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Abstract 

Background:  Scientists have long been driven by the desire to describe, organize, classify, and compare objects 
using taxonomies and/or ontologies. In contrast to biology, geology, and many other scientific disciplines, the world 
of chemistry still lacks a standardized chemical ontology or taxonomy. Several attempts at chemical classification 
have been made; but they have mostly been limited to either manual, or semi-automated proof-of-principle applica-
tions. This is regrettable as comprehensive chemical classification and description tools could not only improve our 
understanding of chemistry but also improve the linkage between chemistry and many other fields. For instance, the 
chemical classification of a compound could help predict its metabolic fate in humans, its druggability or potential 
hazards associated with it, among others. However, the sheer number (tens of millions of compounds) and complex-
ity of chemical structures is such that any manual classification effort would prove to be near impossible.

Results:  We have developed a comprehensive, flexible, and computable, purely structure-based chemical taxonomy 
(ChemOnt), along with a computer program (ClassyFire) that uses only chemical structures and structural features 
to automatically assign all known chemical compounds to a taxonomy consisting of >4800 different categories. This 
new chemical taxonomy consists of up to 11 different levels (Kingdom, SuperClass, Class, SubClass, etc.) with each of 
the categories defined by unambiguous, computable structural rules. Furthermore each category is named using a 
consensus-based nomenclature and described (in English) based on the characteristic common structural proper-
ties of the compounds it contains. The ClassyFire webserver is freely accessible at http://classyfire.wishartlab.com/. 
Moreover, a Ruby API version is available at https://bitbucket.org/wishartlab/classyfire_api, which provides program-
matic access to the ClassyFire server and database. ClassyFire has been used to annotate over 77 million compounds 
and has already been integrated into other software packages to automatically generate textual descriptions for, and/
or infer biological properties of over 100,000 compounds. Additional examples and applications are provided in this 
paper.

Conclusion:  ClassyFire, in combination with ChemOnt (ClassyFire’s comprehensive chemical taxonomy), now allows 
chemists and cheminformaticians to perform large-scale, rapid and automated chemical classification. Moreover, a 
freely accessible API allows easy access to more than 77 million “ClassyFire” classified compounds. The results can be 
used to help annotate well studied, as well as lesser-known compounds. In addition, these chemical classifications 
can be used as input for data integration, and many other cheminformatics-related tasks.
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Background
Taxonomies and ontologies organize complex knowledge 
about concepts and their relationships. Biology was one 
of the first fields to use these concepts. Taxonomies are 
simplistic schemes that help in the hierarchical classifica-
tion of concepts or objects [1]. They are usually limited 
to a specific domain and to a single relationship type 
connecting one node to another. Ontologies share the 
hierarchical structure of taxonomies. In contrast to tax-
onomies, however, they often have multiple relationship 
types and are really designed to provide a formal nam-
ing of the types, properties and interrelationships of enti-
ties or concepts in a specific discipline, domain or field 
of study [2, 3]. Moreover, ontologies provide a system to 
create relationships between concepts across different 
domains. Both taxonomies and ontologies can be used to 
help scientists explain, organize or improve their under-
standing of the natural world. Furthermore, taxonomies 
and ontologies can serve as standardized vocabularies 
to help provide inference/reasoning capabilities. In fact, 
taxonomies and ontologies are widely used in many sci-
entific fields, including biology (the Linnean taxonomy) 
[4], geology (the BGS Rock classification scheme) [5], 
subatomic physics (the Eightfold way) [6], astronomy 
(the stellar classification system) [7, 8] and pharmacology 
(the ATC drug classification system) [9]. One of the most 
widely used ontologies is the Gene Ontology (GO) [10], 
which serves to annotate genes and their products in 
terms of their molecular functions, cellular locations, and 
biological processes. Given a specific enzyme, such as 
the human cytosolic phospholipase (PLA2G4A), and its 
GO annotation, one could infer the cellular location of its 
substrate PC[14:0/22:1(13Z)] (HMDB07887). Addition-
ally, because PLA2G4A is annotated with the GO term 
“phospholipid catabolic process”, it could be inferred that 
PC[14:0/22:1(13Z)] is a product of this biological process.

While chemists have been very successful in developing 
a standardized nomenclature (IUPAC) and standardized 
methods for drawing or exchanging chemical structures 
[11, 12], the field of chemistry still lacks a standardized, 
comprehensive, and clearly defined chemical taxonomy 
or chemical ontology to robustly characterize, classify 
and annotate chemical structures. Consequently, chem-
ists from various chemistry specializations have often 
attempted to create domain-specific ontologies. For 
instance, medicinal chemists tend to classify chemicals 
according to their pharmaceutical activities (antihyper-
tensive, antibacterials) [9], whereas biochemists tend to 

classify chemicals according to their biosynthetic origin 
(leukotrienes, nucleic acids, terpenoids) [13]. Unfortu-
nately, there is no simple one-to-one mapping for these 
different classification schemes, most of which are lim-
ited to very small numbers of domain-specific mole-
cules. Thus, the last decade has seen a growing interest 
in developing a more universal chemical taxonomy and 
chemical ontology.

To date, most attempts aimed at classifying and describ-
ing chemical compounds have been structure-based. This 
is largely because the bioactivity of a compound is influ-
enced by its structure [14]. Moreover, the structure of a 
compound can be easily represented in various formats. 
Some examples of structure-based chemical classification 
or ontological schemes include the ChEBI ontology [15], 
the Medical Subject Heading (MeSH) thesaurus [16], and 
the LIPID MAPS classification scheme [13]. These data-
bases and ontologies/thesauri are excellent and have been 
used in various studies including chemical enrichment 
analysis [17], and knowledge-based metabolic model 
reconstruction [18], among others. However, they are 
all produced manually, thus making the classification/
annotation process somewhat tedious, error-prone and 
inconsistent (Fig. 1). In addition, they require substantial 
human expert time, which means these classification sys-
tems only cover a tiny fraction of known chemical space. 
For instance, in the PubChem database [19], only 0.12% 
of the >91,000,000 compounds (as of June 2016) are actu-
ally classified via the MeSH thesaurus.

There are several other, older or lesser-known chemi-
cal classification schemes, ontologies or taxonomies that 
are worth mentioning. The Chemical Fragmentation 
Coding system [20] is perhaps the oldest taxonomy or 
chemical classification scheme. It was developed in 1963 
by the Derwent World Patent Index (DWPI) to facili-
tate the manual classification of chemical compounds 
reported in patents. The system consists of 2200 numeri-
cal codes corresponding to a set of pre-defined, chemi-
cally significant structure fragments. The system is still 
used by Derwent indexers who manually assign patented 
chemicals to these codes. However, the system is consid-
ered outdated and complex. Likewise, using the chemi-
cal fragmentation codes requires practice and extensive 
guidance of an expert. A more automated alternate to 
the Derwent index was developed in the 1970s, called 
the HOSE (Hierarchical Organisation of Spherical Envi-
ronments) code [21]. This hierarchical substructure sys-
tem, allows one to automatically characterize atoms and 
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complete rings in terms of their spherical environment. It 
employs an easily implemented algorithm that has been 
widely used in NMR chemical shift prediction. However, 
the HOSE system does not provide a named chemical 
category assignment nor does it provide an ontology or a 

defined chemical taxonomy. More recently, the Chemical 
Ontology (CO) system [22] has been described. Designed 
to be analogous to the Gene Ontology (GO) system, CO 
was one of the first open-source, automated functional 
group ontologies to be formalized. CO functional groups 

Fig. 1  a Valclavam is annotated in the PubChem (CID 126919) and ChEBI (CHEBI:9920) databases. b In PubChem, it is incorrectly assigned the class 
of beta-lactams, which are sulfur compounds. Moreover, although the latter can be either inorganic or organic, it is wrong to describe a single 
compound both as organic and inorganic. The transitivity of the is_a relationship is not fulfilled, which makes the class inference difficult. In ChEBI, 
the same compound is correctly classified as a peptide. However, as in PubChem, the annotation is incomplete. Class assignments to “clavams” and 
“azetidines”, among others, are missing
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can be automatically assigned to a given structure by 
Checkmol [23], a freely available program. CO’s assign-
ment of functional groups is accurate and consistent, and 
it has been applied to several small datasets. However, 
the CO system is limited to just ~200 chemical groups, 
and so it only covers a very limited portion of chemical 
space. Moreover, Checkmol is very slow and is impracti-
cal to use on very large data sets. SODIAC [24] is another 
promising tool for automatic compound classification. It 
uses a comprehensive chemical ontology and an elegant 
structure-based reasoning logic. SODIAC is a well-
designed commercial software package that permits very 
rapid and consistent classification of compounds. The 
underlying chemical ontology can be freely downloaded 
and the SODIAC software, which is closed-source, is 
free for academics. The fact that it is closed-source obvi-
ously limits the possibilities for community feedback or 
development. Moreover, the SODIAC ontology does 
not provide textual definitions for most of its terms and 
is limited in its coverage of inorganic and organo-metal-
lic compounds. Other notable efforts directed towards 
chemical classification or clustering include Maximum 
Common Substructure (MCS) based methods [25, 26], 
an iterative scaffold decomposition method introduced 
by Shuffenhauer et al. [27], and a semantic-based method 
described by Chepelev et al. [28]. However, most of these 
are proof-of-principle methods and have only been vali-
dated on a small number of compound classes, which 
cover only a tiny portion of rich chemical space. More-
over, they are very data-set dependent. As a result, the 
classifications do not match the nomenclature expecta-
tions of the chemical community, especially for complex 
compound classes.

Overall, it should be clear that while many attempts 
have been made to create chemical taxonomies or ontol-
ogies, many are proprietary or “closed source”, most 
require manual analysis or annotation, most are limited 
in scope and many do not provide meaningful names, 
definitions or descriptors. These shortcomings highlight 
the need to develop open access, open-source, fast, fully 
automated, comprehensive chemical classification tools 
with robust ontologies that generate results that match 
chemists’ (i.e. domain experts’) and community expec-
tations. Furthermore, such tools must rapidly classify 
chemical entities in a consistent manner that is inde-
pendent of the type of chemical entity being analyzed.

The development of a fully automated, comprehensive 
chemical classification tool also requires the use of a well-
defined chemical hierarchy, whether it is a taxonomy or 
an ontology. This means that the criteria for hierarchy 
construction, the relationship types, and the scope of the 
hierarchy must be clearly defined. Additionally, a clear set 
of classification rules and a comprehensive data dictionary 

(or ontology) are necessary. Furthermore, comprehensive 
chemical classification requires that the chemical catego-
ries present in the taxonomy/ontology must be accurately 
described in a computer-interpretable format. Because 
new chemical compounds and new “chemistries” are 
being developed or discovered all the time, the taxonomy/
ontology must be flexible and any extension should not 
force a fundamental modification of the classification pro-
cedure. In this regard, Hasting et al. [29] suggested a list 
of principles that would facilitate the development of an 
intelligent chemical structure-based classification system. 
One of the main criteria in this schema is the possibility 
to combine different elementary features into complex 
category definitions using compositionality. This is very 
important, since chemical classes are structurally diverse. 
Additionally, an accurate description of their core struc-
tures sometimes requires the ability to express constraints 
such as substitution patterns. Today, this can be achieved 
to a certain extent by the use of logical connectives and 
structure-handling technologies such as the SMiles ARbi-
trary Target Specification (SMARTS) format.

In this paper, we describe a comprehensive, flexible, 
computable, chemical taxonomy along with a fully anno-
tated chemical ontology (ChemOnt) and a Chemical 
Classification Dictionary. These components underlie 
a web-accessible computer program called ClassyFire, 
which permits automated rule-based structural classifi-
cation of essentially all known chemical entities. Classy-
Fire makes use of a number of modern computational 
techniques and circumvents most of the limitations of 
the previously mentioned systems and software tools. 
This paper also describes the rationale behind Classy-
Fire, its classification rules, the design of its taxonomy, 
its performance under testing conditions and its poten-
tial applications. ClassyFire has been successfully used 
to classify and annotate >6000 molecules in DrugBank 
[30], >25,000 molecules in the LIPID MAPS Lipidomics 
Gateway [31], >42,000 molecules in HMDB [32], >43,000 
compounds in ChEBI [15] and >60,000,000 molecules in 
PubChem [19], among others. These compounds cover a 
wide range of chemical types such as drugs, lipids, food 
compounds, toxins, phytochemicals and many other 
natural as well as synthetic molecules. ClassyFire is freely 
available at http://classyfire.wishartlab.com. Moreover, 
the ClassyFire API, which is written in Ruby, provides 
programmatic access to the ClassyFire server and data-
base. It is available at https://bitbucket.org/wishartlab/
classyfire_api.

Methods
Creating a computable chemical taxonomy requires 
three key components: (1) a well-defined hierarchical 
taxonomic structure; (2) a dictionary of chemical classes 

http://classyfire.wishartlab.com
https://bitbucket.org/wishartlab/classyfire_api
https://bitbucket.org/wishartlab/classyfire_api


Page 5 of 20Djoumbou Feunang et al. J Cheminform  (2016) 8:61 

(with full definitions and category mappings); and (3) 
computable rules or algorithms for assigning chemicals 
to taxonomic categories. Each of these components is 
described in more detail below.

Component 1—Hierarchical taxonomic structure
A taxonomy requires a well-defined, structured hierarchy. 
Following standard notation, we use the term “category” 
to refer to any chemical class (at any level), each of which 
corresponds to a set of chemicals. These categories are 
arranged in a tree structure (Additional file 1). The main 
relationship type connecting these different categories is 
the “is_a” relationship. The rationale behind the choice of 
a tree structure was to provide a detailed annotation rep-
resented via a simple data structure, which could be easily 
understandable by humans. Moreover, as described in the 
results section, ClassyFire provides a list of all parents of 
a compound, which makes it easy to infer all of its ances-
tors. Inspired by the original Linnaean biological tax-
onomy [4], we assigned the terms Kingdom, SuperClass, 
Class, and SubClass to denote the first, second, third and 
fourth levels of the chemical taxonomy, respectively. The 
top level (Kingdom) partitions chemicals into two dis-
joint categories: organic compounds versus inorganic 
compounds. Organic compounds are defined as chemical 
compounds whose structure contains one or more carbon 
atoms. Inorganic compounds are defined as compounds 
that are not organic, with the exception of a small number 
of “special” compounds, including, cyanide/isocyanide 
and their respective non-hydrocarbyl derivatives, car-
bon monoxide, carbon dioxide, carbon sulfide, and car-
bon disulfide. For the complete current list of exceptions, 
please see Additional file  1. The classification of com-
pounds into these two kingdoms aligns with most modern 
views of chemistry and is easily performed on the basis of 
a compound’s molecular formula. The other levels in our 
classification schema depend on much more detailed defi-
nitions and rules that are described below. SuperClasses 
(which includes 26 organic and 5 inorganic categories) 

consist of generic categories of compounds with general 
structural identifiers (e.g. organic acids and derivatives, 
phenylpropanoids and polyketides, organometallic com-
pounds, homogeneous metal compounds), each of which 
covers millions of known compounds. The next level 
below the SuperClass level is the Class level, which now 
includes 764 nodes. Classes typically consist of more spe-
cific chemical categories with more specific and recogniz-
able structural features (pyrimidine nucleosides, flavanols, 
benzazepines, actinide salts). Chemical Classes usually 
contain >100,000 known compounds. The level below 
Classes represents SubClasses, which typically consist of 
>10,000 known compounds. There are 1729 SubClasses in 
the current taxonomy. Additionally, there are 2296 addi-
tional categories below the SubClass level covering taxo-
nomic levels 5–11.

Altogether this extensive chemical taxonomy contains 
a total of 4825 chemical categories of organic (4146) and 
inorganic (678) compounds, in addition to the root category 
(Chemical entities). As a whole, this chemical taxonomy 
can be represented as a tree with a maximum depth of 11 
levels, and an average depth of five levels per node (Fig. 2). 
As with any structured taxonomy, the creation of a well-
defined hierarchical structure offers the possibility to focus 
on a sub-domain of the chemical space, or a specific level 
of classification. A more complete description of this taxo-
nomic hierarchy can be found in the Additional file 1: Table 
S1. The chemical taxonomy and its hierarchical structure 
provided using the Open Biological and Biomedical Ontolo-
gies (OBO) format [33], which may help with its integration 
with respect to semantic technology approaches. The result-
ing OBO file was generated with OBO-Edit [34], and can be 
downloaded from the ClassyFire website.

Component 2—Chemical class dictionary
Each node or category name in ClassyFire’s chemical 
ontology or ChemOnt, was created by extracting common 
or existing chemical classification category terms from 
the scientific literature and available chemical databases. 

Fig. 2  Illustration of the taxonomy as a tree
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We used existing terms to avoid “reinventing the wheel”. 
By making use of commonly recognized or widely used 
terms that already exist in the chemical literature, we 
believed that the taxonomy (and the corresponding ontol-
ogy) should be more readily adopted and understood. This 
dictionary creation process was iterative and required the 
manual review of a large number of specialized chemical 
databases, textbooks and chemical repositories. Because 
the same compounds can often be classified into multiple 
categories, an analysis of the specificity of each categorical 
term was performed. Those terms that were determined 
to be clearly generic (e.g. organic acid, organoheterocy-
clic compound) or described large numbers of known 
compounds were assigned to SuperClasses. Terms that 
were highly specific (e.g. alpha-imino acid or derivatives, 
yohimbine alkaloids) or which described smaller numbers 
of compounds that clearly fell within a larger SuperClass 
were assigned to Classes or SubClasses. This assignment 
also depended on their relationship to higher-level catego-
ries. In some cases multiple, equivalent terms were used 
to describe the same compounds or categories (imidazo-
lines vs. dihydroimidazoles). To resolve these disputes, 
the frequency with which the competing terms were used 
was objectively measured (using Google page statistics or 
literature count statistics). Those having the highest fre-
quency would generally take precedence. However, atten-
tion was also paid to the scientific community and expert 
panels. When available, the IUPAC term was used to name 
a specific category. Otherwise, if the experts clearly recom-
mended a set of (less frequently used) terms, these would 
take precedence over terms initially chosen by our initial 
“popularity” selection criteria. Examples include the terms 
“Imidazolines” (229,000 Google hits) and “Dihydroimida-
zoles” (4590 Google hits). The other popular terms were 
then added as synonyms. A total of 9012 English syno-
nyms were added to the ChemOnt terminology data set.

In a number of cases, new SuperClass and Class terms 
were created for chemical categories not explicitly defined 
in the literature. Of these, the resulting “novel” categories 
were typically constructed from the IUPAC nomencla-
ture for organic and inorganic compounds. Because our 
chemical dictionary was built from extant or common 
terms, it contains many community-specific categories 
commonly used in the (bio-)chemical nomenclature (e.g. 
primary amines, steroids, nucleosides). Moreover, due 
to the diverse nature of active and biologically interest-
ing compounds, many chemical categories linked to spe-
cific chemical activities or based on biomimetic skeletons 
(e.g. alpha-sulfonopeptides, piperidinylpiperidines) were 
added. For instance, several compounds from the category 
of imidazo[1,2-a]pyrimidines (CHEMONTID:0004377) 
have been shown to display GABA(A) antagonist activity, 
and a potential to treat anxiety disorders [35].

After all the dictionary terms were identified and com-
piled (4825 terms to date), each term was formally defined 
using a precise, yet easily understood text description that 
included the structural features corresponding to that 
chemical category (Fig.  3). These formal definitions and 
the corresponding category mappings formed the basis 
of the structural classification algorithm and the classifi-
cation rules described below. Once defined, the terms in 
this Chemical Classification Dictionary were progressively 
added to the taxonomic structure to form the structure-
based hierarchy underlying ClassyFire’s chemical classi-
fication scheme. With the combination of the taxonomic 
structure and the Chemical Classification Dictionary, 
ChemOnt can be formally viewed as an ontology (albeit 
purely a structural ontology).

Component 3—The classification algorithm
The essence of our classification algorithm is to use the 
structural definitions and terms contained in the Chemi-
cal Classification Dictionary to classify compounds. This 
required converting the English text definitions into a 
computable set of rules with each definition consisting 
of one or more chemical structures, and/or a set of char-
acteristic features that can be otherwise expressed in a 
computable form. The main format used for chemical 
structure representation in our classification algorithm 
is the SMARTS format [28]. SMARTS is a molecu-
lar pattern matching language, related to the popular 
SMILES molecular language, that can be used to spec-
ify sub-structural patterns in molecules. For instance, 
thiazoles are heterocyclic compounds containing a five-
member aromatic ring made up of one sulfur atom, one 
nitrogen, and three carbon atoms. This category of com-
pounds can be described with the following SMARTS 
expression:

Converting the 4825 definitions in our Chemical Classi-
fication Dictionary led to the creation of >9000 SMARTS 
strings. The validity of each SMARTS string was first 
tested by performing a superstructure search on small 
sets of positive or negative example compounds. In most 
cases, manually generated SMARTS strings, or combina-
tions thereof, were sufficient to represent the vast majority 
of chemical categories (Additional file 2: Figure S1). How-
ever, in some cases, SMARTS strings could not express 
specific constraints that a given compound must fulfill 
in order to be assigned a given category. For instance, 
SMARTS strings cannot describe structures with variable 
numbers of a specific bond or a specific atom. One way 
around this would be to enumerate the different patterns, 
which could easily lead to a combinatorial explosion. For 

[$([#16] − 1− [#6] = [#6] − [#6] = [#7] − 1), $([#16]

− 1− [#6] = [#6] − [#7] = [#6] − 1)]
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these exceptions we used the Markush format [36], which 
is available through ChemAxon’s Marvin tool. With the 
Markush format, it is possible to represent substituent’s 
variations, position’s variations, as well as the frequency 
variation of structural groups within a chemical structure. 
The Markush patterns used by ClassyFire constitute only 
about 4% of the set of patterns in the ClassyFire database. 
In addition, some chemical categories were more appro-
priately defined by a combination of logical expressions 
based on features such as structural patterns, physico-
chemical properties or chemical formulae (Additional 
file  2: Figure S2). For example, an alkane, which is an 
acyclic branched or unbranched hydrocarbon having the 
general formula CnH2n+2, can be formally represented as 
the following combination of rules:

RingCount(A) = 0 ∧ AtomCount(C ,A) > 0

∧ (AtomCount(C ,A)+ AtomCount(H ,A)

= TotalAtomCount(A)) ∧ (AtomCount(H ,A)

= 2× AtomCount(C ,A)+ 2),

where AtomCount(X,A) is the number of atoms of type 
X in the molecule A, RingCount(A) is the total number 
of rings in the compound A, and TotalAtomCount(A) is 
the total number of atoms in the compound A. In rare 
cases, some categories of compounds could not be accu-
rately described in an explicit and formal way using any 
SMARTS string, Markush representation, structural pat-
tern, physico-chemical property or chemical formula. 
These included certain categories of lipids and lipid-like 
molecules, phenylpropanoids, polyketides, peptidomi-
metics and alkaloids, among others. In these cases, the 
categories were defined as a union of their subcategories 
that were formally expressed.

It is also important to remember that chemicals can 
exist as structural chimeras or combinations of different, 
covalently linked chemical structures, building blocks or 
domains. Consequently some chemicals (Fig.  1) could 
potentially belong to more than one chemical class or 
category. To simplify the chemical classification pro-
cess, we chose to prioritize the category correspond-
ing to the largest or most dominant structural feature of 

Fig. 3  The chemical taxonomy. The taxonomy is illustrated with the OBO-Edit software, showing definitions synonyms, references, and extended 
information
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the chemical compounds (see below). This decision was 
based on the observed and historical tendencies of chem-
ists to manually classify compounds based on the size 
(i.e. the number of atoms) of the most dominant struc-
tural feature. Furthermore, identifying the largest feature 
is a technique that is easily measurable and completely 
objective. If two or more dominant structural features 
are equal in size, methods described later are used to 
select one of the features. In ClassyFire’s algorithm, if a 
structural feature is a represented by structure, its fea-
ture weight is equivalent to the number of non-hydrogen 
atoms in that substructure. If a structural feature is rep-
resented by a combination of logical terms, its weight is 
the total number of non-hydrogen atoms of the smallest 
compound that fulfills the defined constraints.

It is important that any automated classification tool 
provide a result that is identical or near-identical to the 
outcome of manual assignments by experts. As a result, 
a small number of post hoc adjustments were made for 
certain well-known chemical categories that are com-
monly identified by their biochemical context. For 
instance, we created a category called “Phenylpropanoids 
and polyketides”. Phenylpropanoids and polyketides can 
be described as small organic compounds that are syn-
thesized either from the amino acid phenylalanine (phe-
nylpropanoids) or the decarboxylative condensation 
of malonyl-CoA (polyketides). These classes are best 
described as a union of their children. The “Phenylpro-
panoids and polyketides” category currently has 34 direct 
children and a total of 273 descendant categories, includ-
ing Flavonoids, among others. Describing a flavonoid 
compound as a phenylpropanoid instead of a chromone 
(a term that can legitimately be used to describe flavo-
noids) is, from a biochemist’s point of view, more precise 
and accurate.

Mapping of other classification schema and vocabularies 
to ClassyFire’s taxonomy
As noted before, there are a number of well-known, 
online chemical databases that have developed their own, 
manually annotated chemical taxonomy and/or ontology. 
For instance, the ChEBI ontology [15] provides a sub-
ontology for chemical roles, in addition to the structure-
based sub-ontology. LIPID MAPS [13] focuses on lipids 
and lipid-like molecules, and groups them according to 
their biosynthetic origin. MeSH is a thesaurus consist-
ing of >50,000 terms, about 1/3 of which cover chemical 
entities or classes thereof. In developing the ChemOnt 
taxonomy, which is used by ClassyFire, we aimed at cre-
ating a consensus chemical taxonomy partly inspired by 
these approaches. In that regard, ChemOnt was mapped 
to three other widely used chemical hierarchies or 

taxonomies (ChEBI, LIPID MAPS and MeSH). This was 
done by assigning one or more synonyms to each Chem-
Ont category, and specifying the corresponding level or 
scope of term similarity. For any ChemOnt term, a syno-
nym can have the identical meaning (exact scope), a more 
specific meaning (narrow scope), or a less specific mean-
ing (broad scope). In some cases, the synonym can have 
slightly different meaning, so that it cannot be assigned 
any of the three aforementioned scope categories. In this 
case, it is simply called a related synonym.

In a joint effort with the ChEBI development team, an 
ontology look-up table was created to map ClassyFire’s 
(and ChemOnt’s) taxonomy to the ChEBI sub-ontology 
of chemical entities. When applicable, an exact CHEBI 
synonym was assigned to the ChemOnt term. Other-
wise, either one or more broad synonyms, preferably 
those mapped to its parent, were assigned. In some cases, 
narrow CHEBI synonyms were also assigned. It is worth 
mentioning that in the case of ChEBI, due to certain phil-
osophical discrepancies, some terms may appear to be 
exact synonyms for a given ChemOnt category, but actu-
ally have a different meaning. For instance, ChEBI makes 
a clear distinction between “carboxylic acid” and “car-
boxylic acid anion”, while ChemOnt does not. Therefore, 
the ChEBI term “carboxylic acid” is a narrow synonym of 
ChemOnt’s “carboxylic acids”. A total of 6014 category 
mappings were created, with an average of 1.24 ChEBI 
synonyms per category. Each ClassyFire category has one 
or more mapped ChEBI terms. This effort highlighted a 
number of similarities, differences, and suggested some 
improvements (e.g.: categories to be added) for both 
systems. Using this training information, ClassyFire has 
been modified and used to annotate >43,000 small mol-
ecules from the ChEBI database. A comprehensive anno-
tation of the ChEBI database (release 126) is provided as 
a supplementary document (Additional file  3), and can 
also be downloaded from the ClassyFire website. To date, 
these results have been used by the ChEBI development 
team to annotate more than 10,000 compounds present 
in the ChEBI database. In lipid biology, the LIPID MAPS 
consortium provides the standard chemical ontology 
for lipids [13]. As a result we designed the lipid subset 
in ChemOnt to align closely with the LIPID MAPS clas-
sification scheme. A total of 789 ClassyFire categories 
were mapped to one of 307 LIPID MAPS terms each. As 
a result, a combination of ClassyFire and LIPID MAPS 
ontologies was used to classify ~35,000 small metabolites, 
which can be accessed from the LIPID MAPS Lipidomics 
Gateway [31], a resource sponsored by the National Insti-
tute of General Medical Sciences [37] and the Common 
Fund of the National Institutes of Health [38]. As a result 
of this mapping, several more category assignments were 
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added to complement the LIPID MAPS classifications. 
ClassyFire has also been manually mapped, although only 
partially, to the MeSH thesaurus, which is used in the 
PubChem database. So far, 844 ClassyFire categories have 
been mapped to at least one corresponding MeSH term, 
accounting for a total of 945 mappings to the MeSH 
thesaurus. This MeSH mapping will likely continue for 
another year or two.

A considerable proportion of the structures available 
in databases, such as PubChem, correspond to chemi-
cal mixtures. For instance, some drugs or pesticides are 
synthesized as mixtures of several organic compounds. 
ClassyFire has been programmed to classify such mix-
tures. The underlying algorithm allows it to assign classes 
while considering the organic moieties separately, and 
also as a whole. For instance, a mixture of an organic 
compound and a chlorine anion (inorganic) will be 
assigned the category of organic chlorine salts, among 
others, but not the category of inorganic compounds.

The classification process
As illustrated in Fig. 4, the ClassyFire classification pro-
cess involves four steps: (1) Creation and Preprocess-
ing of the Chemical Entity; (2) Feature Extraction; (3) 
Rule-based Category Assignment and Category Reduc-
tion; and (4) Selection of the Direct Parent. These are 
described in more detail below:

Step 1—Creation and preprocessing of the chemical entity
This step involves the creation of one or more chemi-
cal entity objects (which are stored in a database), and 
the calculation of physico-chemical as well as struc-
tural properties. Most of these features, such as the 
number of (aromatic, aliphatic) rings, are used for 
classification. Others, such as the mass, are used for 
text-based search (See Use Cases, below). The calcula-
tion of physico-chemical properties is performed using 
ChemAxon’s JChem API (version 15.5.25.0). Classy-
Fire accepts different types of chemical input: SMILES, 
SDF, InChI, IUPAC name, and FASTA sequence files. 
The different types of chemical input are illustrated in 
Fig.  5. SMILES, SDF, and InChI strings are common 
structural representation formats for chemical entities, 
which can be directly used for structure search opera-
tions or the generation of physico-chemical proper-
ties. In contrast, each IUPAC name is converted to the 
corresponding structure using the OPSIN library [39], 
before any chemical object is created and subsequently 
preprocessed. If the chemical (protein, DNA or RNA 
molecule) input is submitted in FASTA format, every 
sequence is either identified as a nucleotide or peptide 
sequence type. This step is important, as the interpreta-
tion of one-letter sequences will vary depending on the 
sequence type. The ClassyFire web server also allows 
users to submit their query through the MarvinSketch 

Fig. 4  Workflow of the chemical classification
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Chemical Drawing Applet, which permits users to 
import or draw a chemical structure, which is then 
exported as a SMILES string.

Step 2—Feature extraction
The second step in the ClassyFire program involves the 
generation of structural features based on a combination 
of superstructure-search operations and various property 
calculations. ClassyFire combines several methods for 
structural pattern detection. Most features are detected 
through superstructure search, which is performed on 
its library of over 9000 manually designed SMARTS 
patterns and Markush structures. Each of the terms 
was validated through iterations of test and improve-
ments (if necessary) over small sets of compounds. The 
library is integrated into ChemAxon’s JChem Base. Che-
mAxon’s Marvin 5.11.5 package was used to generate 
these patterns, ranging from small functional groups 
(e.g. the carbamoyl group) to complex skeletons (e.g. the 
(3′–>5′)-cyclic dinucleotide bis(phosphoromonothioate) 

pattern). Prior to being imported into the database, each 
structure pattern was subjected to a set of standardiza-
tion operations, including normalization and aromati-
zation. Each query compound is subjected to the same 
operations before the superstructure search. This allows 
the program to deal with differences in charges, valences 
and aromatic configuration.

Another feature detection method used in ClassyFire 
involves combining features with the use of logical con-
nectives, and cardinality restrictions. Every structural 
feature defined by a logical expression is evaluated in 
order to assign that feature to the query compound. As 
an example, ClassyFire can detect specific features for 
an inorganic compound based on its elemental content, 
and the list of oxyanions it contains (if any). These fea-
tures are described by rules embedded in a ClassyFire 
module that specifically handles inorganic compounds. 
In some cases, the use of structure patterns, chemical 
formulae or physicochemical properties is not sufficient 
to generate a feature. For instance, the category known 

Fig. 5  Different types of input accepted by ClassyFire
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as leukotrienes describes derivatives of arachidonic acid, 
containing three hydroxyl groups as well as four double 
bonds, exactly three of which are conjugated. The posi-
tion of the three conjugated bonds as well as the relative 
position of the non-conjugated bond can vary, yielding a 
large number of combinations. Therefore, a superstruc-
ture search might not return a hit. In order to classify 
leukotrienes, ClassyFire makes use of standard IUPAC 
nomenclature in addition to a structure search to check 
whether these constraints are fulfilled. This approach is 
illustrated in the Additional file 2: Figure S3. The IUPAC 
name of any query chemical entity is generated by Che-
mAxon’s Structure-to-Name Conversion engine provided 
by the JChem API. IUPAC names can give valuable infor-
mation about the parent of a given compound, as well as 
the positioning, number, and name of substituents rela-
tive to that parent. We developed a module, which uses 
a set of ~200 regular expressions and rules in order to 
accurately detect structural features given a query com-
pound by parsing IUPAC names.

Step 3—Rule‑based category assignment and category 
reduction
After a list of structural features has been generated, each 
feature is then mapped to its corresponding category or 
node in the taxonomy. A manually compiled dictionary, 
which provides the weight and category for each feature, 
was used for the rule-based category assignment. After 
the category assignment is complete, a non-redundant 
list of chemical categories is constructed. This is done by 
iteratively reducing the set of chemical categories. For 
every pair of chemical categories, if there is a parent–
child relationship (e.g. dioxanes [parent] and 1,2-dioxanes 
[child]), only the child node is retained (1,2-dioxanes).

Step 4—Selection of the direct parent
The direct parent is the category defined by the larg-
est structural feature that describes the compound. It 
is selected from the non-redundant list of categories 
obtained in the previous step. If two or more structural 
features have the largest weight, the direct parent is 
selected following a procedure that takes into account the 
number of cycles, heterocycles, ring atoms, ring heter-
oatoms, halogen atoms, fused rings, and the total num-
ber of heteroatoms, which are encoded in each node’s 
structural key. In some cases, the largest feature might be 
less descriptive or less relevant than another feature. For 
example, the glycoside moiety of a flavonoid glycoside 
can be much larger than the flavonoid moiety. However, 
the term “flavonoid glycoside” is more informative than 
the term “glycoside”, as it describes the presence of both 
a saccharide unit and a flavonoid, glycosidically linked to 
one another. In this case, an exception is made and the 

term “flavonoid glycoside” is selected over “glycoside”. 
A small (but not exhaustive) set of such exceptions has 
been manually compiled.

The entire ClassyFire program has been converted 
to a web-based resource. It is a RESTful web appli-
cation located at http://classyfire.wishartlab.com. It 
allows users to submit one or more query molecules in 
SMILES, SDF, or InChI format, IUPAC name, or 1-let-
ter amino acid and nucleic acid (FASTA) notation. The 
query structure(s) can be entered as text, uploaded, 
or drawn using the MarvinSketch applet. It is recom-
mended that all query structures be represented in their 
chiral or isomeric form, to ensure a more precise clas-
sification. This is because different ClassyFire categories 
can be represented by stereoisomers of the same skel-
eton. Some examples include 3-alpha-hydroxysteroids 
(CHEMONTID:0003232) and 3-beta-hydroxysteroids 
(CHEMONTID:0003233), which are all sub-categories of 
3-hydroxysteroids (CHEMONTID:0003027). When rep-
resented with an isomeric structure string for instance, 
a compound, such as androsterone, can be classified as 
a 3-alpha-hydroxysteroid. However, if it is represented 
with a canonical structure, it would only be classified as a 
3-hydroxysteroid, which is less precise. Upon submission, 
the queries are processed by the ClassyFire classification 
tool, then entities or sequences are classified, and the 
results are then further processed, formatted and shown 
on a HTML output page (Figs. 6, 7). Classification results 
can also be downloaded in a JSON [40], SDF [41], or CSV 
[42] format. In addition to providing standard chemical 
classification data, ClassyFire also returns a list of chemi-
cal substituents, which are structural features (functional 
groups, substructures or motifs) contained within the 
molecule. For many compounds ClassyFire also provides 
a secondary attribute called the “Molecular Framework”. 
The Molecular Framework gives an overall description 
of the compound in terms of aliphaticity/aromaticity and 
number of cycles. For instance, benzene is described as 
an aromatic homomonocyclic compound while butanol 
is described as an aliphatic acyclic compound. The 
Molecular Framework attribute does not apply to mix-
tures of organic compounds. In addition to providing an 
automated chemical classification service, the ClassyFire 
web server also provides a number of powerful text-based 
search options, which are described later.

Training and evaluation
Training and evaluation of the ClassyFire program was 
performed throughout the development of the pro-
gram, using data sets from several well known data-
bases, containing thousands of drugs [30], lipids [13, 
32], food compounds [43], toxins, environmental pollut-
ants, as well as other organic and inorganic compounds. 

http://classyfire.wishartlab.com
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Progressively larger and more diverse sets of manually 
classified chemicals (from 100+ compounds to more 
than 6000 compounds) were manually compared and 
evaluated against the computed ClassyFire classifica-
tions to ensure that the program properly classified new 
compounds or compounds not previously seen in its 
training cycles. The manual classifications were gener-
ated according to the definitions found in the Chemical 
Classification Dictionary. Moreover, classifications of the 
various compounds were collected from the literature 
and other resources that provided the same category 
descriptions as ClassyFire. As errors or programming 
bugs were identified, class definitions were iteratively 
refined. If missing categories were found, or if com-
pounds were more suitably classified in new categories, 
these were added to the Chemical Classification Diction-
ary (and to the ClassyFire algorithm). The identification 

of new categories was aided by the classification schema 
provided by other databases such as LIPID MAPS [13], 
ChEBI [15] and DrugBank [30]. This iterative refinement 
process was conducted until essentially no incorrect 
assignment could be detected in even the largest test 
sets.

In addition to these manual consistency checks con-
ducted throughout the training and development 
phase of the project, we also conducted an independ-
ent performance assessment of the final release version 
(version 2.0) of ClassyFire. A test set was built by ran-
domly selecting 800 unique structures from DrugBank, 
the LIPID MAPS Lipidomics Gateway, HMDB [32], 
and T3DB [44]. The compounds are all included in the 
PubChem database. We used a panel of experts to evalu-
ate the correctness of each category assignment based on 
the definition in the Chemical Classification Dictionary. 

Fig. 6  Classification results for the molecule Valclavam (CID126919) on the ClassyFire website. The structural representations, and the taxonomic 
tree are illustrated. The classification result can be downloaded in different formats
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When applicable, we also verified if the direct parent 
was included in the list of classed assigned by ChEBI or 
LIPID MAPS.

Results and discussion
The classification process as described in the previous 
section was implemented into both a computer program 
and a freely accessible web server called ClassyFire, avail-
able at http://classyfire.wishartlab.com. Moreover, an 
open source Ruby API (https://bitbucket.org/wishartlab/
classyfire_api) allows users to programmatically access 
the web server in order to submit queries, and retrieve 
classification results, as well as entity-related properties. 
The complete taxonomy can be downloaded from Classy-
Fire’s home page.

An example of ClassyFire’s classification and ontologi-
cal annotation is illustrated for the antibiotic compound 
Valclavam. As can be seen in this figure, ClassyFire 
returns a taxonomic classification based on the most 
descriptive node in the taxonomy (Fig.  6). The direct 

parent “dipeptides” represents the most dominant moiety 
of Valclavam’s structure. However, the notion of what is 
most descriptive can vary from one user to another, and 
from one context to another. For example, a cyclic dep-
sipeptide could be also be classified as a lactam. Because 
of this ambiguity, ClassyFire also displays a list of Alter-
native Parents (Fig. 7) providing a more detailed descrip-
tion of the chemical. Alternative parents are categories 
that describe the compound but do not have an ances-
tor–descendant relationship with each other or with 
the Direct Parent. When available, ClassyFire returns 
Intermediate Nodes. These are nodes are descendants 
of a subclass (any category with a depth of 4), but have a 
depth lower than the direct parent.

In addition, ClassyFire provides the Molecular Frame-
work and a list of all identified substituents (or structural 
features). Furthermore, an English, text-based compound 
description is also provided for non-experts. The text-
based description is derived from ClassyFire’s Chemi-
cal Classification Dictionary. In an effort to facilitate the 

Fig. 7  Classification results for the molecule Valclavam (CID126919) on the ClassyFire website. A detailed listing of the structural features of the 
molecule is provided, along with a structure-based text description

http://classyfire.wishartlab.com
https://bitbucket.org/wishartlab/classyfire_api
https://bitbucket.org/wishartlab/classyfire_api
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integration of data from different sources, ClassyFire also 
contains a database of cross-references from other pop-
ular chemical databases that use different taxonomies/
ontologies, such as KEGG [45], ChEBI [15], LIPID MAPS 
[13], and MetaCyc [46]. These cross-references and alter-
nate-database classifications are routinely provided as 
ClassyFire output, when available.

To accelerate ClassyFire’s processing time, all of the 
chemical structures it has ever processed and all of the 
corresponding taxonomic/ontological outputs it has 
ever produced are stored in a local MySQL database. 
This allows the ClassyFire web sever to perform a simple 
lookup for those query compounds that have previously 
been processed (more than 70 million compounds to 
date). Therefore, for previously analyzed compounds the 
ClassyFire web server takes <50 ms to return an answer. 
For completely novel compounds, the ClassyFire web 
server takes an average of 540 ms to classify a structure.

Evaluation of ClassyFire’s classification results
After the iterative development, testing and manual eval-
uation of ClassyFire over several data sets consisting of 
>30,000 compounds from very diverse chemical catego-
ries, ClassyFire was formally tested on a set of 800 com-
pounds not used during ClassyFire’s training phase. The 
compounds among which, drugs, food compounds, syn-
thetic compounds, and biologically relevant metabolites, 
were selected from PubChem (Additional file  4: Sheet 
1). The classification process took 249.9 s on a computer 
with 4 CPU CentOS nodes, with 3.6 GB of RAM, running 
with a maximum of 16 threads. The results were then 
manually reviewed by a panel of seven chemistry experts 
from three different countries (Additional file  4: Sheet 
2). A total of 21,102 category assignments were made, 
for an average of 26.38 assignments per compound. On 
this specific test set, ClassyFire assigned a total of 1308 
distinct Categories. Figure 8 illustrates some examples of 
the category assignments. The goal was to evaluate how 
exact the computational rules were able to reflect the 
text-based descriptions, which themselves are tradition-
ally used to classify compounds. Based on these textual 
descriptions, as well as the assignments from the litera-
ture and scientific databases, each compound’s annota-
tion was reviewed to identify possibly missing or wrong 
assignments.

In this test, a total of 17 false positives (out of 21,102 
assignments) were detected. An example is the misclas-
sification of bixin dimethyl ester (CID14413719) as an 
acyclic diterpene. From a structural point of view, this 
compound contains a chain of four consecutive isoprene 
units, which is characteristic of diterpenes (Fig. 9a). How-
ever, bixin dimethyl ester is classified in both the LIPID 
MAPS and the ChEBI database as a C40 isoprenoid 

(tetraterpene). More precisely, bixin dimethyl ester 
belongs to the category of compounds known as apo-
carotenoids, which arise from the oxidative cleavage of 
carotenoids. Thus, bixin dimethyl ester, which is a prod-
uct of lycopene metabolism, is classified as a tetraterpene 
according to its biosynthetic origin. Based on its struc-
ture, one could argue that bixin dimethyl ester should 
be classified as a diterpene; but based on its biology, it 
should be classified as a tetraterpene derivative or as an 
apo-carotenoid diterpenoid (CHEBI:53186). Given that 
ClassyFire is designed to classify compounds on a struc-
tural basis rather than a biological or biosynthetic basis, 
this kind of “misclassification” is completely understand-
able and is arguably not a misclassification. In this test 
set we also detected 13 missing assignments (false nega-
tives). An example of a compound missing an assignment 
is the experimental drug cytidine-5′-diphospho-beta-
delta-xylose (CID46936568), which was only classified as 
a pyrimidine ribonucleoside diphosphate but not classi-
fied as a purine nucleotide sugar (Fig. 9b).

To evaluate ClassyFire’s overall performance, each cate-
gory was assigned a normalized weight based on its num-
ber of occurrences among the 800 chemical entities. This 
way, incorrect or missing assignments of the more popu-
lated categories (e.g. those at a higher level of the taxo-
nomic hierarchy) would be penalized more compared 
to less populated categories (i.e. those at a lower level of 
the hierarchy). Each category was assigned to an average 
of 2.6 compounds. ClassyFire obtained score of 7067.04, 
or 99.97% of a maximum score of 7067.24. On average, 
ClassyFire was able to reproduce the text-based descrip-
tion with a precision of 99.8% and a recall of 99.9%.

Comparing automated and manual annotations
The primary motivation behind automated chemical 
classification is to provide a comprehensive, accurate 
and fast chemical annotation in order to alleviate the 
cost and potential errors of manual classification. While 
ClassyFire is many times faster than manual classification 
methods we also wanted to assess its accuracy and com-
pleteness compared to manual classifications. We there-
fore conducted a detailed comparison of ClassyFire’s 
results from 20 compounds, randomly selected from the 
test set described above, with their manually curated 
annotation from the ChEBI database. The 126th ChEBI 
release from April 1st 2015 was used for this compari-
son. We did not use a more recent version of ChEBI since 
ClassyFire has actually been used over the past year to 
guide the manual annotation process for the ChEBI data-
base. In order to provide the complete ChEBI annotation, 
a script was used to infer a list of ancestors for each of 
the 20 compounds based on the selected ChEBI release. 
Each compound was assigned an average of nearly 33 
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Fig. 8  Examples of class assignments by ClassyFire for 12 compounds from the test set

Fig. 9  Examples of conflicting and missing class assignments. a Structure of Bixin dimethyl ester (CID14413719). b Structure of cytidine-5′-
Diphospho-Beta-d-Xylose (CID 46936568)
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ChEBI classes (Additional file 5: Sheet 1). ClassyFire, on 
the other hand, returned an average of ~31 categories per 
compound. The ontology lookup table described in the 
Methods section of this paper was used to map categories 
returned by ClassyFire to the ChEBI classes. This map-
ping returned an average of 27 terms, or approximately 6 
terms less than that originally provided by ChEBI.

This discrepancy can be explained by several factors. 
First, the idea behind the term mapping was to assign 
each ChemOnt category to an equivalent ChEBI term 
or, if not applicable, the closest ChEBI classes that do not 
have a parent–child relationship to each other. Thus, the 
category “Primary amines” (CHEMONTID:0002450) has 
been mapped only to the equivalent ChEBI term “pri-
mary amine” (CHEBI: 32877), and not its parent. Addi-
tionally, the two hierarchies are built differently. While 
ChemOnt is built as a tree, where each node has no more 
than one parent, a ChEBI term can have several parents. 
For the purpose of our comparison, we complemented 
the list of the predicted ChEBI terms with their inferred 
parents (Additional file  5: Sheet 2). When the extended 
list is considered, each compound in the set was assigned 
to a total number of nearly 45 predicted ChEBI terms. Of 
those, an average of nearly 14 terms were missing from 
the manual ChEBI annotation. These could be added to 
ChEBI in order provide a more complete and consist-
ent annotation. From the 33 terms provided by ChEBI, 
ClassyFire was unable to return an average of more than 
2 terms per compound. This could either suggest that 
more terms should be added to the ChemOnt hierarchy, 
or the lookup table could be improved. In some cases, the 
term used is based on both a structural and a functional 
classification. An example is the term beta-lactam anti-
biotic (CHEBI:27933) for Oxacillin (CID 6196). Because 
ChemOnt is strictly structure-based, these terms do not 
apply. Overall, ClassyFire was able to reproduce ~94% 
of the ChEBI annotations, but also to suggest new terms 
that could accurately increase the number of annotations 
by another 43.6%.

The approach presented in this work makes use of 
diverse cheminformatic technologies to precisely detect 
structural features and classify chemical entities. The 
ClassyFire classification algorithm helps to (partially) 
overcome many of the limitations of previously devel-
oped automated chemical classification tools [24, 26, 
27]. For instance, several rules were developed to classify 
inorganic compounds, and organic metal compounds, 
which are not comprehensively covered by any current 
ontology. Most categories e.g., benzodiazepines, can be 
accurately described by one or more structural patterns. 
Others, such as alkaloids and derivatives, can only be 
defined as a disjunction of several subcategories. Fur-
thermore, ClassyFire makes used of IUPAC names to 

identify certain patterns that might not be retrieved by a 
standard structure search, due to different substitution or 
dehydrogenation patterns. For example, we described a 
method to classify leukotrienes based on IUPAC names, 
given that there is no single structural backbone that 
could sufficiently and accurately describe each of these 
compounds.

Limitations
Despite the many capabilities that ClassyFire offers, and 
the different methods used to circumvent some of the for-
malization problems mentioned so far, certain limitations 
in ClassyFire still remain. For instance, ClassyFire’s reli-
ance on IUPAC names as a classification feature contin-
ues to cause some problems, particularly for compounds 
such as leukotrienes. This is because the classification 
of leukotrienes is also partly based on their biosynthetic 
origin. Certain, leukotriene derivatives that are oxidized 
or reduced at one double-bond position are still classi-
fied as leukotrienes, even though they might no longer 
have the three conjugated double bonds or the fourth 
double bond. An example is 10,11-dihydro-12-oxo-LTB4 
(LMFA03020041) found in the LIPID MAPS database. 
Improvements could be made by taking a closer look at 
such compounds to find more common structural pat-
terns. Currently, these leukotrienes would be classified 
as hydroxyeicosadienoic, hydroxyeicosatrienoic, or other 
eicosapolyenoic acids, depending on the number of car-
bon–carbon double bonds. Additionally, IUPAC names 
can become very difficult to exploit for certain complex 
structures, such as large fused ring systems. Another lim-
itation with ClassyFire lies on its heavy dependence on 
predefined chemical patterns that use imperfect structure 
representation formats. Because ClassyFire inherits some 
of the limitations found with standard chemical struc-
tural representations (i.e. SMILES, SMARTS, Markush), 
the classification accuracy for certain kinds of “sandwich 
compounds” (e.g. metallocene) and alloys (e.g. chromium 
alloys) is not as good as it could be.

In order to circumvent the aforementioned limitations, 
and for the sake of developing a standard taxonomy, 
ClassyFire and ChemOnt could benefit from the involve-
ment of the International Union of Pure and Applied 
Chemistry (IUPAC), and other chemical standardiza-
tion or data reporting bodies. These groups could help 
to propose newer/better classifications and provide the 
long-term continuity that would, in turn, help to achieve 
a more sustainable and more consensual approach to 
chemical classification. Currently, the ClassyFire code is 
compatible only with the commercial ChemAxon JChem 
package. In order to ensure the sustainability of Classy-
Fire, we are committed to rapidly (by December 2016) 
making ClassyFire a completely open source project that 
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could benefit from contributions from the global chem-
informatics community. ClassyFire’s continued mainte-
nance and further development will be achieved under 
the joint supervision of The Metabolomics Innovation 
Center (TMIC), the National Institute of Health (NIH), 
the European Bioinformatics Institute (EBI), as well as 
IUPAC. We believe that this would facilitate the involve-
ment and more widespread adoption of ClassyFire and 
ChemOnt, by the scientific community.

Use cases
As mentioned earlier, the benefits and applications of 
a comprehensive chemical classification schema and 
well-defined chemical ontology system are multifold. 
Chemical classification makes chemical information 
easy to index, easy to organize, easy to search and easy 
to exchange. It also makes it possible to automate chemi-
cal annotations, to perform complex chemical searches, 
to rapidly identify compounds for compound-specific 
predictions, and to decipher patterns that underlie key 
biomolecular interactions. To illustrate this, we provide 
some example use cases showing how ClassyFire’s chemi-
cal classification has been used to help solve some com-
mon cheminformatics tasks.

Example 1: Classification of the PubChem database
PubChem [19] is a freely available chemical database 
maintained by the National Centre for Biotechnology 
Information. It stores chemical, physicochemical and 
biological information for more than 91 million chemi-
cal entities as of June 2016, making it the largest, open-
access chemical database in the world. However, as large 
as PubChem is, only 0.12% of the compounds in the 
database have ever been assigned to a chemical class or 
given a Medical Subject Heading (MeSH) classification. 
MeSH is a manually maintained, controlled vocabu-
lary produced by the National Library of Medicine. It 
is used for indexing, cataloging, and searching for bio-
medical and health-related documents, including all 
abstracts and papers listed in PubMed [47]. Over the past 
40 years, MeSH classifications have been assigned man-
ually for just 115,000 compounds in PubMed, yet there 
are 60 millions compounds listed in PubChem. Given 
that the number of documents listed in PubMed is rap-
idly increasing, a manual assignment of the MeSH classes 
will become increasingly difficult. Moreover, it would 
be impossible to manually annotate all 60 million com-
pounds in PubChem using the standard MeSH method-
ology. Therefore, we decided to automatically annotate 
and classify all of PubChem (and all PubMed chemicals) 
using ClassyFire. The structure-based classification of 
PubChem compounds was performed through parallel 
computing on 22 CentOS quad-core CPUs, with 3.6 GB 

of RAM each. The operation was completed in 424  h 
for an average of 550 ms (ms) per compound. The clas-
sification results have been submitted to the PubChem 
development group. This group is actively working to dis-
play ClassyFire’s classification of all the PubChem com-
pounds, thereby allowing users to view, query and access 
compounds based on their ChemOnt classification. This 
should be completed by late 2016. With PubChem fully 
classified, the indexing of PubMed documents will now 
be much easier. Combining structure-based annotations 
with biological data could also assist scientists in various 
projects, such as ontology-based chemical enrichment 
analysis [17]. Moreover, through ClassyFire, it is now 
possible to perform a variety of fast data searches and 
retrievals of PubChem data, as outlined below.

Example 2: Fast searching and data retrieval
Chemical databases can typically be queried via phys-
ico-chemical parameters (e.g. mass) while others can 
be searched for the presence of functional groups (e.g. a 
ketone or carboxylic acid), among other properties. How-
ever, querying a chemical database with both substitu-
ent constraints and mass constraints is very difficult. For 
large databases, this would require one to perform struc-
ture-based searches over millions of compounds, which 
can take several minutes, even when the compounds are 
fully indexed. Moreover, certain structural constraints 
cannot be expressed using conventional structure-han-
dling formats, such as SMARTS. Additionally, conven-
tional substructure or structure-based searches do not 
allow one to search for chemicals belonging to categories 
such as “Alkanes” or “Alkaloids and derivatives”. Having a 
chemical database annotated with substituent or chemi-
cal classification information can make these kinds of 
substituent and mass constraint searches very fast and 
easy. ClassyFire supports exactly this type of flexible 
search as it allows users to select compounds by defining 
a set of conditions based on various parameters such as, 
the chemical category, the mass, the number of rings, etc. 
These types of search combinations are very common 
in fields such as mass spectrometry, where compounds 
must be identified based on physico-chemical proper-
ties and relatively vague information about their putative 
substituents. ClassyFire’s text search operations are sup-
ported by Elastic Search [48], an open source search and 
analytics engine. As a result, compounds can be selected 
from over 77 millions compounds stored in the Classy-
Fire database (as of June 2016) based on the ChemOnt 
terminology. Additionally, when needed, the results can 
be filtered based on physico-chemical properties. An 
illustration of how such a search can be conducted is pro-
vided in the Additional file 6: Figure S4, where ClassyFire 
returned a list of “Alkaloids containing more than one 
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ring or, and having a mass lower than 700 daltons”. The 
operation returned 30,392 hits through its text-based 
search in 509  ms. The results of the text-based search 
could be used to identify unknown structures obtained 
from biological samples. They could also be used to 
explore and cluster sets of small-molecules isolated from 
metabolomics or natural product extraction experiments.

Example 3: Automated chemical annotation
A growing number of chemical databases are being 
developed wherein detailed descriptions of individual 
chemicals are required. Examples include MetaCyc [46], 
ChEBI [15], DrugBank [30], T3DB, ECMDB [49] and 
FooDB [43]. In many cases these descriptions must be 
manually composed and edited by experts and annota-
tors. For well-known chemicals writing a comprehensive 
description is trivial. However, for lesser-known chemi-
cals or chemicals where very little literature is available, 
the preparation of an even a short textual description 
of 20–30 words can take hours of library sleuthing and 
reading. Because ClassyFire has a comprehensive Chemi-
cal Classification Dictionary consisting of thousands of 
20–50 word textual descriptions for different compound 
classes, it is possible to use this Dictionary to automati-
cally describe or annotate obscure or little-known com-
pounds. In particular, ClassyFire was used to generate 
over 13,100 meaningful, 20–50 word descriptions for 
compounds in, ranging from drugs to poisons, for which 
no literature data was available. These precise, but auto-
matically generated compound descriptions are now 
available in the HMDB, ECMDB, T3DB, FooDB, and 
YMDB [50].

Conclusion
In this paper, we have described a comprehensive, com-
putable chemical taxonomy along with a structure-based 
ontology that permits the fully automated classification 
of most of the world’s known chemicals. In particular we 
have described: (1) an well-defined, hierarchical classifi-
cation structure consisting of up to 11 taxonomic levels; 
(2) a freely available Chemical Classification Dictionary 
(or ontology) consisting of >4800 carefully identified and 
precisely described chemical classification terms, with 
over 9000 synonyms; (3) a set of >9000 objective rules, 
patterns and criteria for classifying compounds on the 
basis of their structure; and (4) a computer program and 
a freely available web server (called ClassyFire) that per-
forms rapid, accurate, automated rule-based taxonomic 
classification of chemical compounds. To our knowledge, 
this is the first freely available system that is capable of 
automatically, accurately and comprehensively organ-
izing most of the world’s known chemical entities into 
structural classes, at the scale presented.

The flexibility of ClassyFire’s source code and Chem-
Ont’s chemo-taxonomic definitions, along with their 
open accessibility should allow ClassyFire and ChemOnt 
to easily evolve to fit with the ever-changing views of 
chemistry and with the increasing number of newly dis-
covered scaffolds of natural and synthetic chemicals. In 
addition to developing an extensive taxonomy of organic 
compounds, we have also developed a comprehensive 
taxonomy for inorganic compounds consisting of 674 
categories based on molecular formulas and atom types. 
We believe this is the first significant attempt to design a 
comprehensive computable chemical taxonomy for inor-
ganic compounds.

ClassyFire’s performance shows that the classification 
of chemical compounds can be accurately computed in 
a rapid, dataset-independent manner by relying solely on 
structural properties. Our data suggests that most chemi-
cal classes can be represented by one or more struc-
tural patterns. In certain cases, however, compounds 
from a given chemical category undergo reactions (e.g. 
loss of oxygen, substitutions) that might not match the 
constraints described in a category description. Some 
approaches to provide accurate descriptions in these sce-
narios would be to add more patterns, update position-
specific constraints, and/or develop some heuristics for 
a more accurate classification. For instance, creating 
more rules for IUPAC name parsing could help to assign 
some classes more accurately. Overcoming these limita-
tions would certainly improve the overall performance of 
ClassyFire.

It is important to emphasize that this taxonomic effort 
was not done in isolation. It has been jointly developed 
and tested by curators and developers some of the largest 
and most popular open-access chemical databases in the 
world, including PubChem, ChEBI, LIPID MAPS, Drug-
Bank, HMDB and others. The ClassyFire/ChemOnt tax-
onomy is already being used in several of these databases 
and is expected to be adopted by several other chemi-
cal databases in the near future. Furthermore, the entire 
ClassyFire/ChemOnt taxonomy was mapped, in a joint 
effort, to several existing taxonomic/ontological schemes, 
such as the ChEBI and LIPID MAPS ontologies. As illus-
trated with the previous examples, applications of Classy-
Fire are multifold, spanning areas including drug design 
and metabolomics. ClassyFire has also found applications 
in the field of Chemical Health and Safety, where hazard 
assessment of small molecules, based on their structural 
features, has gained increasing interest recently.

ClassyFire is obviously not the final word on chemical 
classification or chemical taxonomies/ontologies. Given 
the size and complexity of the global chemical space 
along with the rapidly evolving needs of chemists and 
cheminformatics specialists, we expect that this subject 
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(and this software) will evolve considerably over the 
coming years. Therefore, besides the freely available web 
service, we are actively working on a version of Classy-
Fire that has freely accessible source code and documen-
tation. We are committed to making this resource fully 
open source (by December 2016). We believe this effort is 
an important first step towards the design of a fully com-
putable, universally accepted chemical taxonomy and 
ontology.
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