior can lead to problems of over-
fitting and generalizability. By making pre-
dictions about the types of choice rules that
are likely to be observed, and more important
unlikely to be observed, the proposed model
adds valuable theoretical precision to the
study of heuristic choice.

For example some prior work assumes that
elimination may be used in early stages in tasks
involving large choice sets, to reduce the num-
ber of alternatives being considered (see, e.g.,
Roe et al., 2001 for a discussion). As elimina-
tion requires a lower rejection threshold, which
is not a feature of the current model, the model
does not generate this behavior. In the current
form the model predicts that all alternatives
should be considered throughout the choice pro-
cess. All of these alternatives should affect
choice because of the recurrent connectivity on
the attribute representation sublayers, though
relatively undesirable alternatives should still
be less likely to be chosen. Predictions such as
these provide another way of comparing the
proposed model with exiting heuristic ap-
proaches. Once again, this should be the focus
of future empirical work.

Elementary Information Processes

Choice can be decomposed into a set of basic
cognitive components, or elementary informa-
tion processes. Cognitive research on decision
making has for a long time been concerned with
the identification of these processes. Early work
in this area (see, e.g., Johnson & Payne, 1985)
used insights from Newell and Simon’s (1972)
approach to studying problem solving, and for-
mulated these elementary processes using sym-
bolic rules implemented in production systems.
This article finds that these rules can be further
decomposed into more basic neurocomputa-
tional components. This suggests that the ele-
mentary information processes underlying deci-
sion making are not production rules applied to
abstract symbols; rather they are accumulator
networks with leakage and competition.

Why do we care about the uncovering the
elementary information processes underlying
choice? First, such an exercise can provide
important organizing principles for heuristics
research. In this article we have shown how
the various properties of our preference accu-
mulator network correspond to three basic
principles of heuristic choice. These proper-
ties can be used to categorize different heu-
ristics (based on differences in the parameters
involved in their implementation), which in
turn can help uncover the various statistical
and behavioral regularities involved in the use
of these heuristics.
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Understanding elementary information pro-
cesses can also provide rich insights for existing
preference accumulation networks (Bhatia,
2013; Roe et al., 2001; Usher & McClelland,
2004). These models are theoretically desirable.
They are both neurally feasible, and are able
make optimal decisions. In this article we pro-
vide new results regarding the algorithmic
power of these networks. Preference accumula-
tion networks are not only valuable for their
neural and statistical properties; they can also
generate the range of complex, sophisticated,
structured strategies known to be at play in
preferential choice.

Conclusion

Heuristic choice rules specify short cuts for
making decisions. Thus far, research on heuris-
tic choice has focused largely on describing the
rules used by decision makers (Gigerenzer et
al., 1999; Payne et al., 1993; Simon, 1956;
Tversky & Kahneman, 1974), or on outlining
the statistical properties of these rules (Davis-
Stober, Dana, & Budescu, 2010; Hogarth &
Karelaia, 2007; Pachur, 2010). Here we show
how a number of different heuristic rules can be
implemented in dynamic connectionist net-
works, particularly networks that accumulate
attribute values into preferences with leakage
and competition (Bhatia, 2013; Roe et al.,
2001; Usher & McClelland, 2004). Preference
accumulation networks are biologically real-
istic and provide important insights regarding
choice behavior in a number of domains. By
extending these networks to incorporate heu-
ristic rules, we allow for the integration of
two of the most popular theoretical ap-
proaches to studying multi-attribute choice,
an integration that allows for insights from
each of these approaches to be transferred to
the other, and demonstrates the possibility of
a unitary, cohesive cognitive theory of pref-
erential decision making.
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