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Abstract: During this study, full-size wood composite sandwich panels, 1.2 m by 2.4 m (4 ft by 8 ft),
with a biaxial corrugated core were evaluated as a building construction material. Considering the
applications of this new building material, including roof, floor, and wall paneling, sandwich panels
with one and two corrugated core(s) were fabricated and experimentally evaluated. Since primary
loads applied on these sandwich panels during their service life are live load, snow load, wind, and
gravity loads, their bending and compression behavior were investigated. To improve the thermal
characteristics, the cavities within the sandwich panels created by the corrugated geometry of the core
were filled with a closed-cell foam. The R-values of the sandwich panels were measured to evaluate
their energy performance. Comparison of the weight indicated that fabrication of a corrugated panel
needs 74% less strands and, as a result, less resin compared to a strand-based composite panel, such
as oriented strand board (OSB), of the same size and same density. Bending results revealed that
one-layer core sandwich panels with floor applications under a 4.79 kPa (100 psf) bending load are
able to meet the smallest deflection limit of L/360 when the span length (L) is 137.16 cm (54 in) or
less. The ultimate capacity of two-layered core sandwich panels as a wall member was 94% and 158%
higher than the traditional walls with studs under bending and axial compressive loads, respectively.
Two-layered core sandwich panels also showed a higher ultimate capacity compared to structural
insulated panels (SIP), at 470% and 235% more in bending and axial compression, respectively.
Furthermore, normalized R-values, the thermal resistance, of these sandwich panels, even with
the presence of thermal bridging due to the core geometry, was about 114% and 109% higher than
plywood and oriented strand board, respectively.

Keywords: wood composites; sandwich panel; building material; bending stiffness; R-value; axial
compression; biaxial corrugated core

1. Introduction

Considering the good properties and superior advantages of natural fibers over syn-
thetic fibers, such as low weight, low cost, less damage to processing equipment, being
abundant, safe to handle, and a minimal health hazard [1], natural fiber composites have
begun to penetrate many markets including the aerospace [2,3], automotive [4,5], med-
ical [6,7], electronic [8], and food [9] industries. Natural fiber production, for instance,
on average uses 60% less energy than glass fiber production, and results in a lower cost
and lower air emissions [10]. Considering sustainability and CO2 emission in addition to
the advantages of natural fibers over synthetic ones, bio-based composite materials that
are environmentally friendly, renewable, and biodegradable have attracted the attention
of many researchers. However, development in Engineered Wood Products (EWP) is
not noticeable as recent advancements in wood products are summarized as industrial
chemicals, biofuels, and energy from woody materials, and as use of cellulose nanomate-
rials in the development of different products such as cement-based material additives,
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food coatings, and transparent flexible electronics [11,12]. EWPs such as laminated veneer
lumber (LVL), plywood, oriented strand board (OSB), and mass timber products such as
glue-laminated timber (Glulam), cross laminated timber (CLT), and structural composite
lumber (SCL) that are used in building construction have been around for decades, for
instance. Since the application of mass timber products in the construction of tall buildings
is of interest to the industry and the research community these days, several studies have
evaluated different aspects of these products [13–15]. Additionally, limited work has been
conducted on developing wood-based composite sandwich panels with three-dimensional
cores for use in building envelopes. Therefore, further research to develop new EWPs
with a higher load capacity, especially out of small diameter trees, can open new business
opportunities and also address both CO2 emission and sustainability through the efficient
use of natural resources.

Sandwich structures that consist of two face-sheets and a core layer were originally
developed and used in the aerospace industry due to their high performance and stiffness-
to-weight ratio and have received a lot of attention from researchers [16–18]. The core can
have a continuous geometry, such as metallic foam, or a discrete with periodic geometry,
such as honeycomb and corrugated cores. Sandwich structures with hollow cores not only
have a higher stiffness-to-weight ratio compared to continuous ones, but the cavities created
by the discrete geometry of the core also can be used to increase the thermal and acoustic
performance of the sandwich panel [19]. Owning to these merits, sandwich structures
are not limited only to aerospace and also can be found in automotive, marine, and civil
industries. This concept also has been borrowed by the building industry to develop
construction materials such as the structural insulated panel (SIP) that is composed of
an insulated foam core between OSB face-sheets. However, drawbacks of SIPs are that
expanded polystyrene foam cores can easily burn and are not environmentally preferred
materials; the walls are not breathable and, thus, the buildings require a mechanical
ventilation system to control moisture; they do not offer a high load-carrying capacity, so
strengthening and retrofitting against axial, flexural, and lateral loads are required [20].
To tackle these drawbacks, and to develop lightweight and high-performance products,
researchers have recently adopted discrete core geometry in the fabrication of EWPs.

Using a wet process, Hunt and Winandy [21] fabricated a 3-D engineered fiberboard
core sandwich panel with a uniaxial corrugated core geometry. A hollow core was devel-
oped using roll forming of plywood by heated rolls and was bonded to 3-ply veneer [19,22].
Using a matched-die molding process, Way et al. [23] produced a molded core made of
wood strands bonded to OSB face-sheets. A corrugated cardboard core was bonded to flax
fiber composite face-sheets to fabricate multilayered sandwich panels [24]. To fabricate
a sandwich panel from beech wood, two corrugated panel were bonded together, then
ripped multiple times to produce a single oval-shaped core cell [25]. Then, core cells were
sandwiched between formed veneers to make a block that was sawn into slices and used as
the core of the sandwich panel. Thin-walled sandwich panels were developed using wood
strands for the corrugated core as well as for the flat face plies [26–28]. Regarding all cases,
these sandwich panels with discrete cores have been manufactured and investigated in
lab-scale experiments. Since all behavior and deformations of a structural member cannot
be captured and predicted based on the results of a lab-scale experiment, it is necessary to
fabricate and evaluate larger sandwich panels to evaluate their performance.

Using a finite element (FE) model validated for a biaxial corrugated geometry [29], a
new geometry was designed to be used as a core in the fabrication of multilayered sandwich
panels [30]. The objective of this study is to fabricate full-size (1.2 m by 2.4 m) wood strand
composite sandwich panels with cores having this new biaxial corrugated configuration
(Figure 1a) and evaluate their structural and thermal performance. Sandwich panels with
a one-layered core (Figure 1b) were manufactured for roofing and flooring applications,
and those with a two-layered core (Figure 1c) for a wall element. Considering the primary
loads applied during their service life, sandwich panels were subjected to bending and/or
axial compression testing. To improve the thermal performance, the cavities created by
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the corrugated geometry of the core were filled with insulating foam, and the thermal
conductivity was measured.

Figure 1. (a) Full size biaxial corrugated panel used as a core to fabricate (b) one-layered (c) two-
layered core sandwich panels.

Only the strength and deflection performances of the new panel concept were consid-
ered in this study. Other performance criteria, such as vibration, sound transmission, etc.,
were beyond the scope of this study.

This paper covers the fabrication of a wood strand composite panel with a biaxial
corrugated geometry used as a core to make multilayered sandwich panels as a building
material, the mechanical testing procedure to evaluate their performance under applied
loads during their service life, the procedures used to quantify the thermal resistance
properties, and the test results. Conclusions are then drawn based on these results and
comparisons made with some available wood-based products on the market.

2. Panel Fabrication

Low-quality spruce-pine-fir lumber provided by the Idaho Forest Group were used
to produce thin wood strands. A laboratory disk strander (CAE double blade mounted
disk) operating at a rotational speed of 500 rpm was set to strand the lumber into
154 mm × 19 mm × 0.36 mm (nominal dimensions of L × W × t) strands, as shown in
Figure 2. Even though special care and effort was taken to target the strand thickness
of 0.36 mm, it was difficult to avoid thickness variation. Measurement for more than
1000 strands showed an average thickness of 0.34 mm and a 2.6% coefficient of variation
(COV). The percentage frequency distribution of the thickness of the strands is shown in
Figure 2. After drying strands to a target moisture content of 3–5%, they were mixed with
8% phenol formaldehyde resin in a drum blender.

Figure 2. (a) Wood strands and (b) frequency distribution graph of their thickness.
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Using a conveyor belt system, strands sprayed with resin were carried to an orientor
to be aligned ±30◦ with respect to the direction that is parallel to the length of the panels
or the longitudinal direction. Length or longitudinal and width or transverse directions
of the preform and, subsequently, of the finished panel are shown in Figures 1a and 3a.
A wood strand mat or preform, shown in Figure 3a, was built by the accumulation of
unidirectionally aligned strands. Using a matched-die mold shown in Figure 3b, the
preform was consolidated and hot-pressed for 6 min at an operating temperature of 160 ◦C
to fabricate a biaxial corrugated panel, as shown in Figure 1a. The geometry of the core can
be defined by describing the configuration of one-unit cell (UC) that is a repeating element
along the length and width of the corrugated panel [31]. The same process, without using
the mold, was adopted to manufacture 6.35 mm thick flat panels with wood strands.

Figure 3. (a) Wood-strand mat (preform), and (b) Aluminum matched-die mold.

To fabricate the sandwich panels, all components, flat layers, and corrugated core(s),
were bonded using a polyurethane adhesive (LOCTITE HB X452 PURBOND, Henkel)
at room temperature. Regarding roof and floor applications, one-layered core sandwich
panels, as shown in Figure 1b, were fabricated by bonding wood-strand flat panels to each
side of a corrugated layer. However, to increase the in-plane load-carrying capacity and
insulation capacity of panels used as a wall member, two corrugated panels were used in
the core, as shown in Figure 1c. To be consistent with traditionally constructed walls with
studs, 10.5 mm thick OSB and 12.7 mm thick drywall were used as face-sheets for the two-
layered core sandwich panels. To increase the energy performance of the wall members,
the cavities of two-layered core sandwich panels were filled with 2-part closed-cell foam
by spraying the foam directly into the cavities (Figure 4a). After trimming the excess foam
along the edges, lumber was inserted on each end of the wall panels between face plies to
act as the top and bottom plates (Figure 4b).

Figure 4. (a) Filling two-layered core sandwich panels with spray foam (b) trimmed foam and wall
prepared to use.
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3. Experimental Evaluation

Roof and floor panels must be designed to support a bending load generated by snow,
as well as live, dead, and wind loads. To evaluate the performance of commercial-size
(full-size) roof and floor panels for deflection and ultimate capacity under a bending load,
ASTM E2322 [32] and ASTM E72 [33], which define a loading span as half of the span
length (L/2), are recommended. Based on the preliminary testing, failure of the face-sheets
due to tension or compression was the most common failure in specimens under a bending
load, and such a failure was more likely than the core’s failure since both face-sheets and
core were manufactured from the same materials—wood strands. Therefore, following
ASTM D7249 [34], which has the same test configuration and four-point bending as ASTM
E2322 [32] and ASTM E72 [33], but covers the determination of face ply properties of
flat sandwich constructions under a bending load, was preferred. Additionally, ASTM
D7249 [34] offers two different loading spans, one-third and one-half of the span length
(L/3 and L/2), where the smallest was selected to conduct experimental testing, while
both ASTM E2322 [32] and ASTM E72 [33] define a loading span as half of the span length
(L/2). Since a smaller loading span results in a higher maximum bending moment and an
increase in the normal stress on the face-sheets, it helps to reveal the actual performance
of the face-sheets and, therefore, that of the sandwich structures with one corrugated
core under a bending load. Therefore, specimens with different span lengths, cut from a
one-layered core sandwich panel, were subjected to a four-point bending test where the
loading span was one-third of the span length. The bending test of a specimen with the
smallest span length (559 mm) is shown in Figure 5a. Wall members, however, during their
service life are subjected to both bending and axial compression due to wind and gravity
loads, respectively. Therefore, following ASTM E72 [33], commercial-size two-layered core
sandwich panels as a wall member were evaluated using bending and compression testing,
as shown in Figure 5b,c. The dimensions and details of all bending and compression
specimens are given in Table 1. The bending stiffness of specimens submitted to a four-
point flexural test can be calculated as:

EI =
Pa

48∆

(
3L2 − 4a2

)
(1)

where, P, ∆, and L are the bending load, deflection at mid-span, and span length, respec-
tively. The constant “a” is the distance between the support and loading point which is
shown in Figure 5a.

Table 1. Summary of all experimental specimens subjected to different testing.

Core Type of the
Sandwich Panel Test Type Number of

Specimens
Span Length

(L) (mm) Load Span Width (b)
(mm)

Thickness (t)
(mm)

1 layer of
corrugated layer

Bending

5 559 L/3 203(1-UC) 48

4 1092 L/3 203(1-UC) 48

4 1219 L/3 203(1-UC) 48

4 2438 L/3 203(1-UC) 48

3 2438 L/3 1219(6-UC) 48

Thermal 7 305 - 305 48

2 layers of
corrugated layer

Bending 2 2286 L/2 1219(6-UC) 93

Compression 2 2438 - 1219(6-UC) 93

Thermal 8 305 - 305 93
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Figure 5. Experimental testing; (a) small scale bending of 559 mm long and 1-UC wide specimen
from a one-layered core, large scale (b) bending, and (c) compression testing of a commercial-size
two-layered core sandwich panel.

Thermal resistance, R, is a measure of resistance to heat flow and can be calculated
by taking the reciprocal of the thermal conductivity, and is a common property used to
determine how well a material insulates. To determine thermal conductivity, both one- and
two-layered core sandwich panels were filled with closed-cell polyurethane foam (Foam
it Green), and then cut into 305 mm by 305 mm specimens, as shown in Figure 6a. A Fox
304™ heat flow meter (LaserComp, Saugus, MA, USA) shown in Figure 6b was used to
determine the thermal conductivity based on the Fourier Law, as per ASTM C1045 [35].
Since thermal conductivity is temperature-dependent, different temperatures were used to
measure the thermal conductivity. However, a mean temperature of 24 ◦C (75 K) should be
used to evaluate thermal properties of the building materials [36,37].

Figure 6. Thermal test (a) samples of both sandwich panels (b) heat flow meter.

4. Results and Discussions

After fabrication of flat and corrugated panels, twenty-two density measurements
taken from a variety of locations across both panels indicated an average density of
800 kg/m3 (50 pcf), a specific gravity of 0.8, with a coefficient of variation of 15.3% for
the wood strand composite. The target length, width, wall thickness, and height for the
corrugated core were 2438 mm (8 ft.), 1219 mm (4 ft.), 7.6 mm (0.3 in), and 35 mm (1.375 in),
respectively [38]. When the weight of the corrugated panel was compared to that of an OSB
panel of the same size and same density (809 kg/m3), the corrugated panel was 3.86 times
lighter than the OSB panel. Fabrication of corrugated panels required 74% less supplies
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(strand and, as a result, resin as well) compared to an OSB of the same size and same
density, in other words.

Considering the application of the sandwich panels, results are divided into three
parts. The first one reports the data of one-layered core sandwich panels for roof/floor
applications, while the second part presents the test results of two-layered core sandwich
panels when used as a wall member. The results of the thermal conductivity test are given
in the last subsection.

4.1. One-Layered Core Sandwich Panels with Roof/Floor Applications

When subjected to a four-point bending load, the failure mode of short span specimens
including 559 mm and 1092 mm was debonding between the core and the outer layer due
to interfacial shear, as shown in Figure 7a. However, long span specimens (1219 mm and
2438 mm) failed due to tension or compression in the face-sheet, as shown in Figure 7b.

Figure 7. Failure mode of one-layered core sandwich panel (a) interfacial debonding (b) tension or
compression in face-sheet.

The effective bending stiffness per unit width for one-layered core sandwich panel
specimens with different span lengths was computed using Equation (1) and is shown
in Figure 8. By increasing the span length, the bending stiffness increases since the effect
of shear deformation is reduced. Therefore, the bending stiffness of specimens with a
span length of 2438 mm should be considered the effective bending stiffness for sandwich
panels with one layer of corrugated core since this span is the typical maximum span for
most building applications. However, changing the width had a negligible effect on the
bending stiffness of this sandwich panel. Shown in Figure 8, the bending stiffness per unit
width of specimens with different widths (1-UC and 6-UC), but the same span length of
2438 mm, did not vary significantly (~1% difference). The wood handbook [39] reports
the longitudinal Young’s modulus of 4.41 GPa for OSB panels with an specific gravity
(S.G.) of 0.8 (density of 800 kg/m3), which can be used to calculate its bending stiffness.
Comparison revealed that the bending stiffness of a sandwich panel is 44% higher than
an OSB of the same thickness. It should be noted that 800 kg/m3 was the density of the
core wall and outer layers of the sandwich panel, while the density of a one-layered core
sandwich panel was 320 kg/m3 (20 pcf), with an S.G. of 0.32. Normalizing the bending
stiffness of each panel by its density showed that the result for a one-layered core sandwich
panel is 265% higher than that of an OSB. Considering both weight and stiffness, it confirms
that this wood-strand-based sandwich panel in a flooring and roofing application shows a
higher performance than an OSB as a structural panel.
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Figure 8. Bending stiffness per unit width for one-layered core sandwich panel (values in parenthesis
are COV).

The modulus of rupture (MOR) is proportional to the maximum moment, which is
equal to Mmax = FmaxL/6. Considering the bending results of the specimens with different
span lengths, an average maximum moment was computed for the one-layer sandwich
panel. The result revealed that the one-layer sandwich panel specimens under a four-point
bending test failed when the maximum bending moment in the specimen divided by its
width (Mb

max) reached 6.04 N.m/mm.
Structural panels, when used as roof or floor panels, must satisfy a deflection limit

through their design process. Considering various loadings and types of applications, this
limit can be 1/120, 1/180, 1/240, or 1/360 of the span length of the panel [40], depending
on the finish materials attached. To satisfy the design, deflection of the panel for a specific
loading and application must not exceed the corresponding limit. Considering the true
bending stiffness (EI) of the single core sandwich panel, based on Figure 8, required
distributed load of q that results in a mid-span deflection of δ in a panel with span length
of L can be expressed as:

q =
384EIδ

5L4 where δ =
L

120
,

L
180

,
L

240
,

L
360

(2)

The maximum distributed loads that can be applied to a panel corresponding to
different deflection limits can be computed using Equation (2) and are plotted in Figure 9a.
Regarding all deflection limits, the maximum bending load increases while the span
length decreases. Notably, the maximum bending load obtained from the deflection limit
(Equation (2)) should not be counted as the load capacity of the specimen, and the failure
of the specimen under this load must be checked. To this aim, the distributed load that
results in a maximum bending moment of the sandwich panel is computed as follows:

wmax =
8Mb

max
L2 (3)

where, wmax and L are the distributed load at the failure and span length of the specimen,
and Mb

max is the bending moment capacity normalized by the width, which is 6.04 N.m/mm
for a one-layered core sandwich panel. The maximum distributed load obtained from Equa-
tion (3) for different span lengths also is plotted as a failure curve in Figure 9. Therefore, the
maximum distributed bending load that can be applied on the sandwich panel with a single
core at a given span length would be the smallest value of the bending load either obtained
from the deflection limit (Equation (2)) or the failure curves (Equation (3)). Regarding
specimens with a 61 cm (24 in) span length, for instance, the maximum distributed bending
load based on a deflection limit of L/120, which was 162.14 kPa (3386 psf), is not acceptable
since the specimen will fail at a smaller load, which was 130 kPa (2716 psf) as obtained
from the failure curve. Notably, for specimens with a span length of 76.2 cm (30 in) and
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larger, the bending load obtained from any deflection limit can be accepted as the load
carrying capacity of the specimen since it falls under the failure curve and, thus, is smaller
than the load obtained from the bending moment capacity. A blow-up of Figure 9a, where
the load based on deflection limits falls under the failure curve, is presented in Figure 9b.
A specimen with a span length of 137.16 cm (54 in) can meet all deflection limits under a
distributed bending load of 4.79 kPa (100 psf). It means that if a one-layered core sandwich
panel evaluated in this study is used as a floor or a roof panel, the joist span for such a load
can be increased to 137.16 cm (54 in) no matter what the deflection limit.

Figure 9. (a) Maximum bending load for different span lengths without passing the deflection limits (b) a blow-up of the
circle area in part a.

4.2. Two-Layered Core Sandwich Panels for Wall Application

Two sandwich panels (with two layers of the 3-D core) filled with 2-part closed-cell
foam were tested in bending, and two in axial compression, studies. Regarding the bending
test, load was applied on the inside surface (gypsum) rather than the outside surface (OSB).
One reason for this was to understand the effect of suction on the wall caused by wind
load, which puts the inside surface in compression. Another reason was to find the actual
strength of this two-layered sandwich panel under a bending load, since gypsum is not
strong in tension, and an applied load on the outside surface (OSB), which puts the inside
surface (gypsum) in tension, possibly resulting in early gypsum failure. Regarding the
case of axial compression, both axial shortening and lateral deflection at the mid-height of
the wall were collected using displacement transducers (10 in string potentiometers). The
load-deflection curves of the two specimens of this sandwich panel configuration under
bending and compressive loads are presented in Figure 10. Regarding axial compression, it
seems that the panels behaved differently in terms of axial shortening and lateral deflection.
However, it should be emphasized that these differences compared to the dimensions of
the wall members are negligible. Axial shortening, for instance, differs by about 4 mm
while the length of these walls is 2438 mm. The typical failure of the sandwich panel
under four-point bending and axial compression tests are shown in Figure 11. Failure
under bending was tension failure in the face-sheet, as shown in Figure 11a. Regarding
the compression test, since the load was applied along a line located at one-third of the
thickness of the specimen from the inside face-sheet (drywall), and not at the center of the
wall as per ASTM E72 guidelines [33], failure was due to crushing in the drywall, as shown
in Figure 11b.
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Figure 10. Load-deflection curves for two-layered core sandwich panels under (a) bending and (b) axial compression tests.

Figure 11. Typical failure of two-layered core sandwich panel under (a) bending: tension and (b) compression: crushing.

Bending and compression results of the sandwich panels were compared with those
of structural insulated panels (SIP) and traditional stud walls from the literature, in Table 2.
Abbasi [41] performed bending and axial compression tests on both the SIP and stud walls
that were 165 mm (6.5 in) in thickness, which is thicker than the thickness of the two-layered
core sandwich panel (93 mm) in this study. While the OSB was used as a face-sheet on
both sides of the SIP, face-sheets for the stud wall were the same as the two-layered core
sandwich panel in this study, an OSB on one side and drywall on the other.

Table 2. Comparison between bending and compression results of two-layered core sandwich panel with SIP and studded
walls. (Coefficient of variation, COV, shown in parentheses).

Test Specimen Size (cm)
(L × b × t) # Of Panels Max. Load (kN)

Equivalent
Distributed
Load (kPa)

Max. Stress
(kPa)

Bending

Sandwich 229 × 122 × 9.3 2 51.1
(Avg. of 53.3 & 49) 44.7 8305

SIP [41] 244 × 122 × 16.51 3 26.5 (2.47%) 21.7 1458

Stud [41] 244 × 244 × 16.51 3 68.8 (6.66%) 56.4 4287

Compression

Sandwich 244 × 122 × 9.3 2 181.8
(Avg. of 174.1 & 189.5) 1603 1603

SIP [41] 274 × 122 × 16.51 3 96.4 (8.39%) 479 479

Stud [41] 274 × 244 × 16.51 3 250 (21.64%) 621 621

Maximum loads from bending and compression were used to find the equivalent
distributed load (w). Regarding the compression test, the maximum load was divided by
the area of the surface where the force was applied. However, for the bending test, the
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maximum moment, which occurs at the mid-span due to line load (P) or distributed load
(w), was the criteria to find the equivalent distributed load as follows:

Line load (This study) : Mmax, Line =
PL
4

Distributed load : Mmax, Dis =
wL2

8

}
Mmax, Line = Mmax, Dis → w =

2P
L

(4)

Comparison of the distributed load revealed that the two-layered core sandwich panel
was able to carry a 235% and 158% larger distributed axial compression load than the SIP
and the stud wall, respectively. The distributed bending load for the sandwich panel was
106% larger than the SIP, while it was 21% lower than that of the stud wall. However,
it should be noted again that the SIP and stud walls had different thicknesses and span
lengths than the sandwich panel, as given in Table 2. An equivalent distributed load took
the span length into account but did not account for a change in the thickness of the panels.
Therefore, since the maximum stress (MOR) caused by the line load, which is computed
by σ = MC/I = PLC/4I that takes both the thickness and span length into account, is
presented in the last column of Table 2, and was used for a fair comparison.

Comparison of the strength revealed that the MOR of the sandwich panel was 470%
and 94% higher than that of the SIP and stud walls, respectively. Results of these experi-
ments confirm that two-layered core sandwich panels with the same thickness and span
length of SIPs and stud walls would have a higher performance under bending and axial
compression loads. The value of COV, as a percentage, is given in parenthesis.

4.3. Thermal Performance

Thermal conductivity values estimated for both one- and two-layered core sandwich
panels with closed-cell foam in the interior cavities are presented in this subsection. To
explore the effect of temperature on the thermal performance of the sandwich panels,
specimens were evaluated at different temperatures, and thermal conductivities normalized
by thickness are given in Table 3. Comparison of the results shows that the thermal
conductivity of both sandwich panels increased when the mean temperature also was
increased. Changing the mean temperature from 2.5 ◦C to 62.5 ◦C results in a 23% and
20% increase in the thermal conductivity of one- and two-layered core sandwich panels,
respectively. Therefore, these sandwich panels have a better energy performance at lower
temperatures. Also, for all the mean temperatures, one-layered core specimens showed
a lower thermal conductivity than a two-layered one. This difference, which varies from
2.3% to 5.1%, is shown in the last column of Table 3.

The R-value of one- and two-layered core sandwich panels (1LCSP and 2LCSP) normal-
ized by thickness is compared in Figure 12 to those of commercially produced wood-based
panels, solid wood (Japanese cedar), and commercially available insulators provided by
Kawasaki and Kawai [42]. The commercial wood-based products were plywood (PW),
medium density fiberboard (MDF), oriented strand board (OSB), particleboard (PB), and
plywood-faced sandwich panel with a low-density fiberboard core (PSW), while the com-
mercial insulators were expanded polystyrene foam (EPS), extruded polystyrene foam
(XPS), and fiberglass wool (FG).

A comparison of normalized R-values in Figure 12 shows that corrugated core sand-
wich panels have a higher energy performance, about 120% on average, than commercial
wood-based products including PW, MDF, OSB, and PB. Compared to solid wood, the
normalized R-value of the sandwich panel is about 65% higher. Sandwich panels indi-
cated a 30% higher normalized R-value than PSW, which was specifically developed as a
wood-based insulation material [42]. However, compared to commercial insulators such
as EPS, XPS, and FG, the wood strand sandwich panels evaluated in this study presented
a lower normalized R-value, at about 30% on average. An advantage of the sandwich
panel developed in this study is the versatility to include other materials within the panel
construction to further improve the panel’s insulation capacity, as long as the new material
does not significantly reduce the required load-carrying capacity.
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Table 3. Comparison of normalized thermal conductivity of one- and two- layered core sandwich panels.

Temperature (◦C)
Sandwich Type

Average Thermal
Conductivity (λ)

(W/mK)

COV
(%)

Diff
(%)Top Plate Bottom Plate Mean

−10 15 2.5
1-layered 0.051 8.23

5.1
2-layered 0.054 11.23

0 25 12.5
1-layered 0.052 8.32

3.9
2-layered 0.054 11.23

10 35 22.5
1-layered 0.054 8.03

3.7
2-layered 0.056 11.05

30 55 42.5
1-layered 0.058 7.34

3.6
2-layered 0.060 10.42

50 75 62.5
1-layered 0.063 6.3

2.3
2-layered 0.065 9.44

Figure 12. Comparison between normalized R-value of sandwich panel with corrugated core to those
of commercially available wood-based and insulator products provided by Kawasaki and Kawai [42].

5. Conclusions

Sandwich panels with corrugated core(s) were fabricated as a renewable building
construction material. Sandwich panels with one core were introduced for floor and
roof applications while, for wall members, two corrugated layers were used as a core.
Considering the primary loading applied to these sandwich panels during their service
life, bending and compression testing were performed to evaluate their performance. Also,
the thermal conductivity of specimens filled with closed-cell foam was measured.

Based on the bending results of specimens at different span lengths, the stiffness and
strength of the one-layered core sandwich panel was computed. The load-carrying capacity
for different spans was determined based on satisfying the deflection limits and strength
of materials. Results revealed that the joist span can be increased to 137.16 cm (54 in) for
a 4.79 kPa (100 psf) bending load. A two-layered core sandwich panel as a wall member
showed a significantly better performance than some current building products, namely
SIP panels and traditional stud walls. The normalized R-value of these sandwich panels
was about 120% higher than commercial wood-based products. However, commercial
insulators such as EPS, XPS, and FG showed about a 30% higher performance than the
sandwich panel products. Results of this study indicate that high-performance wood strand
sandwich panel products for flooring, roofing, and panelized walls can be manufactured
using small diameter timber from thinning operations to reduce hazardous fuel loads.

The findings of this research indicate that the structural and thermal performances
of the 3-D sandwich panel configuration developed for this research provides a signifi-
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cantly improved performance for structural and thermal performances when compared
to available wood-based products currently used for wall and floor configurations on
the market. Therefore, it is conceivable to prefabricate these types of sandwich panels as
panelized building envelope elements to be shipped to the job site for quick construction
of a residential home building envelope. This can potentially save building time and labor
costs. Additionally, the use of small diameter timber for manufacturing this wood-based
sandwich structure can recover some of the hazardous fuel thinning costs and contribute
to acceleration of forest restoration efforts.
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sylvestris L.) for the Production of Structural Elements. Part II: Strength Properties of Glued Laminated Timber. Materials 2020, 13,
4029. [CrossRef]

14. Baño, V.; Godoy, D.; Figueredo, D.; Vega, A. Characterization and structural performance in bending of CLT panels made from
small-diameter logs of loblolly/slash pine. Materials 2018, 11, 2436. [CrossRef]

15. Lokaj, A.; Dobes, P.; Sucharda, O. Effects of Loaded End Distance and Moisture Content on the Behavior of Bolted Connections in
Squared and Round Timber Subjected to Tension Parallel to the Grain. Materials 2020, 13, 5525. [CrossRef] [PubMed]

16. Triantafillou, T.C.; Gibson, L.J. Failure mode maps for foam core sandwich beams. Mater. Sci. Eng. 1987, 95, 37–53. [CrossRef]
17. Funari, M.F.; Greco, F.; Lonetti, P. Sandwich panels under interfacial debonding mechanisms. Compos. Struct. 2018, 203, 310–320.

[CrossRef]
18. Mohammadi, M.S.; Nairn, J.A. Balsa sandwich composite fracture study: Comparison of laminated to solid balsa core materials

and debonding from thick balsa core materials. Compos. Part B Eng. 2017, 122, 165–172. [CrossRef]

http://doi.org/10.1155/2015/243947
http://doi.org/10.1016/B978-0-08-102131-6.00006-2
http://doi.org/10.1016/j.compositesb.2012.07.004
http://doi.org/10.1002/mame.200600113
http://doi.org/10.3390/polym9050160
http://doi.org/10.1016/j.compositesa.2012.11.014
http://doi.org/10.1016/j.lwt.2010.01.021
http://doi.org/10.3390/fib7120106
http://doi.org/10.1007/s11837-016-2058-z
http://doi.org/10.1007/s11837-016-2026-7
http://doi.org/10.3390/ma13184029
http://doi.org/10.3390/ma11122436
http://doi.org/10.3390/ma13235525
http://www.ncbi.nlm.nih.gov/pubmed/33287370
http://doi.org/10.1016/0025-5416(87)90496-4
http://doi.org/10.1016/j.compstruct.2018.06.113
http://doi.org/10.1016/j.compositesb.2017.04.018


Materials 2021, 14, 2083 14 of 14

19. Banerjee, S.; Bhattacharyya, D. Optimal design of sandwich panels made of wood veneer hollow cores. Compos. Sci. Technol. 2011,
71, 425–432. [CrossRef]

20. Panjehpour, M.; Abang Ali, A.A.; Voo, Y.L. Structural Insulated Panels: Past, Present, and Future. J. Eng. Proj. Prod. Manag. 2013,
3, 2–8. [CrossRef]

21. Hunt, J.F.; Winandy, J.E. 3D engineered fiberboard: Engineering analysis of a new building product. In EcoComp Queen Mary;
University of London: London, UK, 2003; p. 8.

22. Srinivasan, N.; Jayaraman, K.; Bhattacharyya, D. Profile production in multi-veneer sheets by continuous roll forming. Holz-
forschung 2008, 62, 453–460. [CrossRef]

23. Way, D.; Sinha, A.; Kamke, F.A.; Fujii, J.S. Evaluation of a wood-strand molded core sandwich panel. J. Mater. Civ. Eng. 2016, 28,
4016074. [CrossRef]

24. McCracken, A.; Sadeghian, P. Corrugated cardboard core sandwich beams with bio-based flax fiber composite skins. J. Build. Eng.
2018, 20, 114–122. [CrossRef]

25. Smardzewski, J. Experimental and numerical analysis of wooden sandwich panels with an auxetic core and oval cells. Mater. Des.
2019, 183, 108–159.

26. Voth, C.; White, N.; Yadama, V.; Cofer, W. Design and evaluation of thin-walled hollow-core wood-strand sandwich panels. J.
Renew. Mater. 2015, 3, 234–243. [CrossRef]

27. Mohammadabadi, M.; Yadama, V.; Geng, J. Creep behavior of 3D core wood-strand sandwich panels. Holzforschung 2018, 72,
513–519. [CrossRef]

28. Mohammadabadi, M.; Yadama, V.; Yao, L.; Bhattacharyya, D. Low-velocity impact response of wood-strand sandwich panels and
their components. Holzforschung 2018, 72, 681–689. [CrossRef]

29. Mohammadabadi, M.; Jarvis, J.; Yadama, V.; Cofer, W. Predictive models for elastic bending behavior of a wood composite
sandwich panel. Forests 2020, 11, 624. [CrossRef]

30. Mohammadabadi, M.; Yadama, V. Influence of a Biaxially Corrugated Core Geometry on Flexural Stiffness of Wood-Strand
Composite Sandwich Panels. Mater. Today Commun. 2020, 100931. [CrossRef]

31. Mohammadabadi, M.; Yadama, V.; Smith, L. An analytical model for wood composite sandwich beams with a biaxial corrugated
core under bending. Compos. Struct. 2019, 228, 111316. [CrossRef]

32. American Society for Testing and Materials (ASTM). Standard Test. Method for Conducting Transverse and Concentrated Load Tests on
Panels Used in Floor and Roof Construction; ASTM E2322-03; American Society for Testing and Materials (ASTM): Conshohocken,
PA, USA, 2015.

33. American Society for Testing and Materials (ASTM). Standard Test Methods of Conducting Strength Tests of Panels for Building
Construction; ASTM E72-15; American Society for Testing and Materials (ASTM): Conshohocken, PA, USA, 2015.

34. American Society for Testing and Materials (ASTM). Standard test Method for Facing Properties of Sandwich Constructions by Long
Beam Flexure; ASTM D7249/D7249M-12; American Society for Testing and Materials (ASTM): Conshohocken, PA, USA, 2012.

35. American Society for Testing and Materials (ASTM). Standard Practice for Calculating Thermal Transmission Properties under
Steady-State Conditions; ASTM C1045-07; American Society for Testing and Materials (ASTM): Conshohocken, PA, USA, 2007.

36. Abdou, A.A.; Budaiwi, I.M. Comparison of thermal conductivity measurements of building insulation materials under various
operating temperatures. J. Build. Phys. 2005, 29, 171–184. [CrossRef]

37. White, N.B. Strategies for Improving Thermal and Mechanical Properties of Wood-Composites. Master’s Thesis, Washington
State University, Pullman, WA, USA, 2011.

38. Mohammadabadi, M.; Yadama, V.; Smith, L. The effect of plate theories and boundary conditions on the bending behavior of a
biaxial corrugated core sandwich panel. Compos. Struct. 2020, 228, 112133. [CrossRef]

39. Ross, R.J. Wood Handbook: Wood as an Engineering Material; General Technical Report FPL-GTR-190; USDA Forest Service, Forest
Products Laboratory: Madison, WI, USA, 2010.

40. ICC (International Code Council). International Building Code; ICC: Country Club Hills, IL, USA, 2012.
41. Abbasi, H. Structural Behaviour of Insulated Foam-Timber Panels under Gravity and Lateral Loading. Ph.D. Thesis, Ryerson

University, Toronto, ON, Canada, 2014.
42. Kawasaki, T.; Kawai, S. Thermal insulation properties of wood-based sandwich panel for use as structural insulated walls and

floors. J. Wood Sci. 2006, 52, 75–83. [CrossRef]

http://doi.org/10.1016/j.compscitech.2010.12.011
http://doi.org/10.32738/JEPPM.201301.0002
http://doi.org/10.1515/HF.2008.064
http://doi.org/10.1061/(ASCE)MT.1943-5533.0001589
http://doi.org/10.1016/j.jobe.2018.07.009
http://doi.org/10.7569/JRM.2015.634109
http://doi.org/10.1515/hf-2017-0088
http://doi.org/10.1515/hf-2017-0169
http://doi.org/10.3390/f11060624
http://doi.org/10.1016/j.mtcomm.2020.100931
http://doi.org/10.1016/j.compstruct.2019.111316
http://doi.org/10.1177/1744259105056291
http://doi.org/10.1016/j.compstruct.2020.112133
http://doi.org/10.1007/s10086-005-0720-0

	Introduction 
	Panel Fabrication 
	Experimental Evaluation 
	Results and Discussions 
	One-Layered Core Sandwich Panels with Roof/Floor Applications 
	Two-Layered Core Sandwich Panels for Wall Application 
	Thermal Performance 

	Conclusions 
	References

