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ABSTRACT: Cytochrome P450 aromatase (CYP19A1) plays a key role in the development
of estrogen dependent breast cancer, and aromatase inhibitors have been at the front line
of treatment for the past three decades. The development of potent, selective and safer
inhibitors is ongoing with in silico screening methods playing a more prominent role in
the search for promising lead compounds in bioactivity-relevant chemical space. Here we
present a set of comprehensive binding affinity prediction models for CYP19A1 using our
automated Linear Interaction Energy (LIE) based workflow on a set of 132 putative and
structurally diverse aromatase inhibitors obtained from a typical industrial screening study.
We extended the workflow with machine learning methods to automatically cluster
training and test compounds in order to maximize the number of explained compounds
in one or more predictive LIE models. The method uses protein−ligand interaction
profiles obtained from Molecular Dynamics (MD) trajectories to help model search and
define the applicability domain of the resolved models. Our method was successful in
accounting for 86% of the data set in 3 robust models that show high correlation between calculated and observed values for
ligand-binding free energies (RMSE < 2.5 kJ mol−1), with good cross-validation statistics.

■ INTRODUCTION

Cytochrome P450 aromatase (CYP19A1; EC 1.14.14.1) is a
member of the Cytochrome P450 (CYP) superfamily of mono-
oxygenases. This enzyme catalyzes a key step in estrogen
biosynthesis, i.e., aromatization of androgens such as androstene-
dione and testosterone to estrone and 17β-estradiol, respec-
tively.1−7 Common to most CYPs, CYP19A1 can bind a variety of
low molecular weight compounds, but it has a high catalytic
specificity toward steroid substrates due to the distribution of
polar and nonpolar residues within the binding site.8,9

Overexpression of aromatase in tumor tissue was identified
to play a key role in the development of estrogen receptor
positive breast cancer, endometrial cancer and endometriosis.1,3,5

Around 50−80% of breast cancers have been found to be
estrogen-dependent, where estrogen binding to receptor
stimulates tumor cell proliferation.10−13 Because the aromatiza-
tion reaction catalyzed by CYP19A1 is rate limiting, it serves as
an ideal target for the development of selective and potent
inhibitors that decrease the levels of circulating estrogen.14,15

This has led to the development of four generations of
aromatase inhibitors (AIs) in clinical use over the last three
decades (Figure 1).14,16,17 Most AIs are nonsteroidal in nature
(NSAIs) and derived from aminoglutethimide-like molecules,
imidazole/triazole derivatives, or flavonoid analogs.17,18 They
act by means of competitive and reversible inhibition (type I)

or quasi-irreversible inhibition by coordination with the heme
iron (type II).19,20 Steroidal inhibitors are typically based on the
adrostenedione scaffold with various chemical substituents at
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Figure 1. Members of four generations of clinical steroidal (c,f) and
nonsteroidal (a,b,d,e) aromatase (CYP19A1) inhibitors. First gen-
eration: aminoglutethimide (a, Cytadren, Novartis).99−101 Second
generation: Fadrozole (b, Afema, Novartis),99−101 and Formestane
(c, Lentaron, Novartis).14 Third generation: Anastrozol (d, Arimidex,
AstraZeneca),102 Letrozole (e, Femara, Novartis),103−105 and
Exemestane (f, Aromasine, Pfizer).103
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varying positions, which can be functional groups responsible
for mechanism based inhibition (e.g., Exemestane, Figure 1f).21

Despite their clinical success, current AIs are associated with
various drug related side-effects,22,23 including effects due to
inhibition of other members of the CYP family24 that can lead
to drug−drug interactions (DDI).25 Therefore, the search for
a next generation of AIs with improved potency, higher selectivity
and reduced toxicity is still ongoing, and both synthetic as well as
natural product derived alternatives such as coumarin, lignin and
flavonoids have been explored over the years.17,26−30

The widened search spectrum for AI lead compounds
increases the need for effective methods to screen the inhibitory
potential and modes of interaction for both the target protein
and other CYPs. In particular, the use of in silico methods for
the prioritization of compound ideas throughout the lead
discovery and optimization stages potentially offers an attractive
alternative for extensive use of in vitro methods.31,32 However,
especially for CYPs it remains a challenge to train generally
applicable predictive models for protein binding due to their
substrate promiscuity, catalytic site malleability, different modes
of inhibition, and ability to bind the same ligand in multiple
orientations.19,25,33,34 The flexibility in both the structural and
interaction dimensions limits the applicability of QSAR
(Quantitative Structure−Activity Relationship) methods based
on molecular descriptors only.33,35,36 The addition of structural
information such as in 3D-QSAR, molecular docking or
extensive pharmacophore methods has increased predictive
capacity, typically yielding local models for structurally similar
binders.33,36,37 However, these methods have difficulties dealing
with the dynamic nature of the CYP catalytic site and substrate
binding modes, providing a limited, static view of protein−
substrate interactions.38

On the other hand, molecular dynamics (MD) based free
energy calculation methods have the potential to provide an
accurate estimate of the binding affinity, even for very flexible
systems such as CYP enzymes.39−41 They are valuable methods
in the design stage of drug discovery but due to their high CPU
costs many of the pathway-based methods (including, e.g., Free
Energy Perturbation (FEP) and Thermodynamic Integration
(TI)) are unattractive for use in high-throughput settings
especially when having to deal with multiple protein and/or
ligand conformations that may contribute to binding (as in case
of several CYPs).41,42 Alternatively, end-point methods such as
Linear Interaction Energy (LIE) theory may provide a trade-off
between accuracy and speed by estimating the solvation free
energy between the two end points using linear response theory
instead of multiple intermediate steps along a pathway.34,43−45

LIE requires empirical calibration of its scaling parameters.
An advantage is that the sampling issue can be effectively and
efficiently addressed using an iterative version of LIE41 that uses
(re)weighted results from multiple short simulations starting
from different ligand41 and protein conformations40 as obtained,
e.g., by molecular docking.
The LIE method has been applied extensively over the last

two decades in the prediction of protein−ligand binding
affinities.45,46 Most LIE models have been trained using
relatively small and curated data sets ranging from as few as
10−15 up to approximately 50 compounds, yielding predictive
affinity models for compounds that are structurally similar or
diverse but engage in similar interactions with the target
protein.39,40,47−52 However, this situation may differ notably to
the much larger data sets obtained in a typical industrial lead
development and optimization project. Apart from their size,

these compound libraries are often sparse and designed to increase
possibilities to discover novel active ligands or scaffolds. It can
become a challenge to create predictive LIE models with well-
defined applicability domains39 for these data sets and, with
high-throughput in mind, to do so in an automated fashion.
In the current study, we present a system of three quantitative

binding affinity prediction models for CYP19A1. The models
were trained using a data set of 132 putative CYP19A1 inhi-
bitors with known inhibition constants obtained from a lead
discovery study by Bayer AG that is subject to the same
challenges described above in terms of compound size and
chemical diversity. As an additional challenge, we aim here for a
comprehensive approach for LIE model inference, param-
etrization and applicability assessment based on simulation
and calibration data only, without the need for data set
prefiltering by the user based on other information from
experiment such as type of binding, which is not always
available a priori. We have dealt with these challenges by
developing an automated machine learning workflow that uses
a stochastic approach to explore LIE-model parameter
landscape. The iterative LIE (iLIE) method is used as a cost
function in this search to prioritize the relative contribution of a
binding orientation among a series of independent simulations
of possible binding orientations. This approach allows to
efficiently deal with flexible proteins (such as CYPs) that are
able to bind ligands in multiple orientations. The probability of
a compound to be part of a particular model is defined by a
Bayesian approach that determines the maximum a posteriori
estimates for the α and β parameters of the iLIE equation for a
set of compounds, in order to maximize the number of
explained compounds in one or more LIE models with
predefined quality of the correlation between calculated and
experimentally observed values for the ligand-binding free
energies (in terms of RMSE and r2). We subsequently used
protein−ligand interaction profiling to define the applicability
domain of the resolved models in terms of protein−ligand
interactions.
We show that our machine learning workflow is able to

explain 86% of the employed CYP19A1 data set in three fully
cross-validated LIE models with distinct combinations of α and
β model parameters and an error margin below 3.0 kJ mol−1 of
the experimentally observed binding free energy (i.e., within
typical experimental accuracy53). Using simulation data only,
steroid inhibitors were separated from nonsteroidal inhibitors,
and the presented system of binding affinity models together
with their protein−ligand interaction profiles provide a
comprehensive means of predicting the binding affinity of
unknown ligands for CYP19A1.

■ METHODS
Molecular Dynamics (MD) averaged protein−ligand inter-
action energies for LIE affinity prediction were obtained using
our previously published (semi)automated iterative LIE
workflow.39,54,64 The methodological details on the protein
and ligand structure preparation, molecular docking and MD
simulation stages of this workflow are described below, together
with the model calibration and validation strategies developed
in this study.

Structure Preparation. The crystal structure of CYP19A1
with PDB ID 3EQM55 was used after removal of the
4-androstene-3-17-dione (ASD) molecule, water oxygen
atoms (none in the catalytic cavity) and crystallization buffer
additives.

Journal of Chemical Information and Modeling Article

DOI: 10.1021/acs.jcim.7b00222
J. Chem. Inf. Model. 2017, 57, 2294−2308

2295

http://dx.doi.org/10.1021/acs.jcim.7b00222


A data set of inhibition constants (Ki) for 132 putative
CYP19A1 inhibitors with known stereochemistry (Tables S1
and S4, Supporting Information) was provided by Bayer AG,
Berlin. Six of the 132 compounds entered the data set as
duplicate (Table S1) but with independently measured Ki
values. These compounds were used as internal validation in
the study; and indeed most of the duplicates were found within
the same (local) model, Table S1. Ki values were determined
using the 3H2O release assay with [1β-3H]androstenedione as
substrate56 in human placental microsomes according to FDA
and UP guidelines, and were used to derive experimental
binding free energies ΔGobs (Table S1). Assumptions taken
in directly deriving ΔGobs from these inhibition data were
supported by the obtained correlations for our final LIE models.
The initially minimized 3D structures for these compounds

in their neutral form were generated from their canonical
SMILES string using Molecular Operating Environment
(MOE) version 2012.10,57 and the MMFF94 force field.58

Subsequent optimization and generation of MD topology and
parameter files was performed using the Automated Topology
Builder (ATB) server version 1.0.59

Docking and Clustering. Ligands were docked into the
active site of CYP19A1 using the PLANTS (Protein−Ligand
Ant System) docking software version 1.2.60 The target binding
site was defined at the approximate center of the protein active
site, at a position 0.7 nm distal to the heme iron center
perpendicular to the heme plane, and with a size defined by a
sphere with a radius of 1.1 nm. Docking poses were generated
with speed 1 settings and evaluated using the ChemPLP61

scoring function. A maximum of 300 docked poses with mutual
Root-Mean-Square Deviations (RMSDs) in atomic positions of
more than 0.2 nm were retained and clustered using Principle
Component Analysis (PCA), using the heavy atom positions as
variables. After dimensionality reduction, the scores obtained
were used for subsequent k-means clustering.62 During this
analysis, an additional component or cluster was taken into
account in case it would have led to a further increment of
at least 5% of the explained variance in the space of the
coordinates or scores, respectively. The medoids of the clusters
obtained (4 to 8 per ligand) were chosen as representative
binding conformations of the ligand in the CYP19A1 active site.
MD Simulations. The MD simulations for every

representative binding pose obtained after docking and
clustering were carried out using the GROMACS 4.5.4
package63 and an adapted version64 of the automated MD
workflow script obtained from the GROMACS web server.65

The GROMOS 54A7 force field66 was applied to describe the
protein and heme group in simulation. Ligand topologies
were obtained with ATB59 as described above (see Structure
Preparation subsection).
Each complex was energy minimized in a vacuum using

steepest descent minimization and solvated in a simulation box
with a Near-Densest Lattice Packing (NDLP) optimized
volume67,68 (∼6300 solvent molecules) where water was
described by the SPC model.69 7 Cl− ions were added to
neutralize the system. The system was energy minimized
(steepest-descent) and gradually heated up to 300 K in four
NvT simulations of 20 ps, in which harmonic potentials
were used for heavy-atom positional restrains in the sequence:
100/1000, 200/5000, 300/50 and 300/0 for temperature (K)
and positional restraint force constant (kJ mol−1 nm−2),
respectively, together with a Berendsen thermostat70 with a
separate solute and solvent coupling time of 0.1 ps.

Subsequently, three 20 ps equilibration runs were performed
at NpT, using heavy-atom positional restraints on the solute with
decreasing force constants of 1000, 100 and 10 kJ mol−1 nm−2.
To further stabilize the system (as shown to be required
before71), a short 500 ps unrestrained NpT simulation preceded
the 2 ns production NpT simulation. A leapfrog algorithm72

was employed for integrating the equations of motion.
Heavy hydrogens (with a mass of 4.032 amu)73 were used
and all bonds were constrained using the LINCS algorithm,74

allowing a time-step of 4 fs. In all NpT simulations, a Berendsen
thermostat70 was employed to maintain the temperature of the
system close to its reference value of 300 K, using separate
temperature baths for the solvent and solute degrees of
freedom, with a coupling time of 0.1 ps. A Berendsen barostat70

with a coupling time of 0.5 ps and an isothermal compressibility
of 7.5 × 10−4 [kJ mol−1 nm−3]−1 was used to maintain the
pressure close to its reference value of 1.013 25 bar during NpT
simulations. Van der Waals and short-range electrostatic
interactions were explicitly evaluated every time step for pairs
of atoms within a 0.9 nm cutoff, and a grid-based neighbor
list was used and updated every 2 time steps. Long-range
electrostatic interactions were included using a twin-range
cutoff (0.9/1.4 nm) with reaction field correction.75 The relative
dielectric constant for the medium outside the reaction field
was set to 61. Center of mass motion removal was applied to
both the solute rotation and translation components every 10
steps. Interaction energies and atomic coordinates were stored
every 2 ps.
To evaluate average ligand interaction energies of the

unbound ligands in water, each ligand was solvated in a
NDLP optimized simulation box filled with approximately 625
SPC water molecules. No counterions were added. The MD
protocol was identical to the one described for the simulations
of the protein−ligand complex.

Iterative Linear Interaction Energy (iLIE) Method. In
LIE, the predicted free energy of binding for a ligand in pose
i to a protein (ΔGpred

i ) is estimated from MD-averaged
electrostatic ⟨Vlig−surr

el ⟩ and van der Waals interaction energies
⟨Vlig−surr

vdw ⟩ between the ligand and its surrounding as obtained in
complex with the protein (bound,i) and free in solution ( f ree).
Following LIE theory,43,76
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Values for the empirical LIE model parameters α and β are
obtained by parametrization against a training set of
compounds with experimentally determined binding affinities
using linear regression analysis. An optional constant γ may be
considered and has been used by others to account, e.g., for
hydrophobicity of the binding site.76,77

In the iterative version of eq 1,41 the predicted protein−
ligand binding free energy ΔGpred is calculated by combining
results from N multiple short MD simulations starting from
different ligand poses in the protein binding site that represent
local minima on the potential energy surface of the protein−
ligand complex, using a weighted sum (Σi

N Wi). The relative
weight (Wi) of each simulation (i) entering the sum is
calculated according to its probability using78
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with kB Boltzmann’s constant, T the temperature of the
simulation system and N the number of independent
simulations. Extending eq 1 by including the weighted sum of
multiple short simulations yields41

∑

∑
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The dependencies of the ΔGpred
i on α and β requires eq 3 to be

solved iteratively.41

Automated iLIE Binding Affinity Model Inference. LIE
models can be trained automatically for an unknown data set of
sufficient size by clustering ligands based on similarity in ΔVvdW

and ΔVel energy patterns (defined as ⟨Vlig−surr
vdw ⟩bound (,i) −

⟨Vlig−surr
vdw ⟩f ree and ⟨Vlig−surr

el ⟩bound (,i) − ⟨Vlig−surr
el ⟩f ree), respectively)

as a function of α and β model parameters (and possibly an
optional constant γ) using the iLIE equation as a cost function
in an iterative regression analysis. This is under the assumptions
that (i) ΔVvdw and ΔVel in the data set show multivariate
normality and low heteroscedasticity, (ii) there is similarity in
the physio-chemical nature of the ligands and their interaction
with the protein,76,79 and (iii) the analysis leads to a single model.
Our machine learning workflow expands this automatic

training approach with the aim of finding the a posteriori
estimates for the α and β parameters of the iLIE equation
(eq 3) for a set of compounds that maximizes the number of
explained compounds in one or more LIE models within
predefined RMSE and r2 margins (RMSE ≤ 5 kJ mol−1 and
r2 ≥ 0.6). The workflow (Figure 2) consists of a data curation
and filtering stage to deal with assumption (i) (A in Figure 2),
the main stochastic sampling routine using a Bayesian inference
approach for parameter estimation (B), and a clustering stage
where final LIE models are created (C). The latter two stages
explore the existence of multiple (independent) models each
describing a part of ligand physio-chemical/interaction space
(assumptions (ii) and (iii)). The methods used in each of these
stages are explained in more detail below.
MD Trajectory Filtering. To enforce the independence of

the multiple simulations performed per ligand,78,80 average
values ⟨Vlig−surr

el ⟩bound (,i) and ⟨Vlig−surr
vdw ⟩bound (,i) are used in eq 3 as

obtained from segments of the interaction energy trajectories
that are constant in time within a predefined cutoff. For that
purpose, Fast Fourier Transform (FFT) filtering was carried
out followed by spline fitting.80 FFT smoothens the trajectory
using a band-pass filter keeping the first 15 elements around the
average in the frequency domain followed by inverse FFT to
the original time domain (complex elements are discarded).
Double spline fitting on the smoothened energy trajectory
followed by gradient analysis identifies transitions when the
absolute change in gradient is larger than 0.2 kJ mol−1 ps−1.
The gradient was calculated using second-order central differ-
ences in the interior and first-order differences at the boundaries.
For every protein−ligand MD simulation, the first continuous
series of interaction energy data points with a minimum length
of 100 ps is used in which both ⟨Vlig−surr

vdw ⟩bound and ⟨Vlig−surr
el ⟩bound

do not show fluctuations (i.e., gradients) larger than the above
given cutoff value. Simulations for which no such series could
be identified were discarded from further analysis. This event
occurred once for a total of 688 CYP19A1 MD simulations
performed during this study.

Multivariate normal mixture model analysis deploying the
expectation maximization algorithm81,82 was used to identify
(possibly multiple) normal distributed subpopulations in the

Figure 2. Schematic overview of the automated machine learning
workflow aimed at finding the a posteriori estimates for one or multiple
combinations of α and β parameters of the iLIE equation for a set of
compounds, which maximize the number of explained compounds in
one or more LIE models with predefined RMSE and r2 cutoffs. The
“data set curation and filtering” stage (A) uses FFT based MD
trajectory filtering to obtain stable average values of ΔVvdW and ΔVel.
Ligand poses with average ΔVvdW/ΔVel pairs outside a 97.5%
confidence interval (Figure S2) identified using multivariate normal
mixture model analysis are labeled as outlier (out). Protein−ligand
interaction profiling is performed on the FFT based stable energy
trajectories (dashed lines). Ligand groups identified by the clustering
of the interaction profiles are used as input to the stochastic search
(B). The existence of LIE models for these clusters is explored during
an iterative four-step stochastic search in which compounds are added
to the evolving model from the global compound pool, according to a
progressively updated probability using the iRLS weights of the added
compounds at every iteration. The charted model landscape is clustered
during the last workflow stage (C) and final models are selected.
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dependent variables (ΔVi
vdw, ΔVi

el). We used the algorithm
implemented in the sklearn.mixture Python library for this
purpose with a “full” covariance type. Individual simulations
were labeled as outlier and left out from further analysis if they
have variable pairs outside a 97.5% confidence interval of the
fitted χ2-distributions for all of the identified populations (out in
Figure 2). When applicable, multiple subpopulations are treated
as independent data sets in the remainder of the workflow.
Separation of Simulations. The use of multiple poses in

iLIE to start short MD simulations allows the ligand to interact
with the protein in multiple conformations. To guard the
efficiency of the stochastic search when using multiple
simulations per compound, a filtering step was performed
based on an initial estimate of the α/β model parameter space
by sampling a grid of predefined α/β parameters. This allowed
to (i) discard results from simulations with low Wi representing
poses unlikely to contribute to binding, and (ii) separate the
combination of simulations with high Wi values in different
regions of sampled α/β model parameter space into unique
cases, to increase the chance for related cases to be grouped
together in the same regression model. A square grid for the
iLIE α and β model parameters was defined between a value of
0 and 1 with a grid spacing of 0.01. To compute ΔGpred and the
Wi values, the iLIE equation (eq 3) was evaluated at each grid
point using all poses for a given ligand.
Minima in model parameter space were defined as regions in

which the deviation of ΔGpred from experiment is within
±5 kJ mol−1 (1.2 kcal mol−1), which equals about one pKi log
unit.53 The propagation of the Wi’s for the independent simula-
tions as a function of the model parameters in the defined region
were analyzed and categorized as constant across minima or
variable (illustrated in Figure 3). If in the latter case there was

more than one simulation for which the gradient in Wi
propagation is of opposite sign (Figure 3, poses 1 and 2),
these are labeled as separate cases, together with a copy of the
simulations of the same ligand for whichWi was identified to be

constant with significant value (>0.1) across minima (Figure 3,
pose 3). Simulations with Wi < 0.1 across minima were
discarded for further analysis (Figure 3, pose 4). The separation
of poses following this procedure was only used during the
stochastic search.

Stochastic Sampling. A stochastic approach was used to
assess a posteriori estimates for combinations of α and β
parameters for clusters of compounds in the data set, which
together maximize the number of explained compounds in a
minimum number of LIE models with predefined RMSE and
r2 cutoffs. The stochastic search was seeded with subsets of
compounds from every node in the hierarchical cluster tree
obtained from protein−ligand interaction profile clustering
(see the following). This approach increases the probability to
identify predictive LIE models for compounds having similar
protein−ligand interaction profiles. The compounds belonging to
each node are first filtered for regression outliers according to the
same protocol used during the stochastic search (step 3 in the
following) to ensure that the start set is of maximum quality from
a regression statistics point of view. Each stochastic search is an
iterative process (Figure 2, middle pane) that consists of four steps:

1. Increase the current compound set by 20% with a
random sample from the main compound pool according
to probability p defined as the probability of a compound
(c) to be part of a model as p = 1 − (|{c|c ∈ R}|/|R|). R is
the set that maintains a counter of the number of times
each ligand was labeled as outlier according to the
maximum likelihood estimates (weights) of the iterative
Reweighted Least Squares regression (iRLS) while
iterating (step 3). The probability table is initiated with
a probability of 1 for each ligand.

2. α and β model parameters for the new set of compounds
are obtained from iRLS using ΔGobs values for the
compounds as dependent variable. Andrew’s Wave was
used as maximum likelihood estimator.83

3. Use the iRLS weights to determine regression outliers
(<0.75) and inliers (≥0.75). Update the global table of
outlier counts (R) for each compound and re-evaluate
the probability table (p, step 1). Evaluate the model with
respect to the ΔGobs/pred RMSE and coefficient of
determination r2 and accept the model if statistics are
within 10% deviation of the previous model and the
α and β parameters are within the range 0 to 1.

4. If accepted, store the new model and start a new iteration
until there are no more ligands to be added, statistics
constraint limits are reached (5 kJ mol−1 RMSE, 0.6 r2),
or no successful ligand addition could be made during 50
consecutive trials.

Model Clustering. The stochastic sampling yields a
collection of models describing the probability of ligands and
individual poses to occur together with respect to the LIE
model parameters and within the predefined statistical model
quality. For every ligand in the data set, we collected the iRLS
regression weights of the models in which the ligand occurs,
normalized by the RMSE of the respective model and summed
over individual poses. These values where visualized in a
heat map by clustering them with respect to α and β model
parameters, illustrating the distribution of ligands over LIE
models. The heat map was used to visually select the ligand sets
that maximize the number of explained compounds in one or
more LIE models. The final models best representing the data
set were trained using the iLIE equation (eq 3) with the ligand

Figure 3. Propagation of weightsWi for four poses of a compound as a
function of α or β model parameter, as obtained by solving the iLIE
equation on a fixed grid of α and β parameters and focusing on the
grid region where the difference between ΔGpred and experimentally
observed ΔGobs is smaller than 5 kJ mol−1.
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sets selected from the heat map. Representative simulations for
each compound were selected by first training a model using all
poses, after which we selected the simulations within a range of
0.2 of the most dominant simulation according to their weights
Wi (eq 2). These simulations were used for retraining the final
model.
Protein−Ligand Interaction Profiling. Protein−ligand

interactions in all MD frames for all ligand poses were analyzed
using in-house python software. The software aims to identify
protein−ligand contacts as belonging to the following eight
interaction types using rule-based protocols that are described
in the Supporting Information: hydrogen bonded contacts
(hb-ad, hb-da), water mediated hydrogen-bonded contacts
(wb-da, wb-ad), halogen-bonded contacts (xb), salt bridging
contacts (sb-np, sb-pn), cation-π interactions (pc), aromatic
π- (ps) or T-stacking (ts), hydrophobic interactions (hf) and
heme-coordination (hm, which is not explicitly accounted for
during our classical simulations). Interaction subcategories
include donor−acceptor (da), acceptor−donor (ad), negative−
positive (np) and positive−negative (pn), for ligand and
protein residue, respectively.
Relationships between the interaction profiles within pairs of

MD simulations were evaluated by encoding the ligand-protein
interaction profile data for each independent simulation as a
structured key and by building a pairwise similarity matrix
based on them using the following protocol:

1. Discard all protein−ligand interactions that occur for less
than 10% of the simulation time, to reduce noise in
further analysis due to infrequent interactions.

2. Normalize the frequency of occurrence of the interaction
types by their relative abundance in the full data set, to
prevent abundant hydrophobic interactions to have an
artificially large influence on the final similarity metric.

3. Collect the unique protein residues involved in protein−
ligand interactions from all filtered profiles after step 2.

4. Collect the resulting (sorted) residue numbers form the
primary slots of the structured key. Each slot is divided in
2 × 12 registers subsequently containing:

a. The frequency with which any of the 12 interaction
types (comprising the 8 main groups and their
subcategories mentioned above) occur between
the ligand and the given residue over the course of
the simulation.

b. A list of ligand SYBYL atom types involved in the
interaction in the corresponding first 12 registers (4a).

5. The similarity between two structured keys is evaluated
as the sum of similarities between each register,
normalized by key length (number of residues). The
similarity is calculated differently for the two registry
types mentioned in step 4:

a. For every residue interaction frequency (4a), the
similarity is assigned 1 if they are identical, 0 if any
of the registers equals 0, and the minimum
frequency of occurrence otherwise.

b. Similarity is defined as the percentage of similarity
in SYBYL atom types involved in the interaction
(4b), multiplied by the frequency of occurrence of
the corresponding type in the first 12 registers
(4a). This multiplication ensures that the weight
of similarity in SYBYL atom types for a given
interaction type in the final similarity metric is
never larger than that of the interaction type itself.

The resulting pairwise similarity matrix is used as input for a
hierarchical agglomerative cluster analysis as implemented in
the Python scipy.cluster.hierarchy84 to identify groups of
(independent) ligand simulations that show similar interaction
profiles, which were used as seeds for the stochastic approach
for iLIE model regression described above.

■ RESULTS AND DISCUSSION
The 132 compounds in the data set (Tables S1 and S4 of the
Supporting Information) were selected in a lead discovery
study as promising AI candidates. The 12 steroid and 121
nonsteroid compounds can be classified as resembling the
second to fourth generation of clinical AI’s (Figure 1) including
Letrozole (compound 2), Anastrazole (compound 9) and
Fadrozole (compound 13). All nonsteroid compounds have
one azole ring of which the basic nitrogen atoms (mostly
imidazole or triazole) have the potential to apically coordinate
the heme iron.85−89 Most of them have an aryl or apolar cyclic
moiety mimicking the steroid ring of the substrate, and one or
two nitrile groups. Apart from these common features there is
considerable structural diversity among the ligands with respect
to the topological arrangement and chemical nature of the
functional groups.
We initially attempted to train a single iLIE model for our

data set of 132 compounds (using all docked poses and a 3/4
test-to-train set ratio), which resulted in models with negative
r2 values and RMSE values higher than 7.0 kJ mol−1. Subsequent
attempts to group compounds based on their molecular
structures into iLIE binding affinity prediction models (i.e., based
on SAI/NSAI compound groups or using structurally similar
compounds derived from a chemical fingerprinting and
clustering analysis) yielded local models with <10 ligands
when using all ligand poses, leaving most of the data set
unexplained. An initial estimate of optimum α/β parameter
ranges was obtained by solving the iLIE equation for every
ligand individually, taking into account all poses, on a grid of
fixed α/β parameters. The range corresponding to a prediction
error in ΔGpred of less than 5 kJ mol−1 for a maximum number
of compounds is located in α and β ranges between 0 and 0.5
and 0.55−0.95, respectively, Figure 4. In this broad region,
even the most densely populated area of model parameter
combinations comprises no more than 50% of the ligands.
Furthermore, 101 of the 132 ligands have at least two different
dominant binding poses in different parts of this region based
on the change in the distribution of weighted propensities Wi
for the independent simulations. These observations illustrate
the challenges mentioned before associated with LIE model
development for diverse and large sets of training compounds
with respect to their physicochemical variation, the possibility
of ligands to bind in multiple orientations, and the unlikely
existence of a single predictive model with sufficient coverage.
To explore the existence of a small subset of iLIE models that

cover a substantially larger part of the data set and that have a
well-defined protein−ligand interaction profile we developed a
machine learning workflow using information extracted from
the MD-trajectories only. The philosophy behind the method
(see Methods section for details) is described below together
with the results obtained after applying it to the data set of
aromatase inhibitors.

Data Set Curation and Filtering. ⟨Vlig−surr
el ⟩ and ⟨Vlig−surr

vdw ⟩
derived from the independent MD simulations used for iLIE
are assumed to be averages over well-separated parts of the
protein−ligand interaction energy surface.78 Progressive

Journal of Chemical Information and Modeling Article

DOI: 10.1021/acs.jcim.7b00222
J. Chem. Inf. Model. 2017, 57, 2294−2308

2299

http://dx.doi.org/10.1021/acs.jcim.7b00222


changes in interaction energy values during a simulation may
indicate an unstable system or a conformational transition of
the ligand away from its initial position. As a remedy, constant
interaction energy trajectories were obtained by filtering the
MD energy trajectories for large fluctuations using a spline-fitting
procedure on the FFT filtered time series.80 Convergence of
interaction energy terms is illustrated for a randomly picked
subset of simulations in Figure S1 of the Supporting Information.
Subsequently, we performed a multivariate normal distribu-

tion analysis to identify possible multiple independent and/or
partly overlapping normal distributed subpopulations in the
dependent variables (i.e., ΔVvdW and ΔVel derived after FFT
filtering, Tables S2 and S3). Using a 97.5% confidence interval,
18 protein−ligand simulations (29 without FFT filtering)
were found to be not part of the single identified distribution
(Figure S2, Supporting Information), which included all simula-
tions for ligands 156 and 189. These two compounds were
therefore not included in further analyses.
From Figure S2, detected outliers (which were left out from

further analyses) involve among others the combinations of the
ΔV values for compounds 156, and poses 2 of compounds 69
and 300, and pose 3 of compound 148. In these cases, the
interaction profiles obtained from simulation indicated ligand
interactions with protein residues located near the entrance
channel to the catalytic cavity (between β-sheet 4 and helix F)
instead of the protein residues and heme group located around
the center of the catalytic cavity as defined for docking (see
Methods section). Ligands 189 and 233 were found to interact
with both regions. From the substantially different average
energies and interaction profiles of the simulations involving
these ligands, both can be labeled as outliers with respect to the
simulations of other ligands in the data set and were left out
from further analyses as well.
Stochastic Sampling. The stochastic sampling stage of our

machine learning workflow (Methods section and Figure 2C)
was initiated with the filtered and curated data set described
above and seeded with ligand pose clusters derived from

hierarchical clustering of the protein−ligand interaction profiles
obtained from the MD trajectories (described in the following).
For the system considered, the full workflow is completed in

∼10 min on one core of a 4 core 2,2 GHz Intel Core i7 desktop
machine. The results are visualized as a α and β heat map
(Figure 5) showing clusters of ligands with an associated
likelihood (color gradient) of constituting a model together for
the respective combinations of sampled α and β model
parameters. 12 of the 130 ligands used in the search
(compounds 159, 166, 182, 194, 210, 220, 223, 232, 233 and
324) could not be placed in any model with a probability larger
than 0.5 and are not shown in the heat maps. The ligand sets
used to train the final representative models were visually
selected based on the clusters in the heat map. This selection is
the only manual step within our otherwise automated machine
learning workflow.

Selection of Representative LIE Binding Affinity
Models Containing More Than 10 Compounds. The
machine learning workflow sampled combinations of α/β
model parameters that fall within the broad model-parameter
region identified in the grid scan (Figure 4). The workflow
identified four posterior distributions (clusters) with centers
containing more than 10 components (Figure 5, red dashed
rectangular boxes labeled 1 to 4). These four clusters served as
training set for representative LIE binding affinity models
(Table 1).
Model 1 with a cluster center of 16 ligands is able to account

for a total of 31 ligands and shows little overlap with the other
models in terms of α/β model parameter values. Cluster center
4 is able to account for 61% of the ligands not accounted for by
model 1, with an r2 of 0.75 and RMSE of 3.3 kJ mol−1.
Compared to cluster center 1, the ligands that are part of the
area sampled by cluster center 4 show considerably more
variation in the values for model parameters that can constitute
a predictive model, in particular for α. With α close to 0,
the predictive capacity of the model is mostly determined by
the electrostatic component of the LIE equation. Furthermore,
the dense population of ligands in cluster center 4 is
predominantly determined by models with statistics in the
less predictive half of the predefined RMSE and r2 margins
(with 0.6 ≤ r2 < 0.8 and 3.0 < RMSE ≤ 5 kJ mol−1).
However, the method did resolve two less populated clusters

(Figure 5, cluster centers 2 and 3) that show little overlap but
are contained within cluster 4. The models derived from these
two centers have more favorable statistics than model 4 and
together explain 95% of the ligands not explained by model 1.
Model 2 and 3 cannot be combined without significantly
worsening model statistics (r2= 0.59, RMSE = 3.5 kJ mol−1 for
the combined model, versus r2 = 0.76, RMSE = 2.6 kJ mol−1

and r2 = 0.92, RMSE = 1.7 kJ mol−1 for models 2 and 3,
respectively; Table 1). Bootstrap analysis confirmed the two
models to be derived from partly overlapping but distinct
clusters (Figure S3, Supporting Information).
The relatively low values for γ when including an offset

parameter (Table 1) indicates that the binding affinity can be
modeled in terms of α and β only. Note that β values are higher
than the theoretical value43 of 0.5 and than the range of values
previously reported for CYP LIE models (0.0−0.5),39−41,54,90
whereas α values are relatively low compared to the
corresponding range of values (0.2−0.6),39−41,54,90 Table 1.
The low α and high β values suggest that the binding
represented by the models is mostly determined by electrostatic
interactions.

Figure 4. LIE α and β model parameter scan performed on each of the
132 ligands individually by solving the iLIE equation (eq 3), for every
point on a square grid of α and β model parameters between a value of
0 and 1 with a grid spacing of 0.01. The color gradient highlights the
percentage of ligands having a ΔGpred value within 5 kJ mol−1 of ΔGobs
for a given combination of α and β.
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On the basis of the above, models 1, 2 and 3 were selected as
representative models. Together, they cover 86% of the original
data set with a RMSE between experimental and calculated
binding free energy below 2.6 kJ mol−1, which is well within the
typical experimental error.53 The LIE models are robust from a

statistical point of view shown, e.g., by Leave-One-Out and
bootstrap cross-validation, Table 1. Although presented as three
separate models, there is overlap in the distributions they were
derived from, in particular for models 2 and 3. This becomes
evident from the ΔGpred values and errors in prediction (Figure 6,

Figure 5. Results of the stochastic sampling of α and β model-parameter space for the data set of 132 CYP19A1 inhibitors. The likelihood for a
compound (labeled by ID on the x-axis) to be part of a model in a given β (panel A) and α (panel B) range is shown as a heat map. The color
gradient is a dimensionless measure of the likelihood calculated as the summed iRLS regression weights of a ligand in each of the sampled models of
the stochastic search divided by the Root-Mean-Square Error (RMSE) of the model. The measure of likelihood is plotted as a function of the model
α and β parameters with a bin size of 0.02. Regions of highest density used to train the final models are labeled as models 1 to 4 (red dashed
rectangular boxes).

Table 1. Final Set of Representative LIE Binding Affinity Models Derived from the Stochastic Approximate Inference of Model
Parameters for the Data Set of 132 Putative Aromatase Inhibitorsa

Model n α β γ RMSE r2 q2LOO SDEPLOO r2bstr RMSEbstr

1, center 16 0.203 0.663 1.30 0.95 0.94 1.47 0.960.01 1.100.17

1, center 16 0.200 0.627 −2.59 1.27 0.95 0.93 1.56 0.930.10 1.410.72

1, full 31 0.233 0.675 2.36 0.86 0.83 2.57 0.870.03 2.230.22

1, full 31 0.226 0.576 −7.32 2.11 0.89 0.85 2.41 0.890.04 1.980.23

2, center 13 0.161 0.796 1.69 0.89 0.82 2.14 0.900.03 1.540.28

2, center 13 0.162 0.830 2.45 1.69 0.89 0.78 2.38 0.900.03 1.480.32

2, full 52 0.107 0.748 2.59 0.76 0.76 2.59 0.730.03 2.710.10

2, full 52 0.101 0.696 −2.54 2.55 0.77 0.74 2.69 0.750.02 2.650.07

3, center 15 0.134 0.893 1.47 0.93 0.91 1.69 0.930.02 1.460.16

3, center 15 0.125 0.838 −3.23 1.42 0.93 0.86 2.11 0.940.05 1.300.12

3, full 31 0.108 0.868 1.68 0.92 0.91 1.80 0.920.02 1.620.17

3, full 31 0.110 0.877 0.495 1.68 0.92 0.90 1.89 0.920.02 1.660.11

aModel statistics are reported for three representative LIE binding affinity models trained with and without γ parameter (kJ mol−1) for ligands
belonging to the full model cluster (full) and the cluster center only (center, within 75% confidence interval). Root-Mean-Square Error
(RMSE, kJ mol−1) and coefficient of determination (r2) model statistics are reported for the model, as well as for the bootstrap cross-validated model
(bstr) and Leave-One-Out (LOO) cross-validated model (as Standard Error in Prediction (SDEP, kJ mol−1) and cross-validated r2 (q2)). Bootstrap
cross validation was performed using a 20-fold random sampling with a training set of 75% of the model data set.
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Figure S4 Supporting Information) when making predictions
for the same compound using each of the three models. The
relationship is also reflected in the protein−ligand interaction
profiles of the compounds used to train the models (see below).
Protein−Ligand Interaction Profiling. The classification

of ligand-amino acid interactions occurring for more than 50%
of the simulation time for all ligands identified 4 polar
interaction sites (“hotspots”, Figure 7) comprising (i) R115 and
M374; (ii) Q225; (iii) D309 and T310; and (iv) L477, S478
and the heme prosthetic group (497); and 3 apolar contact
sites: (i) I133, F134; (ii) V370; and (iii) F221, W224. This
particular combination between apolar and polar interaction
sites has also been identified in previous crystallographic,
mutagenesis and computational studies on CYP19A1.55,71,91−93

Below, we describe the dominant protein−ligand interactions
observed in the simulations used for models 1−3 introduced
above, starting with the dominant interactions for models 1
and 3, respectively.
Model 1: The steroid based aromatase inhibitors, except

ligand 210, form the basis of model 1. The starting poses for the
simulations with highest Wi values for these ligands are similar
to the natural substrate ASD with respect to binding orientation
(i.e., as in the X-ray structure PDB ID 3EQM) and interaction
profile,55 cf. Figure S5 of the Supporting Information. Figure 8,
panel A shows that hydrogen-bonded contacts dominate the
polar interactions, between two carbonyl groups of the steroid
(position A3 and D17) and residues M374 and D309 or T310,
although not necessarily simultaneously. These findings are in
line with previous biochemical studies on steroid binding to
CYP19A1.94−96 Steroid 210 has a bulky trifluoride group
hindering formation of both hydrogen bonds, resulting in a
binding orientation similar to the natural substrate but resulting
in a prediction error of 19.0 kJ mol−1 by model 1. Interestingly,
82% of the NSAI ligands that are uniquely described by this
model 1 form hydrogen-bonded interactions with M374 and/or
D309/T310 as well (forming these interactions in on average
40% of simulation time). They predominantly do so using a
carbonyl O atom or N atom acceptor part of a nitrile group
and/or azole ring. In particular the presence of a nitrile group
allows for simultaneous hydrogen-bond interactions with the
aforementioned protein residues. In addition, there are

hydrophobic contacts between residues F221 and W224 and
aromatic or cyclic apolar ligand groups, and hydrogen bonding
interactions with Q225 (Figure 8A). Figure 8 also illustrates
that potential heme-coordinating poses of the NSAI ligands are
observed less frequently in model 1 in comparison to the other
two models.
Model 2 and 3 exclusively contain NSAIs. The contact

profiles include hydrogen-bonded interactions to the same
residues of the protein as in model 1 but the hydrogen bond
types and frequencies differ, Figure 8.
Model 3: Hydrogen bonding to residues Q225, M374 as well

as S478 predominantly involves the (single) nitrile group of the
compounds. The compounds almost exclusively contain imidazole
groups of which the N atoms can be involved in hydrogen
bonding to T310 and in heme coordination (cf. Figure 8).
22 of the 33 compounds have a Letrozole (Figure 1e) like

topology with one imidazole group, one nitrile containing aryl
group and a variable apolar moiety. This topology is
complementary to the active site and enables contacts with
various interaction hotspots simultaneously (Figure 8C). The
Letrozole-like compounds can adopt multiple binding
orientations due to rotational symmetry, thereby preserving
interactions. This is confirmed by the finding that per ligand,
several simulations contribute to the calculated binding free
energy (Table S1, last column). The importance of interactions
for the (predicted) affinity becomes apparent when comparing
the compounds in model 3 in the low-affinity region of the
correlation plot (Figure 6C, crosses) with those in the high-
affinity region. The low-affinity compounds are almost
exclusively Fadrozole (Figure 1b) like compounds with either
an imidazole or imidazopyridine group that is unable to interact
with as many hotspots simultaneously as the Letrozole-like
compounds that are in the high-affinity region.
Model 2 shows more variation in the scaffold and functional

groups of the compounds included when compared to model 3.
Differences are the presence of halogens, carbonyl and hydroxyl
groups in model 2 compounds and the replacement of the
imidazole by a triazole group, the replacement of the variable
apolar moiety by an aryl or thiophene group, and the
replacement of a nitrile group by a halogen or keto group.
Although the compounds belonging to the cluster center of

Figure 6. Correlation between the predicted (ΔGpred) and observed (ΔGobs) binding free energies in three models (panels A to C for models 1 to 3,
respectively) that were trained using the results from stochastic sampling. The solid diagonal lines indicate ideal correlation and the dashed lines
indicate upper and lower error margins of 5 kJ mol−1. Blue filled circles correspond to compounds belonging to the cluster centers as indicated by the
red boxes 1−3 in Figure 5, and red filled circles correspond to remaining compounds in that cluster, and gray filled circles correspond to the
remaining compounds of the data set as predicted by the model. Blue and red filled crosses in panel C indicate low-affinity Fadrozole-like
compounds.
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model 2 are unique to it from a statistical point of view
(in terms of α/β combination and other model statistics, Table 1
and Figure S3, Supporting Information), the compounds of the
model that are under- and overpredicted are more model
3- and model 1-like, respectively, in terms of topology (Table S1)
and interaction profile. As such, model 2 positions itself in
between model 1 and 3 as shown by the interaction profile
(Figure 8B) and model statistics (Table 1).
In conclusion, the interaction profiles of the MD trajectories

provide a basis for understanding and establishing the

applicability domain of the resolved models in terms of
observed protein−ligand interactions. These differences in
interactions can explain why similar compounds fall into
different models. For example, compounds 333, 318 and 246
only differ by small variation in their benzylic para-substituent
but they are part of models 1, 2 and 3, respectively (Table S1).
The p-acetylated compound 318 was found to contribute to
model 2 with four different binding poses and accordingly it
interacted with a variety of protein residues. In contrast, the
slightly larger compound 333 and the nitril containing

Figure 7. Cartoon representation of Cytochrome P450 19A1 (PDB code 3EQM55) with the natural substrate 4-androstene-3-17-dione (ASD, cyan
stick representation) bound. Protein residues (stick representation) involved in polar protein−ligand interactions in more than 50% of the simulation
time are grouped in four hotspots (indicated in red, yellow, green and purple), including the heme group (HEME).

Figure 8. Protein−ligand interaction profiles for the compounds in models 1−3 (Table 1) derived from the stochastic approximate inference.
The relative interaction frequencies for each protein residue−ligand interaction are represented by vertically stacked bars where the bar colors
correspond to a specific interaction type as listed in the graph legend. Hydrophobic contact frequencies are divided by 10 because of their relative
abundance with respect to the other classified interactions.
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compound 246 only contributed with a single pose, which
mutually differed in terms of binding orientation and
interacting residues (310 for compound 246 vs 115 and 309
for compound 333). As another example, a Cl-substituted
letrozole analogue (compound 139) contributed to model 2,
with its poses differing from the pose that contributed most
(to model 1) and that showed the F- and Br-substituents of
counterpart compounds 200 and 98 on a distance from
methionine 374 suited for halogen-bonding interactions, Table S1.
We note that MD sampling was found to be necessary for the

purpose of establishing applicability domains: when performing
interaction profiling based on the docked MD starting
conformations only, we could, e.g., not classify interaction
profiles for models 2 and 3. Despite the diversity in the data set,
our machine-learning workflow was successful in grouping
together compounds with a steroid scaffold in model 1 and
compounds with a Letrozole like topology composed out of an
imidazole group, one nitrile containing aryl group, and a variable
apolar moiety in model 3. In addition, other compounds present
in these models that do not share the same topology show
similar interaction profiles in terms of interaction hotspots. These
structural characteristics and corresponding interaction profile
define the applicability domain for models 1 and 3, which is
beneficial for developing predictive LIE models as illustrated by
their good model statistics. In contrast, model 2 is more diverse
with topologically similar compounds being represented by small
subsets (≤5) of compounds. The key protein residues interacting
with the compounds comprised in model 2 are the same as for
model 3. This could explain e.g. why compounds 78 and 80 fall
in models 2 and 3, respectively (Table S1). However, the type of
hydrogen-bond acceptors is different (Figure 8), which positions
model 2 in between model 1 and 3 in terms of LIE parameters.
The diversity in molecular structures covered by the three
models is illustrated by a selection of compounds from the
models as presented in Figure S6 of the Supporting Information.
Protein−ligand interaction profile results illustrate that the

number and type of polar protein−ligand interactions are
determinative for the LIE empirical parameters and that the
variation in the data set results in a system of three overlapping
but distinct models rather than one global model. The
importance of polar contacts is shown by the consistent value
for α between 0.10 and 0.24 as frequently reported
before79,97,98 and a β value as a function of the ligand
functional groups97,98 rather than the theoretical value of 0.5.43

With values markedly larger than 0.5, the ligand functional
group dependent value for β found in this study are different
than those previously proposed for other systems,97,98 which
may well be due to choices in the force field and system set
up80 and which is in line with spread in LIE parameters
previously reported among a variety of other CYPs.39−41,54

All nonsteroidal ligands have one azole ring of which
the basic nitrogen atoms have the potential to apically coordi-
nate the heme iron. Despite the inability of commonly used
force fields to accurately account for the energetics of
heme coordination, a considerable number of compounds
in model 2 and 3 adopted a potential coordinating pose during
simulation based on interaction profile data (Figure 8, gray
bars).

■ CONCLUSIONS
In this work, we present binding affinity prediction models for
steroidal and nonsteroidal inhibitors of CYP19A1 aromatase
using our automated LIE workflow.39,54,64 The data set of 132

compounds used for training LIE models was acquired from a
lead discovery study and poses challenges to the calibration of
empirical free energy models because of the sparsity of and
large structural diversity within the data set and due to the
catalytic site malleability and the substrate and interaction
promiscuity of the CYP protein. Nevertheless, it is a data set
representative for training of LIE or other models in industrial
or other applied settings. In spirit of our automated iLIE
approach, we developed an automated machine learning
workflow aimed at exploring the model parameter landscape
and at maximizing the number of data set compounds explained
in one or few LIE models. The method was successful in
accounting for 86% of the data set in 3 models showing high
correlation between calculated and observed values for binding
free energy (r2 of 0.86, 0.76, 0.92; RMSE of 2.36, 2.59,
1.68 kJ mol−1 for the three models, respectively). The use of a
maximum likelihood estimator and Bayesian inference max-
imize the chance of identifying posterior predictive distribu-
tions describing the data set and limiting the chance of
overfitting of the LIE models. The robustness of the models is
illustrated by small variations after bootstrap analysis
(segmentation cross validation) and by good leave-one-out
cross validation statistics (q2LOO of 0.83, 0.73, 0.92; SDEPLOO of
2.57, 2.59, 1.80 kJ mol−1, respectively). The ligand clusters
leading to the final set of models are visually selected from the
heat map (Figure 5). In a future iteration of the software we
aim to also automate this final step of our workflow, thereby
completing its automation.
The resolved clusters, from which the three models were

derived separate the data set into a SAI model and two NSAI
models that have distinct α and β model parameters. With
respect to polar interactions, compounds in model 1
predominantly interact with D309/T310 and/or M374 by
hydrogen-bonded interactions with carbonyl oxygens as ligand
acceptors, which is common for steroids interacting with
CYP19A1.55,71,94−96 On the other hand, compounds in model 3
interact with Q225, M374 and S478 via hydrogen bonding
involving the nitrile nitrogen, and with T310 by hydrogen
bonding via an imidazole N atom. Rotationally symmetric
binding conformations of these compounds that preserve the
overall interaction profile are frequently included in the binding
affinity prediction. This underlines the flexible nature of the
CYP19A1 catalytic cavity and the ability of the iLIE approach
to account for this.
Using our machine learning workflow, we have been able to

calibrate LIE binding affinity prediction models with a protein−
ligand interaction based applicability domain that explains 86%
of the data set using experimental affinity data and information
extracted from MD only. The detailed structure and interaction
based applicability domain provides a frame of reference for the
user to determine if a model, and which model, can be used for
binding affinity prediction of a novel compound based on the
protein−ligand interaction profile and provides an estimate of
the reliability of the prediction. The automated nature of the
workflow allows it to be used together with our automated iLIE
workflow, together creating a pipeline to apply LIE in high-
throughput settings.
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(Figure S3), ΔGpred error values (residuals) for each
compound when compared to experiment and when
calculated using model 1, 2 or 3 (Figure S4), stick
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tures of compounds in models 1, 2 and 3 (Figure S6),
data set of 132 putative aromatase inhibitors with
experimentally determined inhibition constants, provided
by Bayer AG (Table S1), averaged difference in the
Coulomb component of the nonbonded protein−ligand
interaction energy for up to 8 selected docking poses
for the data set of 132 putative aromatase inhibitors
(Table S2), averaged difference in the van der Waals
component of the nonbonded protein−ligand interac-
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(46) Gutieŕrez-de-Terań, H.; Aqvist, J. Linear interaction energy:
method and applications in drug design. Methods Mol. Biol. 2012, 819,
305−323.
(47) Kjellgren, E. R.; Glue, O. E. S.; Reinholdt, P.; Meyer, J. E.;
Kongsted, J.; Poongavanam, V. A comparative study of binding
affinities for 6,7-dimethoxy-4-pyrrolidylquinazolines as phosphodies-
terase 10A inhibitors using the linear interaction energy method. J.
Mol. Graphics Modell. 2015, 61, 44−52.
(48) Miranda, W. E.; Noskov, S. Y.; Valiente, P. A. Improving the LIE
Method for Binding Free Energy Calculations of Protein-Ligand
Complexes. J. Chem. Inf. Model. 2015, 55, 1867−1877.
(49) Perdih, A.; Wolber, G.; Solmajer, T. Molecular dynamics
simulation and linear interaction energy study of d-Glu-based
inhibitors of the MurD ligase. J. Comput.-Aided Mol. Des. 2013, 27,
723−738.
(50) Su, Y.; Gallicchio, E.; Das, K.; Arnold, E.; Levy, R. M. Linear
Interaction Energy (LIE) Models for Ligand Binding in Implicit
Solvent: Theory and Application to the Binding of NNRTIs to HIV-1
Reverse Transcriptase. J. Chem. Theory Comput. 2007, 3, 256−277.
(51) van Lipzig, M. M. H.; ter Laak, A. M.; Jongejan, A.; Vermeulen,
N. P. E.; Wamelink, M.; Geerke, D.; Meerman, J. H. N. Prediction of
Ligand Binding Affinity and Orientation of Xenoestrogens to the
Estrogen Receptor by Molecular Dynamics Simulations and the Linear
Interaction Energy Method. J. Med. Chem. 2004, 47, 1018−1030.
(52) Durmaz, V.; Schmidt, S.; Sabri, P.; Piechotta, C.; Weber, M.
Hands-off linear interaction energy approach to binding mode and
affinity estimation of estrogens. J. Chem. Inf. Model. 2013, 53, 2681−
2688.
(53) Shirts, M. R.; Pitera, J. W.; Swope, W. C.; Pande, V. S. Extremely
precise free energy calculations of amino acid side chain analogs:
Comparison of common molecular mechanics force fields for proteins.
J. Chem. Phys. 2003, 119, 5740.
(54) Vosmeer, C. R.; Pool, R.; Van Stee, M. F.; Peric-́Hassler, L.;
Vermeulen, N. P. E.; Geerke, D. P. Towards automated binding
affinity prediction using an iterative linear interaction energy approach.
Int. J. Mol. Sci. 2014, 15, 798−816.
(55) Ghosh, D.; Griswold, J.; Erman, M.; Pangborn, W. Structural
basis for androgen specificity and oestrogen synthesis in human
aromatase. Nature 2009, 457, 219−223.
(56) Thompson, E. A.; Siiteri, P. K. Utilization of oxygen and
reduced nicotinamide adenine dinucleotide phosphate by human
placental microsomes during aromatization of androstenedione. J. Biol.
Chem. 1974, 249, 5364−5372.
(57) Molecular Operating Environment (MOE), 2012.10; Chemical
Computing Group Inc.: Montreal, QC, 2017.
(58) Halgren, T. A. Merck molecular force field. I. Basis, form, scope,
parameterization, and performance of MMFF94. J. Comput. Chem.
1996, 17, 490−519.
(59) Malde, A. K.; Zuo, L.; Breeze, M.; Stroet, M.; Poger, D.; Nair, P.
C.; Oostenbrink, C.; Mark, A. E. J. Chem. Theory Comput. 2011, 7,
4026−4037.
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