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A B S T R A C T

Stroke is an acute cerebral vascular disease, which is likely to cause long-term disabilities and death. Acute
ischemic lesions occur in most stroke patients. These lesions are treatable under accurate diagnosis and treat-
ments. Although diffusion-weighted MR imaging (DWI) is sensitive to these lesions, localizing and quantifying
them manually is costly and challenging for clinicians. In this paper, we propose a novel framework to auto-
matically segment stroke lesions in DWI. Our framework consists of two convolutional neural networks (CNNs):
one is an ensemble of two DeconvNets (Noh et al., 2015), which is the EDD Net; the second CNN is the multi-
scale convolutional label evaluation net (MUSCLE Net), which aims to evaluate the lesions detected by the EDD
Net in order to remove potential false positives. To the best of our knowledge, it is the first attempt to solve this
problem and using both CNNs achieves very good results. Furthermore, we study the network architectures and
key configurations in detail to ensure the best performance. It is validated on a large dataset comprising clinical
acquired DW images from 741 subjects. A mean accuracy of Dice coefficient obtained is 0.67 in total. The mean
Dice scores based on subjects with only small and large lesions are 0.61 and 0.83, respectively. The lesion
detection rate achieved is 0.94.

1. Introduction

Stroke is one of the major causes of long-term disability and death
globally (Lopez et al., 2006). Cerebral ischemia causes approximately
80% of strokes (Feigin et al., 2003). A number of factors such as energy
depletion and cell death are thought to lead to ischemic brain injuries
(Dirnagl et al., 1999). Brain imaging is one of the most important
methods to assess patients suffering from ischemic stroke (van der Worp
and van Gijn, 2007) and computed tomography (CT) and magnetic
resonance imaging (MRI) are usually acquired (Latchaw et al., 2009).
CT is more widely used because it is faster and less expensive while MRI
has much higher sensitivity for the acute ischemic lesions (Lansberg
et al., 2000). Particularly, diffusion-weighted MR imaging (DWI) has
advantages in diagnosis of acute ischemic lesion in the early stage.

The detection and quantification of acute lesions in DWI is im-
portant for the diagnosis and treatment of the ischemic stroke. It may
allow for accurate estimation of acute lesion volumes. Lesion volume
estimation may be important for hyper-acute therapy decision-making,
e.g. in determining the ratio of reversible hypo-perfusion to irreversible
infarct core (Wouters et al., 2016). Furthermore, acute lesions can be
profiled anatomically in terms of volumes of anatomical-functional

regions of interest, by superimposing standard atlas-derived or fMRI-
derived regions (Rinne et al., 2013). However, manual segmentation of
acute ischemic lesions is expensive in terms of time and human ex-
pertise. Several automatic and semi-automatic methods have been
proposed to assist clinicians to address this problem (Charoensuk et al.,
2015; Dwyer et al., 2008; Jacobs et al., 2000; Li et al., 2009; Mah et al.,
2014; Martel et al., 1999; Soltanian-Zadeh et al., 2006). A common
limitation of these models is that they were developed on small datasets
which only contain tens of subjects. Since the ischemic lesions can
occur anywhere in the brain in various shapes and sizes (see Fig. 1) (van
der Worp and van Gijn, 2007), a small dataset makes it difficult to cover
the large variation in position, shape, and size. Most of these algorithms
are based on multi-modal MRI including T1-weighted, T2-weighted,
fluid attenuation inversion recovery (FLAIR), DWI, and apparent dif-
fusion coefficient (ADC) (Jacobs et al., 2000; Maier et al., 2017). Two of
them only based on DWI are semi-automatic: The first one is an adap-
tive thresholding algorithm incorporating a spatial constraint (Martel
et al., 1999). The fully automatic adaptive thresholding segmentation is
likely to fail in cases where there are small lesions and/or lesions in low
contract to the normal tissue. Therefore, manual editing was introduced
to refine the automatic segmentations. The second one is based on
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active contours algorithms (Charoensuk et al., 2015), where before
applying the proposed algorithms, image slices with artefacts are
manually removed. In addition, human experts mark bounding boxes
around the target lesions to initialize the algorithm. To the best of our
knowledge, Mah et al. (2014) proposed the only fully automated
method to segment ischemic damage based on a large DWI dataset.
However, their approach was dependent on a reference set of normal
brain images and it was only applied to lesions in the occipital lobe.

In clinical practice, semi-automatic methods are still too costly and
fully automatic algorithms are preferred. Although multi-modal images
provide rich information about lesions, pre-processing such as resam-
pling and co-registration are required which can lead to inaccuracies. In
this paper, we propose a fully automatic system (Fig. 2) to segment
acute ischemic lesions in a large DW image dataset based on deep

convolutional neural networks (CNNs). Compared to traditional image
analysis algorithms, CNNs have major advantages, including end-to-end
training and feature learning (Bengio et al., 2013). Our system consists
of two networks, namely the EDD Net and the MUSCLE Net. The EDD
Net is an ensemble of two DeconvNets (Noh et al., 2015) and the
MUSCLE Net is the MUlti-Scale Convolutional Label Evaluation Net.
The input to the proposed system are 2D slices consisting of DWI. The
EDD Net firstly outputs a primary segmentation probability map. The
binary segmentation obtained by thresholding the probability map
contains both lesions and several false positives. The MUSCLE Net re-
evaluates all the detections by the EDD Net and excludes many false
positives using both the probability map and the original input image.

The acute ischemic lesion segmentation problem is formulated as a
semantic segmentation task. However, the task of semantic segmenta-
tion of acute ischemic lesions is different from that of objects in natural
images. In natural images, the target objects of interest are dominant in
images (e.g. images in the PASCAL VOC (Everingham et al., 2015)
dataset) while several acute ischemic lesions can be so small (Fig. 1 (b))
that they are easy to be overlooked by observers. In addition, it is also
difficult to distinguish the boundaries between ischemic lesions and
normal tissue (Fig. 1 (c) and (d)) while objects in natural images are
often characterized by sharp edges to the background. Furthermore,
there are many artefacts which have similar appearance to the lesions
in DWI (Fig. 1 (b) and (c)). Air is one of the main resources of these
artefacts. They are the major sources of false positives for automated
lesion segmentation techniques.

In this paper, we propose a novel system to address the ischemic
lesion segmentation problem. A key contribution is its ability to handle
the lesions of various sizes and shapes while minimizing the number of
false positives. Our system achieves the state-of-the-art of the ischemic

Fig. 1. Examples of acute ischemic lesions in DWI. The red
circles indicate the acute ischemic lesions and the yellow
ones show the artefacts. (For interpretation of the references
to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 2. The overview of the proposed CNN based system to segment the acute ischemic
lesions in DWI. It comprises the EDD Net and the MUSCLE Net. The EDD Net conducts the
semantic segmentation on the input DWI. Based on the output of the EDD Net, patches
containing small lesions are extracted and they are evaluated by the MUSCLE Net so that
many false positives are removed. The refined segmentation is therefore obtained.
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lesion segmentation performance in DWI while being validated on a
large clinical dataset from over 700 patients.

2. Related work

In this section, we review two categories of related work: First,
methods that address the brain tumor segmentation (BRATS) (Menze
et al., 2015) and ischemic stroke lesion segmentation (ISLES) (Maier
et al., 2017) challenges are reviewed. Secondly, we review several CNN-
based segmentation approaches that have been recently introduced into
medical imaging.

2.1. Brain tumor and lesion segmentation

In the BRATS challenges held in 2016, the dataset contains a
number of subjects with gliomas and the task is to develop automatic
algorithms to segment the whole tumor, the tumor core and the Gd-
enhanced tumor core based on multi-modal MR images. In the latest
competition (Menze et al., 2015), over half of the methods were based
on deep neural networks and they achieved top results. For instance,
the hyperlocal features (original input image) are used prior to the final
segmentation to improve the accuracy (Chang, 2016). As a pixel-level
segmentation problem, there are much more non-tumor pixels than the
ones belong to part of the tumors, which means there is a significant
label imbalance. To alleviate the imbalance, Lun and Hsu (2016) pro-
posed a re-weighted loss function. Randhawa et al. (2016) also mod-
ified the cross-entropy loss function so that the segmentations at tumor
edges could be improved. Instead of analysing multi-modal MRIs in 2D,
the DeepMedic approach (Kamnitsas et al., 2016a) performs segmen-
tation of tumors in 3D while using extended residual connections. In
addition to deep learning algorithms, machine learning approaches
based on the random forests (Ellwaa et al., 2016; Folgoc et al., 2016;
Lefkovits et al., 2016; Song et al., 2016) also demonstrate good per-
formance using hand-crafted features.

The segmentation of sub-acute ischemic stroke lesion is one of the
tasks in ISLES 2015 (Maier et al., 2017), which attracted many entries.
The challenge is to automatically segment sub-acute ischemic stroke
lesions based on multi-modal MR images. Compared with the dataset in
the BRATS, the dataset used in the ISLES is smaller. Similar to brain
tumors, sub-acute ischemic stroke lesions are difficult to segment. In
terms of methods proposed, these range from machine learning based
methods to deformation based methods. Among the top ranked ap-
proaches, DeepMedic (Kamnitsas et al., 2015, 2016b) was the best,
which is a multi-scale 3D CNN with fully connected CRFs achieving a
Dice score of 0.59 in testing. The second best performing method used a
modified level-set approach embedded with the fuzzy C-means algo-
rithm (Feng et al., 2015) while the third best method is based on
random forests and contextual clustering (Halme et al., 2015), which is
a typical way of segmenting lesions like those in BRATS. They achieved
Dice scores of 0.55 and 0.47, respectively. The Dice scores reported by
most other attendees ranged from 0.3 to 0.5.

Most of the successful CNN based methods in both BRATS and ISLES
derive a problem specific CNN architecture from generic ones. This is
because in medical imaging there is a limited number of images with
labels available for training. To explore the distinctive lesion features,
specific domain knowledge is still helpful.

2.2. Other CNN-based approaches to segmentation

In molecular imaging, a cascaded CNN called deep contour-aware
network (DCAN) (Chen et al., 2016) has been shown to be successful in
the gland segmentation task. Prior to the final segmentation, a primary
gland object segmentation and a gland contour segmentation are pro-
duced separately. The final segmentation is then obtained by fusing the
object and contour segmentations. The segmentations are based on
multi-level contextual features extracted from the fully convolutional

layers. In cell segmentation and tracking scenario, the U-Net approach
(Çiçek et al., 2016; Ronneberger et al., 2015) performs well. In its ar-
chitecture, the context and location information of cells are in-
corporated. Similar to the DeconvNet approach (Noh et al., 2015), the
U-Net (Ronneberger et al., 2015) has a series of convolution and de-
convolution layers to construct the output based on coarse feature
maps. In abdominal imaging, multi-level deep convolutional networks
have been proposed to segment the pancreas in CT images (Roth et al.,
2015). This uses a hierarchical coarse-to-fine method studying images
from patch level to superpixel/region level. In cardiac imaging, a left
ventricle segmentation approach for MR images has been proposed that
combines deep CNNs and deformable models (Avendi et al., 2016).

Similar to the deep networks proposed for brain lesion segmenta-
tion, generic CNN architectures are often customized for many other
medical imaging tasks. However, the U-Net (Ronneberger et al., 2015)
is a generic architecture which can be easily adapted to other cases in
medical imaging. More specifically, it is not a task specific method that
requires specific prior knowledge (e.g. the input data has to be homo-
geneous in 3D). Furthermore, since it is a fully convolutional network,
the input is flexible in terms of sizes and dimensionality.

In addition to the U-Net (Çiçek et al., 2016; Ronneberger et al.,
2015), the fully convolutional network (Long et al., 2015) and the
DeepLab (Chen et al., 2014) are another two generic CNNs for seg-
mentations. The FCN (Long et al., 2015) is the first CNN which allows
end-to-end training for the semantic segmentation problem. It inherits
the convolution and pooling layers from contemporary CNNs, including
the AlexNet (Krizhevsky et al., 2012), the VGG-Net (Simonyan and
Zisserman, 2014), and GoogLeNet (Szegedy et al., 2015), in image
classification problems. It adapts them into fully convolutional styles
for the semantic segmentation task. The FCN (Long et al., 2015) learns
features in multiple scales. The DeepLab (Chen et al., 2014) is a type of
improvement to the FCN (Long et al., 2015). In order to gain deep
features, the FCN (Long et al., 2015) performs many convolutions and
poolings which decrease the image resolutions while the DeepLab
(Chen et al., 2014) contributes the atrous convolution and atrous spatial
pyramid pooling (ASPP) layers which keep the depth of features
without decreasing the image resolutions. In ordinary convolutions,
features are extracted sparsely while dense features are extracted using
the atrous convolutions.

3. Our approach

The proposed lesion segmentation framework consists of two
modules: The first one is an ensemble of N adapted DeconvNets (Noh
et al., 2015) (EDD Net) (Fig. 3) and the second one is a MUlti-Scale
Convolutional Label Evaluation Net (MUSCLE Net) (Fig. 5). While the
EDD Net attempts to achieve optimal lesion segmentation at lesions in
all scales, the MUSCLE Net focuses on lesions that have been detected at
small scales and aims to remove false positives.

3.1. EDD Net

Fig. 3 shows the architecture of the proposed EDD Net. The input is
an image patch, which is fed into N parallel DeconvNets (Noh et al.,
2015) to infer the semantic segmentations respectively. The results
from both are then combined. The combination is concatenated with
the input image patch. Several convolution layers are added in the end
to produce the final output.

The basis CNN architecture, i.e. the DeconvNet (Noh et al., 2015) is
selected among several generic CNN architectures for semantic seg-
mentation, including the U-Net (Ronneberger et al., 2015), DeepLab
(Chen et al., 2014) and the FCNs (Long et al., 2015). The basis network
has a stack of convolution and pooling layers in the convolution stage
and a stack of corresponding deconvolution and unpooling layers in the
deconvolution stage. Within each stack, there are several convolution/
deconvolution layers. Between two stacks, there is a pooling/unpooling

L. Chen et al. NeuroImage: Clinical 15 (2017) 633–643

635



layer. The number of stacks and the number of layers in each stack
define the size of the network. The proposed basis network has three
stacks of convolution layers and two pooling layers in the convolution
stage, which leads to the best results.

In segmentation, contextual information often contributes im-
portant knowledge to solve the label assignment. However, the ap-
propriate level of contextual information is often difficult to identify.
Excessive amounts of context can hinder the segmentation of lesions
and insufficient context makes it difficult to distinguish between lesions
and artefacts. If the network grows deep, i.e. has many convolution and
pooling layers, it processes a large amount of contextual information.
However, with the increasing number of convolution and pooling
layers, the input is down-sampled further and further and therefore the
resulting feature maps have lower and lower resolutions. In this case,
small lesions are gradually eliminated by subsequent down-sampling
steps and it can be difficult to reconstruct these. In contrast, if the
network is shallow, i.e. using only few convolution and pooling layers,
only limited context is used. In this case, lesions and artefacts may have
similar feature representations making it difficult for the classifier to
distinguish between them.

In our approach, we propose to use image patches instead of image
slices as the input. This has three major advantages: Firstly, it modifies
the data distribution. For a given image slice, there is a significant
imbalance between pixels that represent normal tissues compared to
those of lesions since acute ischemic lesions occur locally (Dirnagl et al.,
1999). The signals representing lesions are as weak as those re-
presenting noise and artefacts among the whole data distribution.
However, the lesion signals can be apparent among the data distribu-
tion based on image patches. Secondly, a large number of patches can
be extracted from image slices, which is a fundamental requirement for
CNN training. In contrast, if the training data is based on image slices,
there is only limited number of candidates available. Finally, as image
patches are smaller than image slices, the batch size in training can be
larger, which makes the training more efficient.

We propose to adopt the DeconvNet (Noh et al., 2015) as the basis
network of the EDD Net. In addition to convolution and pooling layers,
the DeconvNet (Noh et al., 2015) has corresponding deconvolution and
unpooling layers to create the segmentation probability map from the
coarse feature maps. For the input image patch x, assume x͠ is the
feature maps obtained from the convolution and pooling operations. f(⋅)
and g(⋅) are the convolution and deconvolution functions which jointly

produce the segmentation map y, i.e.

= =f gx x y x( ), ( ).͠ ͠

In different architectures, the f(⋅) functions are similar, which is the
composition of several convolutions and poolings, while different
strategies are usually used in g(⋅).

In the DeepLab approach (Chen et al., 2014), the g(⋅) function is a
bilinear interpolation function upsampling the coarse feature map into
the segmentation map directly. In the FCN approach (Long et al., 2015),
the g(⋅) not only bilinearly upsamples the feature map but also fuses it
with the feature maps obtained at higher resolutions as these contain
more image details. Therefore, more small lesions are detected. How-
ever, they are difficult to distinguish from artefacts.

In the U-Net (Ronneberger et al., 2015), the g(⋅) is modelled in a
more sophisticated and powerful fashion. Here, the final segmentation
is constructed step by step. In each step, the feature map is upsampled
to a higher resolution first, which corresponds to a pooling layer before.
The upsampled feature maps are then concatenated with the feature
maps before the corresponding pooling layer. Afterwards, a few layers
of convolutions are performed on the concatenation. As a result, the
segmentation obtained from the U-Net (Ronneberger et al., 2015) has
less false positives than that from the FCN (Long et al., 2015) since
these convolutions detect and eliminate several false positives.

In the DeconvNet approach (Noh et al., 2015), there are additional
pooling masks m (Fig. 4) output from pooling layers who record the
locations of the maximal activations. Thus, the specific functions in the
DeconvNet (Noh et al., 2015) can be written as:

= =f gx m x y x m, ( ), ( , ).͠ ͠D D

The gD(⋅) function represents the deconvolution and unpooling opera-
tions. The pooling masks m are used for upsampling so that the se-
mantic output can be better constructed. Similar to the U-Net
(Ronneberger et al., 2015), the DeconvNet (Noh et al., 2015) employs a
number of deconvolution layers to construct the output step by step,
which results in accurate segmentations. In contrast, the U-Net
(Ronneberger et al., 2015) uses feature maps before pooling layers to
assist recovering image details, however, this can introduce artefacts
and noise. Instead, the pooling masks used in the DeconvNet approach
(Noh et al., 2015) exclude the artefacts and noise.

We propose to combine N DeconvNets (Noh et al., 2015) to produce
an ensemble of classifiers in order to further enhance the results. Let h
(⋅) be the ensemble function fusing the N networks together, i.e.

Fig. 3. The architecture of the proposed EDD Net. The rectangles in different sizes indicate data blobs in different sizes. The height shows the size of each piece of data, e.g. 64×64. The
width shows the number of data pieces in each blob, e.g. 1, 32. Arrows in difference colors stand for different operations. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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= ⊕ ⊕ ⋯ ⊕h g f g f g fx x x x( ) ( ( )) ( ( )) ( ( )).D D D D D
N

D
N1 1 2 2 (1)

Since the N DeconvNets (Noh et al., 2015) are initialized differently,
they converge at different optima but all of them are able to produce
accurate lesion segmentations. An ensemble of all CNNs therefore
benefits for performance improvement because of their accuracy and
diversity (Zhou, 2012).

Furthermore, inspired by the U-Net (Ronneberger et al., 2015) we
propose additional convolution layers at the end of the naive ensemble
to refine the segmentation. There are many convolutions and decon-
volutions between the original input image and the semantic segmen-
tation. The network may eliminate some details in the input image
during the feed-forward pass. We propose to concatenate the input
image and the segmentation probability map as well as to add a few
convolution layers so that the segmentation can be refined according to
the original image. The refinement yields marginal increase of perfor-
mance. Therefore, the function that the proposed EDD Net performs is

=H r hx x x( ) ( ( ), ). (2)

Here r(⋅,⋅) performs the concatenation and convolutions after the naive
ensemble. The loss function of the EDD Net is therefore

= + +

+ +⋯+ + +

λ H λ h λ g f

λ g f λ g f

x y x y x y

x y x y

ℓ ℓ ( ( ), ) ℓ ( ( ), ) ℓ ( ( ( )), )

ℓ ( ( ( )), ) ℓ ( ( ( )), ).
D D

D D N N D
N

D
N

1 1 2 2 3 3
1 1

4 4
2 2

2 2 (3)

In the loss function, ℓi(i=1,2,…,N+2) is the cross-entropy loss func-
tion and the λi is the corresponding weight. The loss function is opti-
mised via back-propagation as usual.

The EDD Net is a fully convolutional network since all of its subnets
are fully convolutional. Therefore, the size of the input image patch is
flexible. In practice, we use the image patches to train the network and
we test it on the whole image slice.

3.2. MUSCLE Net

The EDD Net identifies many acute ischemic lesions correctly.
However, it also produces many false positive clusters (i.e., aggregation
of voxels) which have similar appearance with the small lesions. To
remove them, we propose a second network, called MUSCLE Net, which
evaluates the labels of small lesions detected by the EDD Net in order to
differentiate between false and true positives.

The architecture of the MUSCLE Net is shown in Fig. 5. The input is
a stack of image patches at three scales extracted from the original DWI
as well as the probabilistic output from the EDD Net. The MUSCLE Net
aims at evaluating if the candidate is a real lesion or not. Considering
the input patches are fairly small, the MUSCLE Net has limited con-
volutional layers.

The architecture of the MUSCLE Net is based on a mini VGG-Net
(Simonyan and Zisserman, 2014). It focuses on small lesions locally so
that the input image patches are relatively small. The MUSCLE Net
consists of four convolution layers, one pooling layer, and three fully
connected layers. The convolution and pooling layers extract the dis-
tinctive features from the input and the fully connected layers act as a

classifier.
The input patch set is derived as follows: First, the primary binary

lesion segmentation map is obtained by thresholding the probabilistic
segmentation map which is the output of the EDD Net. Based on the
binary segmentation map, small candidate lesions are detected using
connected-component analysis. Original image patches at multiple
scales are extracted around them, as well as the corresponding prob-
abilistic segmentation as computed by the EDD Net. This procedure is
described in Fig. 6. The real lesions (true positives) are labelled as
positive instances while the false positives are labelled as negative ones.

The MUSCLE Net outputs results in instance level rather than pixel
level, which are the probabilities of the candidates being lesions. They
are then fused with the pixel level probabilities given by the EDD Net
using Bayes' theorem. The final semantic segmentation result is there-
fore achieved. The loss function used here is the cross-entropy function
and it is optimised using the back-propagation algorithm.

3.3. Evaluation methods

We propose a number of criteria to evaluate our method. First, the
Dice coefficient is used to compare the agreement with manual seg-
mentation. It measures the overlap between the candidate segmentation
X and the reference segmentation Y and is defined as

=
∩

+
Dice X Y X Y

X Y
( , ) 2| |

| | | |
.

|⋅| denotes the number of pixels in the set. However, the Dice similarity
measurement based on overlaps is not robust in all cases: For example,
an error of 1 pixel may not affect the Dice coefficient significantly if the
ground truth contains hundreds of pixels; however it makes a

Fig. 4. The max pooling and unpooling strategy demon-
strated in the DeconvNet approach (Noh et al., 2015). In the
pooling stage, the position of the maximum activation is
recorded within each filter window by a mask. In the un-
pooling stage, the entries are placed in the unpooled map
according to the mask.

Fig. 5. The architecture of the MUSCLE Net. The rectangles stand for the data blobs. Their
heights represent the sizes of data pieces, e.g. 16×16. Their widths show the number of
data pieces in the blobs, e.g. 4, 32. In the fully connected layers, the lengths of strings
demonstrate the number of elements in the layers. Arrows in different colors show dif-
ferent operations. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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significant difference where the ground truth is small and only contains
a few pixels. Therefore, the average number (m#) and the average
pixel-size (mS) of the false positives (FP) and false negatives (FN) are
introduced as additional metrics. Our goal is to decrease the number
and size of the FP and the FN. In addition, we define the detection rate
(DR) as

=DR N
N
TP

where the N denotes the number of all subjects and the NTP denotes the
number of subjects with any true positive (TP) lesion detections. Since
the FP may mislead clinicians, the DR is expected to be as high as
possible.

3.4. Implementation details

The CNNs in this paper are implemented using the Caffe framework
(Jia et al., 2014). The optimisation during training is achieved using the
standard stochastic gradient descent algorithm. The learning rate is
fixed as 0.05. The momentum and the weight decay is set to 0.9 and 0,
respectively. The weights in networks are initialized using the xavier
algorithm (Glorot and Bengio, 2010). The filter size of the convolution
and deconvolution layers are 3×3 and the stride is 1. The batch nor-
malization technique (Ioffe and Szegedy, 2015) is used. We have lim-
ited computation resources and therefore set N=2. In the Eq. (3), we
set λi=1,i=1,2,…,N+2.

4. Data

4.1. Dataset and pre-processing

In this study, DWI scans from 741 acute stroke patients were col-
lected from local hospitals. All clinical images were collected from a
retrospective database and anonymized prior to use by researchers.
Ethical approval was granted by Imperial College Joint Regulatory

Office. The scans were obtained from three different scanners (Siemens)
with the following acquisition parameters: field strength: 1.5–3 T; slice
thickness: 5 mm; slice spacing: 1.0–1.5 mm; pixel size in x–y plane:
1.40×1.40 or 1.80×1.80 mm; matrix size: (19–23)×(128×128) or
(192×192); field of view: 230×230 or 267×267; echo time
90–93 ms; repetition time 3200–4600 ms; flip angle 90°; phase en-
coding steps: 95–145. Patients information can be found in Table 1. In
all images, the acute ischemic lesions were annotated by experienced
experts. We use 380 of them to train and validate our CNNs and the
remaining 361 ones are used for testing only. Among the developing
images, 274 of them are used for training and 106 ones consist of the
validation set.

Since the images were acquired from different scanners under dif-
ferent protocols, several pre-processing steps are performed before ex-
periments. Considering the images are anisotropic in the axial direction
(or z-axis) and the resampling is likely to introduce interpolation errors,
we will perform analysis of 2D slices instead of 3D volumes. To make
sure each pixel in 2D slices has uniform physical pixel size (in mm2),
homogeneous linear resampling is performed in 2D. All images are
resampled to uniform pixel size in 2D of 1.6 mm×1.6 mm.
Subsequently, the intensity distribution of each image is normalized
into that of zero mean and unit variance.

4.2. Data augmentation

Each DWI scan has a limited number of lesions, if the training data is
generated in the image slice level or lesion instance level, there is only a
small number of images (patches) available. As CNNs have a large
number of parameters and it is necessary to generate a large number of
images (patches) to train the CNN. For this, data augmentation is im-
plemented in several ways to produce more training data based on the
limited number of DWI: First, extracted images (patches) are horizon-
tally flipped and randomly rotated. Second, the patch extraction
strategy also represents a way of data augmentation. It is used to reduce
the redundant contextual information and balance the number of
normal and lesion pixels but it is an effective way of data augmentation.
We sample all pixels labelled as part of lesions. For each of these pixels,
we extract a patch around it. That pixel is placed in a random position
in the patch. As a result, each patch contains pixels belonging to both
lesions and tissues/background in general. If the pixel locates in the
center of a very large lesion, the patch extracted based on it may con-
tain pixels only belonging to lesions. A pixel cluster of lesions usually
have a number of pixels (e.g. 20). That number of patches (i.e. 20) can
be generated.

5. Experiments and results

5.1. Baseline architectures

Although the DeconvNet (Noh et al., 2015) was selected as the basis
CNN in the proposed EDD Net, other generic CNN architectures, in-
cluding the U-Net (Ronneberger et al., 2015), the DeepLab (Chen et al.,
2014) and the FCN (Long et al., 2015), aiming at image segmentation
were used as baseline comparison. In this set of experiments, compar-
isons were among single networks rather than ensembles. The training

Fig. 6. The derivation of the input to the MUSCLE Net. The probabilistic segmentation is
obtained from the EDD Net. The binary segmentation is obtained by thresholding the
probabilistic segmentation. Candidate small blobs are detected in the binary segmenta-
tion. The corresponding patches are extracted in the original DWI in multiple scales and
the probabilistic segmentation map. They are then resized and concatenated resulting in
the input to the MUSCLE Net.

Table 1
Patients information in statistics.

Age (years) Mean: 68.01, std: 14.8, range:
26–93

Gender (male %) 56.28
Interval from acute clinical presentation to MRI

(days)
Median: 2, std: 1.78, range:
0–9

Admission functional severity (NIHSS) Median: 5, range: 1–30
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inputs to all CNNs were patches from the DWI of 64×64 pixel size.
This was the best patch size for this task (see Section 5.2). Since each
architecture had its own characteristics, it was difficult to adapt them so
that they had exactly the same size of the receptive field. Fortunately,
our results in Section 5.2 showed the performance was robust to the size
of the receptive field when the image patch size was 64×64. When
adapting the candidate CNN architectures into our dataset, we pre-
served their key features. More specifically, the adapted DeepLab (Chen
et al., 2014) contained atrous convolution and atrous spatial pyramid
pooling (ASPP) layers. The adapted FCN (Long et al., 2015) was still in
the fully convolutional configurations and used a multi-scale approach.
The adapted U-Net (Ronneberger et al., 2015) had concatenations be-
tween related layers. The adapted DeconvNet (Noh et al., 2015) re-
tained the featured unpooling layer. No post-processing operations such
as the CRFs were used in any architecture.

The results were displayed in Table 2. All CNNs shared very high
detection rates. The DeconvNet (Noh et al., 2015) clearly outperformed
the other approaches. Since the gap between the U-Net (Ronneberger
et al., 2015) and the DeconvNet (Noh et al., 2015) was not very sig-
nificant, we performed paired t-test between them in the testing da-
taset. The p-value is 1.12×10−4, which indicated that the DeconvNet
(Noh et al., 2015) was superior to the U-Net (Ronneberger et al., 2015)
in this case. As they share similar f(⋅) functions, the key lies in the g(⋅)
functions. In the f(⋅) functions, many convolution and pooling opera-
tions are performed, which diminishes the activations of lesions in
small scales. Basically, all architectures except the DeconvNet (Noh
et al., 2015) employ the bilinear interpolation strategy to upsample the
coarse feature maps. This bilinear interpolation makes it difficult to
reconstruct the small lesions based on the weak activations. The Dee-
pLab approach (Chen et al., 2014) produces the output by conducting
the bilinear interpolation on the feature maps in the lowest resolution,
which introduces many false negatives. The FCN approach (Long et al.,
2015) combines feature maps at multiple resolutions to construct the
segmentation map. The feature maps in high resolutions contain signals
from small lesions but artefacts and noise as well, which results in a
large number of false positives in average. The U-Net (Ronneberger
et al., 2015) is equipped with more powerful operations in its g(⋅)
function so that it performs better than the former two networks. The

success of the DeconvNet (Noh et al., 2015) in this case is due to the
recorded pooling masks and the unpooling strategy. They work jointly
and are able to preserve the signals from small lesions. Despite that the
activations of small lesions are weakened, if they are recorded by the
pooling masks, they are likely to be reconstructed in the deconvolution
stage. In summary, the pooling mask recording and unpooling strategy
works better than bilinear interpolation when there are small lesions.

5.2. Patch size and receptive field

The DeconvNet (Noh et al., 2015) has been validated that it is the
best baseline architecture among all candidate CNN architectures. In
addition to the CNN architecture, the configuration of the network in-
fluences the performance significantly. It is mainly in two aspects which
are the size of the input image patches and that of the network's re-
ceptive field. As mentioned before, the size of image patches in the
training stage determines the data distribution. The size of the net-
work's receptive field determines the amount of contextual information
being considered. They work jointly and experiments in this section aim
at discovering how do they affect the CNN's performance.

Single DeconvNets were used in the following experiments. In terms
of the input patches, four different sizes were tested. The maximum was
the whole image slice. The different sizes of the receptive fields were
realized by employing different numbers of convolution and pooling
layers. For instance, each DeconvNet branch in the EDD Net (Fig. 3) had
the receptive field in 64×64 pixels.

Table 3 displayed the results of the DeconvNets (Noh et al., 2015)
for different configurations. It was obvious that when the input patches
in the training stage were small in size (32×32) or large (i.e. the full
image size 128×128), the CNN could not perform well in the semantic
segmentation task since they contained either insufficient or excessive
contextual information. Although small patches could help discriminate
the lesions from the normal tissue, which reduced the false negatives to
the minimum, it was difficult for the network to distinguish between
artefacts and the real lesions. As a result, there was a large number of
false positives introduced. In the other extreme case where the input
was the full image slice, small objects including artefacts and lesions
were easily eliminated by the numerous convolutions and poolings.
Therefore, few false positives were introduced but there were more
false negatives. In the mean time, many true positives were ignored by
the CNN so that the detection rate fell down. Not surprisingly patches of
medium sizes (64×64 and 96×96) were able to achieve the trade-off
between the numbers of false positives and false negatives and thus the
Dice coefficients on the whole increased to reach an optimum.

It was interesting that the DeconvNets (Noh et al., 2015) were
generally robust to the size of the receptive fields in terms of the Dice
coefficient when the size of the training input patches was fixed. Par-
ticularly when the patch size was extremely small or large, the overall
results were stable in terms of Dice coefficient. In these cases, the size
difference of the receptive fields was reflected in the number of false
positives and false negatives. If the patches were in medium sizes, the
Dice coefficient showed little fluctuations. For instance, when the
training patches were in 64×64 pixels, the networks performed simi-
larly whose receptive fields were in 32×32 and 44×44 pixels. How-
ever, the performance slightly improved when the size of the receptive
field increased to 64×64 pixels. When the training patches were in
96×96 pixels, the DeconvNet (Noh et al., 2015) with the receptive
field in 44×44 pixels had a slightly better performance compared to
those with larger receptive fields.

According to the results, the configuration providing the best per-
formance was chosen as the basis network of the EDD Net. More pre-
cisely, the training patches were in 64×64 pixel-size and the same as
the receptive field. In summary, the training patch size affects the
networks' performance more than the receptive field. Patches of
medium sizes are preferable. Once the size of training patches is fixed,
the network is fairly robust to the size of the receptive field.

Table 2
Performance of the baseline CNN architectures. In each measurement, results on the
training, validation, and testing datasets are reported respectively. The DeconvNet (Noh
et al., 2015) is superior to the others in most measurements. In each row, the bold number
indicates the most significant performance.

Architecture DeepLab
without CRF
(Chen et al.,
2014)

FCN
(Long
et al.,
2015)

U-Net
(Ronneberger
et al., 2015)

DeconvNet
(Noh et al.,
2015)

Side length of
receptive field

44 52 46 44

Dice train 0.60 0.66 0.71 0.71
val 0.55 0.60 0.64 0.62
test 0.48 0.50 0.52 0.55

m#FP train 10.35 11.73 7.86 8.32
val 11.51 13.30 8.95 10.08
test 12.81 16.44 12.85 11.78

m#FN train 4.80 2.96 2.35 2.19
val 4.91 4.00 3.92 4.03
test 5.22 3.88 3.99 3.99

mSFP train 7.23 8.40 9.56 8.60
val 7.29 8.66 9.10 8.69
test 8.25 9.92 11.50 10.14

mSFN train 3.34 2.03 2.17 1.80
val 6.53 5.84 6.20 5.11
test 4.08 3.66 4.17 3.58

DR train 0.97 0.99 0.99 0.99
val 0.98 0.99 0.99 0.97
test 0.93 0.94 0.94 0.94
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5.3. Ensemble and refinement

To further improve the performance, the EDD Net was developed
based on the DeconvNets (Noh et al., 2015) under the best configura-
tion. Table 4 displayed the results in detail. First, the two DeconvNets
(Noh et al., 2015) both provided accurate segmentations as before. Note
that the Dice coefficient of them in this experiment were 0.56 which is
slightly lower than it in Table 3. It is the fact that training two networks
simultaneously is more difficult than a single one as the number of
parameters doubles. Therefore, the loss function is more difficult to
optimise. Second, it was obvious that the naive ensemble of the two
networks led to a significant improvement. This is due to a sharp re-
duction of the false positives, which results from the diversity of the two
DeconvNets (Noh et al., 2015). As both of them have detected most of
the lesions, the diversity indicates false positives given by them are
different. Fusing them together should be able to decrease a substantial
number of false positives.

Finally, a few convolution layers were added to refine the seg-
mentation provided by the naive ensemble. The naive ensemble of the
two DeconvNets (Noh et al., 2015) was so deep that the input patches
were likely to lose details when being fed forward. Inspired by the U-
Net approach (Ronneberger et al., 2015), concatenating the original
input and the result given by the naive ensemble and adding a few
convolution layers yielded a refined segmentation. In summary, the
ensemble based on the accuracy and diversity of sub-nets makes a
significant improvement to the network performance entirely.

5.4. The MUSCLE Net

The EDD Net has advantages to segment the acute ischemic lesions
in DWI. However, false positives are difficult to avoid. We validated the
trained EDD Net on the validation dataset and reported the false posi-
tives in Fig. 7. Approximately 99% false positives were of size 60 pixels
or less. According to the Table 4, the false positives on the validation
dataset were in 8.87 pixels in size on average. Therefore, the MUSCLE
Net is only needed to assess candidates within 60 pixels or less in size,
which is defined as small objects.

Table 4 also showed the results of the EDD +MUSCLE Nets. The
MUSCLE Net eliminated a large number of false positives without

Table 3
Results of the DeconvNet (Noh et al., 2015) in different configurations. In each measurement, results on the training, validation, and testing datasets are reported respectively. It is clear
that the size of training patch size influences on the performance more than the size of network's receptive field. In each row, the bold number indicates the most significant performance.

Size of input patch 32×32 64×64 96×96 128×128

Side length of receptive field 18 32 32 44 64 44 64 96 64 96 128
Dice train 0.48 0.49 0.71 0.71 0.74 0.72 0.69 0.68 0.62 0.63 0.61

val 0.44 0.44 0.64 0.62 0.64 0.63 0.59 0.58 0.50 0.53 0.51
test 0.36 0.36 0.55 0.55 0.58 0.54 0.52 0.51 0.47 0.48 0.47

m#FP train 44.32 38.16 9.09 8.32 5.41 8.53 9.69 12.93 1.68 1.82 0.96
val 43.14 38.96 11.04 10.08 7.88 11.26 12.90 16.08 2.75 2.64 1.63
test 51.23 41.07 12.82 11.78 7.92 13.74 13.18 17.39 3.45 3.41 1.75

m#FN train 2.74 2.63 2.62 2.19 2.12 2.35 1.93 1.97 5.40 5.33 5.59
val 3.17 3.41 3.97 4.03 4.39 4.09 4.50 4.41 6.37 6.19 6.52
test 2.82 3.31 3.82 3.99 4.25 3.95 4.26 4.14 6.53 6.41 6.83

mSFP train 9.34 10.42 6.97 8.60 9.30 7.05 8.73 7.37 3.25 5.10 2.97
val 9.73 10.20 6.51 8.69 8.52 7.29 8.37 7.20 4.07 5.66 3.10
test 10.41 11.30 8.05 10.14 10.63 7.79 9.81 8.01 4.81 6.34 4.40

mSFN train 2.17 2.49 2.21 1.80 1.99 1.99 1.64 1.57 3.19 3.01 3.33
val 4.12 3.53 6.67 5.11 7.48 6.00 5.46 6.44 8.18 7.94 8.38
test 3.02 3.47 4.05 3.58 3.70 3.77 3.94 3.53 5.54 5.23 6.22

DR train 0.99 0.98 0.99 0.99 0.98 0.99 0.99 0.99 0.98 0.98 0.97
val 0.99 0.99 0.99 0.97 0.99 0.99 0.99 0.98 0.96 0.95 0.95
test 0.95 0.94 0.94 0.94 0.94 0.94 0.93 0.94 0.90 0.91 0.91

Table 4
Results of the EDD and the MUSCLE Nets. In each measurement, results on the training,
validation, and testing datasets are reported respectively. The ensemble contributes a
significant improvement to the whole performance. The MUSCLE Net shows its advantage
in removing false positives to boost the performance tremendously again. In each row, the
bold number indicates the most significant performance. In the rows where all perform
the same, no bold numbers are identified.

DeconvNet 1 DeconvNet 2 Naive
ensemble

EDD Net EDD
+ MUSCLE
Net

Dice train 0.74 0.72 0.79 0.80 0.88
val 0.64 0.61 0.68 0.69 0.73
test 0.56 0.56 0.62 0.63 0.67

m#FP train 6.82 9.49 4.20 3.78 0.64
val 9.23 12.27 6.33 5.67 3.14
test 10.18 13.38 6.68 5.89 3.27

m#FN train 1.80 1.59 1.51 1.45 1.45
val 4.08 3.80 4.02 4.01 4.16
test 4.02 3.66 3.81 3.82 4.07

mSFP train 8.39 6.89 9.55 9.49 8.81
val 8.09 7.33 9.01 8.87 8.95
test 9.55 7.37 10.31 10.53 12.16

mSFN train 1.86 1.40 1.41 1.42 1.42
val 5.58 5.71 5.65 5.62 6.32
test 3.81 3.19 3.49 3.64 4.16

DR train 0.99 0.99 0.99 0.99 0.99
val 0.99 0.99 0.99 0.99 0.99
test 0.94 0.94 0.94 0.94 0.94 Fig. 7. The statistics of the false positives on the validation dataset provided by the EDD

Net.

L. Chen et al. NeuroImage: Clinical 15 (2017) 633–643

640



erasing many true positives, which benefited further improvement in
performance. According to our observations, the false positives nor-
mally appeared isolated without overlap with other lesions. Examples
were shown in Figs. 6 and 8. This should be one of the major reasons
leading to the success of the label evaluation. Although false positives
were removed, their mean size grew, which indicated that most false
positives within a few pixel-size were eliminated while some slightly
larger ones were remaining. The limitation of the MUSCLE Net is that it
is not possible to be integrated with the EDD Net to enable the end-to-
end training since the training data generation operation is not differ-
entiable. In summary, the MUSCLE Net is powerful to remove false
positives without introducing many false negatives.

5.5. Small and large lesions

Apart from the analysis based on the whole testing dataset, it was
also interesting to study the performance of our proposed CNNs on
datasets with only small or large lesions. First, we computed the mean
size of lesions of each subject in our testing dataset and took an average
across all subjects. As a result, the mean average size of lesions of the
testing subjects was 36.21 pixel-size. Therefore, we regarded subjects
with average lesions smaller than 37 pixel-size as the ones with small
lesions; otherwise with large lesions. Second, the testing dataset was
separated into two subsets: one contained subjects with small lesions
and the other one consisted of subjects with large lesions. The former
subset had 271 subjects and the latter one had 90 subjects. Third, we

Fig. 8. The results of the proposed method. The first column
shows the original DWI. The second column displays the
manual annotations of the acute ischemic lesions. The third
column demonstrates the results given by the EDD Net. The
last column illustrates the lesion segmentations refined by
the MUSCLE Net.
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evaluated our baseline CNN architectures and proposed EDD and
MUSCLE Nets based on the two subsets.

Results were displayed in Table 5. Not surprisingly, the performance
of all CNNs dropped down when there were only small lesions. When
there were only large lesions, the detection rates were 100%. However,
the EDD Net performed significantly better than any of the baseline
CNNs. Its mean Dice score was 9% higher than the best baseline CNN.
This improvement came from the significant reduction of the number of
false positives as its m#FN, mSFP, and mSFN were similar to the
baselines'. In addition, the MUSCLE Net further removed nearly half of
the false positive artefacts. Importantly, the m#FN of the MUSCLE Net
only increased a bit compared to the EDD Net, which indicated that it
maintained most of the true positive lesions. In terms of the subjects
with large lesions, the Dice score achieved by the EDD Net reached
83%. In this condition, although the MUSCLE Net was still able to re-
move some small false positives, it could not reflected on the Dice score.
The detection rates indicated that when there were large lesions, they
can never be ignored by our CNNs. The proposed CNNs might only
ignore a few small lesions.

5.6. Running time

The pre-processing computation was run on a desktop PC, which is
an HP Elite 8300, with an i7 processor and 16 GB RAM. The CNNs were
trained and tested on an NVIDIA Tesla K80 GPU processor. We tested
the running time of each stage of our proposed pipeline and the results
were shown in Table 6. In summary, to test a new DWI scan, it costs less
than 1 s, which is very fast.

6. Discussion and conclusion

In this paper, we have presented a novel framework based on deep
CNNs to segment the acute ischemic lesions in DWI. To the best of our
knowledge, it is the first fully automatic method developed for this
problem. The algorithm is validated on a large real clinical dataset and
achieves the state-of-the-art, which is 0.67 in terms of the Dice coeffi-
cient in average. Several visual examples of the segmentation results are
shown in Fig. 8.

Although the combination of EDD + MUSCLE Nets achieves very
good results, the proposed approach still has a few limitations: First,
semantic segmentation of objects in images in multiple scales remain a
challenge that it is not fundamentally solved. Second, the training and
testing is not end-to-end, which decreases the system's efficiency.
Finally, in the second stage, we only consider the false positives.
However, there are still a small number of false negatives which must
be corrected.

In the future, further improvements could be achieved in several
aspects. In particular, more DW images should be collected for training
and testing. Our method is capable of automatically generating acute
ischemic lesion segmentations. Experts could create the manual anno-
tations based on the automatic segmentations, which will be less ex-
pensive in terms of time and effort. In addition, the framework could be
adapted so that the end-to-end training is possible. Last but not least,
convolutions in our proposed networks could be extended to 3D, which
may reduce more false positives. 3D convolutions require the image
patches and/or volumes to be isotropic in 3D (Kamnitsas et al., 2015,
2016b). However, image slices in our dataset are very thick and simple
processes such as resampling cannot provide satisfactory results.
Therefore, we consider to employ image super resolution techniques
(Oktay et al., 2016) to enhance the images in 3D. Then 3D convolutions
can be used in our CNNs.
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Performance comparison among adapted existing CNNs and our proposed CNNs on two
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performed significantly better than existing CNN architectures, particularly on the first
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maintaining true positives. In each column, the bold number indicates the most sig-
nificant performance. The comparisons are among small and large groups, respectively.
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Dice m#FP m#FN mSFP mSFN DR

DeepLab without CRF
(Chen et al., 2014)

Small 0.39 12.84 4.96 8.16 3.52 0.90
Large 0.75 12.72 6.00 8.52 5.80 1.00

FCN (Long et al., 2015) Small 0.41 16.74 3.63 9.81 3.16 0.92
Large 0.77 15.56 4.62 10.23 5.16 1.00

U-Net (Ronneberger et al.,
2015)

Small 0.43 12.81 3.80 11.75 3.61 0.92
Large 0.79 12.97 4.56 10.73 5.87 1.00

DeconvNet (Noh et al.,
2015)

Small 0.47 11.38 3.75 10.21 3.21 0.92
Large 0.79 12.98 4.72 9.92 4.72 1.00

EDD Net Small 0.56 5.58 3.58 10.59 3.17 0.92
Large 0.83 6.82 4.56 10.38 5.06 1.00

EDD + MUSCLE Net Small 0.61 2.97 3.83 12.58 3.68 0.93
Large 0.83 4.16 4.78 10.90 5.58 1.00

Table 6
Running time of our proposed pipeline. The unit of time in testing is second and it in
training is hour. The numbers in testing are in the form of mean ± std while the training
time was measured in once.

Running time

Testing (s) Training (h)
Pre-processing 0.20± 0.10 –
EDD Net 0.63± 0.07 26.61
MUSCLE Net 0.07± 0.05 0.11
Total 0.90± 0.12 26.72
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