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INTRODUCTION 
 

Epithelial ovarian cancer (EOC) has the highest 

mortality rate in gynecological malignant neoplasms in 

women [1]. The majority of the EOC patients have a 

poor clinical diagnosis and low 5-year overall survival 

rate due to unclear early symptoms and lack of 

effective early diagnostic measures [2]. The traditional 
therapeutic options exhibited subpar efficacy with high 

recurrence rates and chemoresistance [3]. Thus, it is 

essential to develop novel efficient therapeutics for 

EOC. Recently, with an improved understanding of the 

role of the immune system and the molecular 

mechanism underlying immune regulation, cancer 

immunotherapy has demonstrated major benefit in 

several types of solid tumors, such as melanoma, non-

small-cell lung cancer, and renal-cell cancer. Also, 

several checkpoint inhibitors have been approved for 

the therapy of cancers. However, as an emerging 

treatment, the response rate of immunotherapy in EOC 

has been disappointing, and no immunotherapies have 

yet been approved [4]. 
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ABSTRACT 
 

The immune response is associated with the progression and prognosis of epithelial ovarian cancer (EOC). 
However, the roles of infiltrated immune cells and immune-related genes (IRGs) in EOC have not been 
reported comprehensively. In the current study, the differentially expressed genes (DEGs) were filtered 
based on the integrated gene expression data acquired from The University of California at Santa Cruz 
(UCSC) Genome Browser. Then, IRGs and transcriptional factors (TFs) were screened based on the ImmPort 
database and Cistrome database. A total of 501 differentially expressed IRGs, and 76 TFs were detected. A 
TF-mediated network was constructed by univariate Cox analysis to reveal the potential regulatory 
mechanisms of IRGs. Next, a nine immune-based prognostic risk model using nine IRGs (PI3, CXCL10, 
CXCL11, LCN6, CCL17, CCL25, MIF, CX3CR1, and CSPG5) was established. Based on the risk score worked  
out from the signature, the EOC patients could be classified into low-risk and high-risk groups. 
Furthermore, the immune landscapes, elevated by the cell-type identification by estimating relative 
subsets of RNA transcripts (CIBERSORT) algorithm and the Tumor Immune Estimation Resource (TIMER) 
database, effectuated different patterns in two groups. Thus, an immune-based prognostic risk model  
of EOC elucidates the immune status in the tumor microenvironment, and hence, could be used for 
prognosis. 
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Tumor microenvironment (TME) is a complex 

environment composed of tumor cells as well as 

various stromal cells, such as tumor-infiltrating 

immune cells (TIICs), endothelial cells, fibroblasts, 

and extracellular molecules [5]. These stromal cells 

are involved in the proliferation, invasion, migration, 

and drug resistance to improve tumorigenesis. The 

EOC is an immunogenic tumor. TIICs in the TME 

have essential effects on clinical outcome [6]. A large 

number of studies reported the interactions between 

TIICs and prognostic assessment in ovarian cancer [7, 

8]. The roles of the TME have gained increasing 

attention in the field of cancer immunotherapy, 

especially the type and content of TIICs in TME [9]. 

The immunosuppressive TME is a major barrier for 

EOC immunotherapy, as evident by its intrinsic 

properties [4]. Thus, it is beneficial to assess the 

infiltration status of immune cells and explore the 

biomarkers that would evaluate the distribution of 

TIICs in the EOC. This would aid in understanding 

the immune microenvironment and provide novel 

insights for both prognosis prediction as well as 

therapeutic targets. Since there is rarely a prognostic 

model based on IRGs to systematically evaluate the 

tumor immune cell function and predict the overall 

survival of EOC patients, we conducted this 

bioinformatics analysis. 

 

In the current study, based on a large-scale 

bioinformatic analysis of The Cancer Genome Atlas 

(TCGA) and the Genotype Tissue Expression (GTEx) 

database, we applied the CIBERSORT method to 

estimate the fraction of 22 immune cell types and 

investigate the correlation with the overall survival of 

EOC patients. Then, differentially expressed IRGs and 

transcription factors (TFs) were filtered, and a TF-

regulated IRGs’ network was investigated. Furthermore, 

we filtered the prognostic IRGs and performed 

multivariate Cox regression analysis to construct a 

predictive risk prognostic model. According to the 

calculated immune-related risk score, the EOC patients 

could be classified into low-risk and high-risk groups, 

which exhibited a significant difference in immune 

infiltrations in the microenvironment and obviously 

various prognoses. 

 

Although different patterns of immune infiltration are 

identified as hallmarks of various clinical outcomes of 

cancer, the specific IRGs in the microenvironment and 

their potential impact are less well-studied. Herein, we 

used bioinformatics to explore the differentially 

expressed IRGs and developed a potential TF-

regulatory network. We identified a nine-gene 
signature; its expression could predict the prognosis of 

EOC. Thus, the present study provided a novel insight 

into the immune microenvironment of EOC and 

impetus to further study the genes with respect to cancer 

biology. These data provided a potential tool for clinical 

prognostication. 

 

RESULTS 
 

Differential composition of tumor-infiltrated 

immune cells in EOC tissues 

 

First, we constructed a CIBERSORT algorithm to 

estimate the proportion of 22 infiltrated immune cells 

in EOC samples. Samples with P>0.05 were rejected, 

leaving 208 OC samples eligible for further analysis. 

The expression data showed varied cell content of 

each sample showed that macrophages were mainly 

infiltrating immune cells in the EOC tissue 

(Supplementary Figure 1A). Also, the correlation 

among infiltrating immune cells was analyzed 

(Supplementary Figure 1B), indicating that the 

content of activated NK cells was strongly correlated 

with the content of CD8+ T cells, and the content of 

M1 macrophages was positively related to the content 

of follicular helper T (Tfh) cells. On the other hand, 

the infiltration of M2 macrophages was negatively 

correlated to the infiltration of a series of immune 

cells, including M1 macrophages, CD8+ T cells, T 

follicular helper cells (Tfh cells), regulatory T cells 

(Tregs), activated natural killer (NK) cells as well as 

plasma cells, which hinted for immunosuppressive 

effects of M2 macrophages. Next, we investigated the 

correlation between tumor-infiltrating immune cells 

and the clinical outcomes by univariate Cox 

regression in 193 patients with a follow-up time of>90 

days. The data showed that M1 macrophages, plasma 

cells, as well as Tfh cells, acted as protecting  

cells and were associated with improved prognosis. 

However, abundant neutrophils indicated a poor 

prognosis. Thus, different immune infiltration could 

be a signature evaluating clinical outcomes 

(Supplementary Figure 1C–1F). 

 

Differential expression profile of IRGs in EOCs 

 

Furthermore, we investigated IRGs to reveal the 

immune landscape of the microenvironment. A total 

of 2498 IRGs were obtained from the ImmPort 

Database. Based on the expression profiles of ovarian 

tumors and normal tissues, a total of 501 IRGs (Figure 

1A) were identified as DEGs in EOC samples 

compared to the normal samples (Supplementary 

Table 3). Among the differentially expressed IRGs, 

292 were upregulated, and 209 were downregulated 

(Figure 1B). 

 

To dissect the biological functions of these identified 

IRGs, we performed GO and KEGG analysis. 
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Typically, the functional enrichment analysis revealed 

that the primary functional categories mainly enriched 

in these genes were related to immune and 

inflammatory responses. For BP, the primarily relevant 

processes were regulation of leukocyte activation and 

leukocyte migration in addition to positive regulation 

of cytokine production and regulation of lymphocyte 

activation. For CC, the side of membrane and plasma 

membrane protein complex were enriched terms. 

Receptor regulator activity, receptor-ligand activity, 

and cytokine activity were mainly MF categories 

(Figure 1C). The KEGG pathway analysis revealed 

that these genes were maximally involved in  

the cytokine-cytokine receptor interaction pathway 

(Figure 1D). 

 

Identification of prognostic IRGs in EOC 

 

We performed univariate Cox analysis to evaluate the 

prognostic characteristics of the differentially 

expressed IRGs. The survival analysis was only 

performed on 396 patients who were followed up for 

>90 days. A total of 23 genes were significantly 

correlated with patient OS (P<0.01) and forest plot of 

the hazard ratios was illustrated in Figure 2, including 

genes involved in antigen processing and presentation 

(IFI30), antimicrobials (PI3, CXCL9, CXCL10, 

CXCL11, CXCL13, LCN6, MMP12, S100A11, IFNB1, 

CCL17, CCL25, CXCR4, MIF, and JAK2), chemokine 

receptor (CX3CR1), cytokines (ARTN and CSPG5), 

cytokine receptor (IL2RG), NK cell cytotoxicity 

(GZMB), and T cell antigen receptor (TCR) signaling 

pathway (CD3D, CD3E, and CD3G). The protein 

expression was also explored in the human atlas 

protein database (Figure 3). 

 

Identification transcriptional regulatory network for 

IRGs 

 

Subsequently, we explored the regulatory mechanism 

underlying the differentially expressed TFs and 

prognostic IRGs in tumor samples and established a TF-

immune gene regulatory network. We obtained 318 TFs 

from the Cistrome Database, among which 76 TFs were 

identified as DEGs in EOC samples compared to the 

normal samples (Figure 4A, 4B, Supplementary Table 

4). Correlation test function was utilized to test the 

correlations with cutoff criteria set as the correlation 

coefficient >0.5 and P<0.001 (Figure 4C), and a 

network was constructed (Figure 4D). The results 

revealed that forkhead box P3 (FOXP3) was regulated a 

large number of prognostic immunity genes. Also, 

MEF2C and ELL2 were TFs with a significant 
regulatory effect on the immunity genes, which was in 

agreement with the mRNA expression levels in the 

EOC tissue. 

Construction of an immune-related prognostic 

signature 

 

To establish an immune-related clinical prognostic 

signature, we further performed a multivariate Cox 

regression analysis of 23 candidate genes and selected 

9 genes for modeling (Supplementary Table 3). A risk 

score was computed based on the mRNA expression 

level of the genes and their corresponding regression 

coefficients. The median risk score was set as a 

threshold to group the patients into high-risk groups 

(n=198) and low-risk groups (n=198). The 

distribution of risk score, the survival overview, and a 

heatmap exhibiting gene expression profiles in high- 

and low-risk OC groups were presented in Figure 5A–

5C. The time-dependent receiver operating 

characteristic (ROC) analysis was performed, and the 

area under the curve (AUC) was 0.703 at 3 years and 

0.714 at 5 years, indicating a good sensitivity and 

specificity of the immune-based prognostic model 

(Figure 5D). KM curves established a correlation 

between patients with high-risk scores and markedly 

poor overall survival, indicating a high prognostic 

performance of such prognostic index in clinical 

outcomes (P<0.001, Figure 5E). 

 

EOC is a histologically and molecularly diverse disease 

that has been divided into different subtypes according 

to gene expression, which was correlated with specific 

characteristics and patient survival. A previous study 

described four molecular subtypes based on the gene 

expression in the clusters in the TCGA network study, 

which has also been validated in several other datasets 

[10, 11]. The subtypes were termed as 

“immunoreactive,” “differentiated,” “proliferative,” 

and “mesenchymal,” which provides new insights into 

the underlying biology and molecular pathogenesis and 

promoted treatment advancing. To examine the 

application of our signature, we performed KM 

survival analysis and ROC curve individually in four 

subtypes. The results showed that our model exhibited 

high prognostic performance in three subtypes except 

for the “proliferative” subtype (Figure 6A–6C). The 

ROC analysis also showed good sensitivity and 

specificity for “immunoreactive,” “differentiated,” and 

“mesenchymal” subtypes (Figure 6D). On the other 

hand, for the “proliferative” subtype, the P-value of 

survival analysis and the AUC of the ROC curve were 

not significant (Supplementary Figure 3). Furthermore, 

we also explored the efficacy of the immune-related 

prognosis model by classifying ovarian cancer 

according to three significant molecular aberrations in 

TP53, BRAC1, and BRAC2, respectively. The data 
revealed that the signature showed marked application 

in the group with TP53, BRAC1, and BRAC2 mutations 

(Supplementary Figure 4A–4C); also, the ROC curve  
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showed a significant difference (Supplementary Figure 

4D). These results indicated that our IRG-related 

signature could be used in combination with 

genotyping, which may show better prognostic 

performance. 

Differential distribution of tumor-infiltrating immune 

cells associated with immunity risk signature 

 

Subsequently, we examined the correlation between the 

differential abundance of immune cell infiltration and   

 

 
 

Figure 1. Differentially expressed IRGs in EOC and functional enrichment analysis of differentially expressed IRGs. (A) 

Heatmap of significantly differentially expressed IRGs in EOC. The color from blue to red represents the progression from low  
expression to high expression. (B) Volcano plot of differentially expressed IRGs. The red dots in the plot represent upregulated genes, 
and green dots represent downregulated genes. Black dots represent no differentially expressed genes. ( C) GO analysis. From top to 
bottom, the figure represents BP, CC, and MF, respectively. (D) KEGG pathways analysis. The top 30 significant pathways are 
screened. 
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the immune-related prognostic signature. The TIMER 

database was utilized to explore the correlation of 

nine immune-related signatures with infiltration of six 

types of immune cells in EOC tissues (Figure 7A). 

Next, the CIBERSORT algorithm was applied to 

estimate the abundance of 22 immune cells in two 

groups separated by the overall nine-gene signature. 

Subsequently, 103 samples in the low-risk group and 

76 samples in the high-risk group with CIBERSORT 

P-value <0.05 were extracted for further analysis. The 

heatmap of immune cell infiltration was exhibited in 

Supplementary Figure 2. The violin diagrams further 

visualized the differential abundance of infiltrated 

immune cells between high- and low-risk samples 

(Figure 7B). The results suggested heterogeneity 

between two groups of samples, with extremely 

higher fractions of resting memory CD4 T cells, M0 

macrophages, M2 macrophages, and neutrophils in 

samples from patients with a high immune-related risk 

score, while plasma cells, CD8 T cells, activated  

memory CD4 T cells, Tfh cells, activated NK cells, 

and M1 macrophages existed abundantly in samples 

from the low-risk group. 

 

DISCUSSION 
 

EOC is one of the most malignant cancers of the female 

reproductive system worldwide, with the highest 

morbidity and lethality rate. Therefore, precise 

prognostic strategies and effective new treatments are 

an urgent requirement for EOC patients. The immune 

cell infiltrations in TME play critical roles in the 

biological behavior of cancer, while immunotherapy has 

demonstrated major benefits in other types of cancers 

that have been disappointing in EOC [12]. The diversity 

of immune cells is one reason that leads to different 

prognoses and various effects towards immunotherapy. 

Thus, it is important to explore unique immune 

infiltration patterns and biomarkers of each EOC patient 

and develop tailored immunotherapy. Currently, the  

 

 
 

Figure 2. Forest plot of hazard ratios showing the differentially expressed prognostic IRGs. 
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common strategy to identify the immune cell infiltration 

in the microenvironment is immunohistochemistry, with 

limitations, such as the limited markers of each type of 

cell. Recent studies have explicated the immune-related 

biomarkers of EOC and constructed models based on 

immune/stromal scores or immune-related gene pairs in 

order to elucidate the EOC immune microenvironment 

[13–15]. The current study focused on the construction 

of the prognosis model, and comprehensively explored 

the immune landscape of each EOC patient. Next, we 

compared the transcriptional expression profiles in EOC 

tissues and normal tissues to further explore the 

molecular mechanisms and derived a series of immune-

related DEGs. The immune response and cancer-related 

pathway were the main functions of these genes. We 

also described the function of these differentially 

expressed IRGs and a TF regulatory network of these 

key IRGs. Next, we constructed a nine-gene signature, a 

simplified model that could be applied to estimate the 

immune status and predict prognosis. The current data  

 

 
 

Figure 3. Differential expression of prognostic IRGs in EOC in normal and EOC tissues. 
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Figure 4. Differentially expressed TFs in EOC, and transcriptional regulatory network constructed of TFs for prognostic IRGs. 
(A) Heatmap of significantly differentially expressed TFs in EOC. (B) Volcano plot of differentially expressed TFs. (C) Correlations between 
differentially expressed TFs and 23 prognostic IRGs (P<0.05). (D) Regulatory network of TFs and the main prognostic IRGs (correlation 
coefficient >0.5 and P<0.05). The red circles represented upregulated expression of prognostic immune‐related genes, the green circles 
represented downregulated expression of prognostic immune‐related genes, the blue triangles represent prognosis-related TFs, and the 
orange lines represent positive regulatory correlations. 
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Figure 5. Construction of the immune-related prognostic model for EOC. (A) The risk score distribution of EOC patients in the 
prognostic model. (B) Survival status scatter plots for EOC patients in the prognostic model. (C) Heatmap of expression profiles of 9 
prognostic genes in the high-risk and low-risk groups. (D) Time-dependent ROC curve analysis of the prognostic model (3, 5, and 10 years). (E) 
KM curve analysis of the high-risk and low-risk groups. 
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showed that the immune infiltration in the low- and 

high-risk groups based on this nine-gene signature was 

significant, with protective immune cells in the 

microenvironment of patients in the low-risk group and 

harmful infiltrating immune cells in tissues in the high-

risk group, and the clinical outcomes of patients with 

different risk score varied. Therefore, the nine-gene 

signature was an independent prognostic signature and 

could be utilized as guidance on prognosis and cancer 

therapy. 

Ovarian cancer is a highly heterogeneous disease, and 

different cells of origin, including fallopian tube, 

peritoneum, or endometrial tissue, have been reported. 

Some benign diseases induce malignant epithelial 

ovarian tumors, such as ovarian endometriosis [16], due 

to altered local and systemic immunity. This indicated 

that the association between in situ immune 

microenvironments is a vital factor of ovarian tumor 

initiation and progression. A recent study reported that 

chronic inflammation in endometriosis promoted  

 

 
 

Figure 6. The efficacy of signature in diverse subtypes according to the differentiated expressed genes. (A–C) KM curve 
analysis of the high-risk and low-risk groups in “differentiated,” “immunoreactive,” and “mesenchymal” subtypes. (D) Time-dependent 
ROC curve analysis of the prognostic model in “differentiated,” “immunoreactive,” and “mesenchymal” subtypes. 
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Figure 7. The varied proportions of immune cells based on 9 immune-related prognostic signatures. (A) The correlations of 9 

signatures and 6 subtypes of immune cells. (B) The relative percentage of 22 subtypes of immune cells in high-risk and low-risk groups. 
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endometriosis-associated ovarian cancer, and a large 

proportion of endometriosis cases had a cancer-like 

immune gene signature [17]. As a typical feature of 

endometriosis, inflammation greatly modulated the 

progression of endometriosis and endometriosis-

associated ovarian cancer. The immune system is also 

important for ovarian cancer clinical outcome. 

Therefore, the exploration of immune infiltration and 

immune-related signature could be used as a robust 

model. 

 

Accumulating evidence established the prognostic value 

of IRGs in various types of cancer [18–20]. In the 

current study, a group of nine genes (PI3, CXCL10, 

CXCL11, LCN6, CCL17, CCL25, MIF, CX3CR1, and 

CSPG5) was used in the classifier which predicted the 

prognosis in EOC. Reportedly, these IRGs had 

correlations with patients’ OS. The peptidase inhibitor 3 

(PI3)/elafin, a serine protease inhibitor with anti-

microbial, anti-inflammatory, and immune-modulatory 

properties, was a key endogenous microbicide at female 

reproductive tract mucosal surfaces [21]. It could 

directly regulate the biological behavior of cancer cells 

as well as the immune microenvironment [22]. Recent 

studies identified PI3 as a biomarker of poor outcome of 

ovarian cancer and indicated recurrence [23]. Both 

CXCL10 and CXCL11 are ligands of CXCR3, with 

CXCL10 as a key driver chemokine [24]. This axis has 

been identified as an independent prognostic marker as 

well as a promising therapeutic target [25]. In addition, 

the axis regulates the proliferation and metastasis of 

cancer cells. By paracrine mechanisms, the activation of 

this axis could modulate the migration, differentiation, 

and activation of immune cells, including T cells, 

monocytes, dendritic cells, and NK cells [26]. Some 

studies also reported a strong crosslink between the PD-

1/PDL-1 axis and other immune-related pathways [27, 

28], and the function of promoting tumor progression 

[29–31]. CCL17 and CCL25 are both members of the 

CC chemokine family, in which CCL17 is released by 

macrophages, neutrophils, or dendritic cells. It is a  

high-affinity ligand of CCR4 and related to 

immunosuppression in the tumor microenvironment, 

especially by promoting the infiltration of regulatory T 

cells [32–35]. CCL25 is the specific ligand of CCR9, 

and both were highly expressed in various types of 

cancer and activate multiple signaling pathways, 

especially the pathways related to drug resistance as 

well as metastasis, thus related to poor prognosis [36–

40]. The prevalence of certain cytokines linked 

endometriosis and ovarian cancer [16], and the CC-

chemokine ligands and CXC-chemokine ligands are the 

two major classes of chemokines [41], indicating that 
these chemokines may be identified as biomarkers for 

prognosis. Furthermore, CX3CR1 is a major chemokine 

receptor in cytokines and chemokine networks 

preceding by macrophages in TME, followed by 

activating multiple downstream pathways: MAPK, 

PI3K, and JAK-STAT [40]. MIF is a key 

immunosuppressive cytokine produced by various cells 

and tissues that promote tumor progression mediated by 

macrophages in ovarian cancer and other cancer entities 

[42, 43]. The expression of PDL-1 was regulated, and 

MIF also facilitated the tumor cells’ escape immune 

surveillance [43]. Further, LCN6, a member of lipocalin 

protein family, participates in the regulation of cellular 

functions, such as cell homeostasis, substance transport, 

and immune response, and CSPG5 is a proteoglycan 

with an EGF-like module that may function as a growth 

and differentiation factor of neurons; these factors have 

not been previously reported to be related with ovarian 

cancer prognosis, and could serve as novel biomarkers 

[44–47]. Furthermore, the imbalance in gene expression 

plays a critical role in the immune microenvironment 

compared to that of the individual gene. 

 

TFs are essential regulators of gene expression patterns, 

which in turn, regulate multiple BPs. Herein, we 

identified FoxP3 as the major TF involved in the 

regulation of IRGs and modulation of immune 

landscapes. FoxP3 is an essential regulator in immune 

system development and function. A recent study 

demonstrated FoxP3 as a marker of CD4+CD25+ Treg 

cells and illustrated its predominant role in the 

development and function of Tregs [48]. The negative 

regulation of cytokine genes facilitates FoxP3-mediated 

suppression of the immune response and induced 

immune tolerance [49]. In tumor immunity, FoxP3+ 

Treg cells are also related to immune escape. Several 

studies have reported the correlation between the high 

density of FoxP3+ Treg cell infiltration and poor 

prognosis [50–52]. Another study encompassing 104 

EOC patients reported that FoxP3+ Treg cells 

suppressed tumor-specific T cells and induced the 

growth of tumors in vivo. Also, a high density of 

infiltrations of FoxP3+ Treg cells is a marker of reduced 

prognosis [53]. MEF2C and ELL2 were two other 

critical TFs that regulated the IRGs in the immune 

microenvironment, related to the development and 

function of plasma cells and other cells [54]. Rather 

than a single TF, these complicated regulatory networks 

regulate the complex community of the EOC immune 

microenvironment. 

 

Emerging evidence suggested that the heterogeneity of 

immune cell composition, both innate and adaptive 

immune systems, plays a crucial role in the prognosis 

and treatment response of cancer patients [55, 56]. 

Differential immune infiltration responses lead to tumor 
rejection or progression. The recurrence after surgery 

and first-line chemotherapy is one of the major 

problems regarding ovarian cancers. In this scenario, 
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reduced immunosurveillance is also one of the leading 

factors for ovarian cancer’s inherent chemoresistance 

[57–59]. The immune microenvironment influences the 

effect of chemotherapy. In turn, the chemotherapy drugs 

modulate the immune cell infiltrations by boosting 

tumor immunogenicity [60]. For instance, a series of 

germline or somatic mutations in BRCA1 or BRCA2 

could exhibit various immune responses towards 

chemotherapy. Lo et al. reported that the platinum- and 

taxane-based chemotherapy showed a differential 

immune response in patients with the heterogeneous 

immune microenvironment, which could enhance 

antitumor immunity [61]. These studies also triggered 

an interest in the role of immune infiltration in the effect 

of chemotherapy. Therefore, in this study, we explored 

immune cell infiltration in the EOC microenvironment. 

Our results showed that M1 polarized macrophages, 

along with plasma cells and Tfh cells, were negatively 

related to the prognosis of EOC patients. On the other 

hand, a high density of neutrophils was a biomarker of 

poor prognosis, which indicated that the immune cells 

in TME were greatly related to clinical outcomes. 

Furthermore, 22 TIICs exhibited distinct infiltration 

patterns in the high-risk score group compared to the 

low-risk score group based on our nine-gene prognostic 

signature. The results identified macrophages as 

infiltrated immune cells with the highest proportion in 

cancer tissues, especially the M2 subtype. Macrophages 

are critical mediators in maintaining tissue homeostasis 

[62]. Substantial evidence indicated that the presence of 

tumor-associated macrophages is correlated with a poor 

prognosis [63]. A typical activation status described the 

classical (M1) and alternative (M2) polarization of 

macrophage, and M2 polarized macrophages are 

abundant in tumor tissues exhibiting poor prognosis. 

Furthermore, the control of other immune cells in the 

microenvironment, regulation of vascular structure or 

ECM, or direct regulation of tumor cell function 

revealed that M2 macrophages are significant regulators 

of the microenvironment that promote the malignant 

behavior of tumors [62]. These results demonstrated 

that M1 polarization of macrophages was lower and that 

of M2 macrophages was increased, with lower M0 

macrophages—the inactivated subtype with neither 

inflammatory nor tumor-related function—in the high-

risk group. Additionally, activated NK cells, the innate 

cytotoxic lymphocytes which surveil and eliminate 

cancer, effectuate a remarkably low infiltration in the 

high-risk group [64]. Previous evidence indicated that 

NK cells produce and release a variety of cytokines and 

chemokines to regulate immune responses [65, 66]. For 

example, dendritic cells are recruited, T cell response is 

regulated, and antitumor cell cytotoxicity is exerted; 
thus, the immunotherapy based on NK cells is also 

under intensive focus [67–69]. Additionally, as key 

mediators eliminating tumor cells and important targets 

for immune modulation in immunotherapy of tumor, T 

cells infiltrates were classified into two groups. The 

densities of most T cells decreased in high-risk group, 

whereas those of the CD4+ resting memory cells were 

higher [70]. Tfh cell is also a critical immune regulator 

in several solid tumors, which induced diminished 

immunosuppression that was positively correlated with 

favorable survival in breast cancer and colorectal cancer 

[71, 72]. Since the role of Tfh cells in EOC is unknown, 

we proposed a protective role of the cells in EOC 

microenvironment. Plasma cells have been considered 

to be predictors of a favorable clinical outcome in 

several solid tumors, which showed a higher fraction in 

the low-risk group patients [73]. Kroeger et al. reported 

that the plasma cells were associated with CD8+ tumor-

infiltrating lymphocyte responses in EOC and facilitated 

antitumor immune responses [74]. Consistent with these 

findings, our results also identified the protective role of 

plasma cells in EOC tissues, with lesser infiltration in 

high-risk group patients. 

 

In this study, multiple IRGs were identified, and a novel 

classifier based on IRGs was established, with 

CIBERSORT algorithms used to identify the immune 

infiltration. Our results provided preliminary insight 

into the role of immune infiltrations in EOC and 

provided ideas for further diagnosis, evaluation, and 

even targeted therapy. Nevertheless, the present study 

has some limitations. First, the biological functions and 

molecular functions of the classifier genes need further 

verification using in vitro and vivo experiments, 

especially on the correlation with immune infiltration 

and prognosis. Second, as a retrospective study, the 

results need to be substantiated further in other cohorts 

and verified by a prospective study. 

 

In conclusion, we provided a comprehensive insight 

into TME and constructed a risk model utilizing the 

expression profile of 9 IRGs and clinical data acquired 

from the TCGA database to predict the prognosis of 

patients with EOC. The expression of each biomarker is 

related to the components in TME and affects the 

outcomes of patients. However, further prospective 

studies are required to explore the mechanism and 

verify future applicability. 

 

MATERIALS AND METHODS 
 

Data source and analysis 

 

The gene expression profiles (TOIL RSEM expected 

count and fragments per kilobase million (FPKM)) of 

ovarian cancer samples from TCGA database 

(https://xenabrowser.net/datapages/) and normal ovarian 

tissue from GTEx database (https://www.gtexportal.org/ 

home/) processed by the Toil pipeline were acquired 

https://xenabrowser.net/datapages/
https://www.gtexportal.org/home/
https://www.gtexportal.org/home/
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from the UCSC Xena platform (https://xenabrowser. 

net/datapages/). After batch effects had been removed, 

we further extracted data by Perl script [75] (Perl 

software, version 5.24.3). Also, the clinical information, 

including age, tumor grade, tumor stage, and survival 

time, was collected from UCSC Xena website. 

 

In addition, a list of IRGs containing a total of 2498 

genes was obtained from the Immunology Database and 

Analysis Portal (ImmPort database, https://immport. 

niaid.nih.gov/home), which includes 17 immune 

categories based on various molecular functions in 

immune pathways (Supplementary Table 1) [76]. These 

IRGs were applied to select the related genes to 

construct the immune-related risk model. Furthermore, 

a total of 318 TFs were obtained from the Cistrome 

Cancer database (http://cistrome.org/CistromeCancer/ 

CancerTarget/), a valuable data source to the cancer gene 

regulation community (Supplementary Table 2) [77]. 

 

Evaluation of immune cell infiltration 

 

The TIICs in EOC samples from the TCGA cohort and 

normal ovarian tissue from GTEx database were 

calculated using the CIBERSORT deconvolution 

algorithm [78]. CIBERSORT used the leukocyte gene 

signature matrix (LM22), which includes a set of 

barcode gene expression signature matrix of 547 

marker genes for quantifying 22 TIICs (https:// 

cibersortx.stanford.edu/) [79]. In order to improve the 

accuracy of the CIBERSORT algorithm, P-value and 

root mean squared error were enumerated for each 

sample. The default signature matrix was set to 100 

permutations. Thus, only samples with a CIBERSORT 

P<0.05 were considered to be efficient, and hence, 

selected for subsequent analysis. Next, we analyzed a 

proportion matrix for the 22 TIICs in EOC tissues 

based on the high- and low-risk score groups of tumor 

tissues. Furthermore, the correlation between each 

prognostic IRGs and TIICs was also estimated 

according to the TIMER database (https://cistrome. 

shinyapps.io/timer/) [80]. 

 

Differential expression analysis 

 

The limma package in R was applied to identify 

differentially expressed genes (DEGs) between tumor 

and normal tissues [81]. The genes with logFC (log 

fold change) | ≥2 and false discovery rate (FDR) 

<0.05 were considered as the cutoff values to filter 

DEGs. Then, differentially expressed IRGs and TFs 

were extracted from DEGs. We found that 501 

differentially expressed IRGs (292 upregulated genes 
and 209 downregulated genes) and 76 TFs (41 

upregulated TFs and 35 downregulated TFs) were 

selected. Heatmaps were generated using pheatmap 

package, and volcano plots were constructed in R 

software. 

 

To further understand the function of DEGs in EOC, we 

performed enrichment analyses through Kyoto 

Encyclopedia of Genes and Genomes (KEGG) and 

Gene Ontology (GO) databases, including biological 

process (BP), molecular function (MF), and cellular 

component (CC) [82, 83]. All the analyses were 

performed using the cluster Profiler package in R 

software [84]. 

 

TF regulatory network of the differentially 

expressed IRGs 

 

Differentially expressed IRGs were significantly 

associated with the prognosis of EOC patients and were 

identified as prognostic IRGs by univariate Cox 

analysis. Since TFs directly regulate gene expression, it 

is essential to explore their potential in regulating the 

prognostic IRGs. Herein, we investigated the potential 

inner TF regulatory network by selecting clinically 

relevant TFs from the cistrome project and explored the 

correlation via univariate COX regression. The 

Cytoscape (version 3.7.2) was used to construct and 

visualize the regulatory network, including TFs and 

IRGs [85]. 

 

Construction of an immune prognostic model 

 

An immune-related gene prognostic model was 

developed using the TCGA and ImmPort dataset [86]. A 

total of 23 candidate IRGs were further filtered by 

univariate Cox regression, and P-value <0.01 indicated 

statistical significance. Furthermore, 9 immune-related 

genes were ultimately selected for a risk prognosis model 

through multivariate Cox regression analysis. The 

expression of candidate IRGs on the translational level 

was explored using The Human Protein Atlas (HPA) 

Database (http://www.proteinatlas.org). The risk scores 

were acquired according to the computational formula 

encompassing related gene expression and regression 

coefficient. The EOC patients were divided into high-risk 

and low-risk groups according to the median risk score to 

perform subsequent analysis. The receiver operating 

characteristic (ROC) curve was generated using the R 

package “survival ROC” to evaluate the accuracy of the 

prognostic prediction model. 

 

Survival analysis 

 

The survival time data of 396 patients followed for 

>90 days were collected from UCSC Xena website. 
The Kaplan–Meier (KM) survival analysis 

demonstrated the overall survival (OS) of patients 

with different risk groups of heterogeneous TIICs, 

https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
https://immport.niaid.nih.gov/home
https://immport.niaid.nih.gov/home
http://cistrome.org/CistromeCancer/CancerTarget/
http://cistrome.org/CistromeCancer/CancerTarget/
https://cibersortx.stanford.edu/
https://cibersortx.stanford.edu/
https://cistrome.shinyapps.io/timer/
https://cistrome.shinyapps.io/timer/
http://www.proteinatlas.org/
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which were stratified by our immune-related 

signature. The R package called “survival” was used 

to perform the survival analysis. 

 

Statistical analysis 

 

R software (R version 3.6.0) was used to perform all 

statistical analyses, and P<0.05 was considered 

statistically significant without special instructions. KM 

curves and log-rank tests were used to analyze the 

survival data. The univariate Cox regression analysis 

was used to identify the survival of patients diagnosed 

with OC, while multivariate Cox regression analysis 

was used to identify independent prognostic factors. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. The varied proportions of 22 subtypes of immune cells in the tumor and normal samples. (A) The 
relative percentage of 22 subtypes of immune cells. (B) The correlation between infiltrating immune cells in EOC tissues (C–F) KM curves to 
compare the OS of high expression and low expression of plasma cells, macrophages, Tfh, and neutrophils, respectively. 
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Supplementary Figure 2. Heatmap of 22 immune infiltration cells in the high- and low-risk groups of the EOC tissues. 

 

 
 

Supplementary Figure 3. The efficacy of signature in diverse subtypes according to the DEGs. (A) KM curve analysis of the high- 

and low- groups in the “proliferative” subtype. (B) Time-dependent ROC curves analysis of the prognostic model in the “proliferative” 
subtype. 
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Supplementary Figure 4. The efficacy of signature in diverse subtypes according to the three significant genetic mutations. 
(A–C) KM curve analysis of the high- and low-risk groups in samples with TP53, BRCA1, and BRCA2 mutations. (D) Time-dependent ROC 
curves analysis of the prognostic model in samples with TP53, BRCA1, and BRCA2 mutations. 

 
  



 

www.aging-us.com 10311 AGING 

Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–4. 

 

Supplementary Table 1. The table of immune-related genes from IMMPORT database. 

 

Supplementary Table 2. The table of transcription factors from cistrome cancer database. 

 

Supplementary Table 3. The table of differentially expressed immune-related genes. 

 

Supplementary Table 4. The table of differentially expressed transcription factors. 

 


