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The SARS-CoV-2 pandemic has created a demand for large scale testing, as part of the effort to understand 
and control transmission. It is important to quantify the error rates of test equipment under field conditions, 
which might differ significantly from those obtained in the laboratory. A literature review on SARS-CoV-2 
reverse-transcription polymerase chain reaction (RT-PCR) is used to construct a clinical test confusion matrix. 
A simple correction method for bulk test results is then demonstrated with examples. The required sensitivity 
and specificity of a test are explored for societal needs and use cases, before a sequential analysis of common 
example scenarios is explored. The analysis suggests that many of the people with mild symptoms and positive 
test results are unlikely to be infected with SARS-CoV-2 in some regions. It is concluded that current and foreseen 
alternative tests can not be used to “clear” people as being non-infected. Recommendations are given that 
regional authorities must establish a programme to monitor operational test characteristics before launching 
large scale testing; and that large scale testing for tracing infection networks in some regions is not viable, 
but may be possible in a focused way that does not exceed the working capacity of the laboratories staffed by 
competent experts. RT-PCR tests can not be solely relied upon as the gold standard for SARS-CoV-2 diagnosis at 
scale, instead clinical assessment supported by a range of expert diagnostic tests should be used.
1. Introduction

During the ongoing SARS-CoV-2 pandemic, there have been under-

standable calls for widely available testing procedures [1]. The primary 
use cases were:

1. Identifying infected people in the population as early as possible, 
ideally before symptoms are exhibited, so that measures can be 
taken to avoid spreading the disease to others.

2. Confirming SARS-CoV-2 infection in patients exhibiting symptoms, 
so that they can be isolated, treated and/or studied separately from 
patients with other illnesses.

3. Ruling out SARS-CoV-2 infection, allowing a person to avoid iso-

lation when exhibiting the milder symptoms shared with other 
infections of the respiratory tract.

A common, moderate cost and efficient SARS-CoV-2 test is based 
around the reverse-transcription polymerase chain reaction (RT-PCR) 
method. This was, at the time of writing, referred to as the “gold 
standard” perhaps optimistically. Indeed, efforts to validate serological 
testing [2] and computerised tomography (CT)-based methods [3] have 
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used RT-PCR as a reference of “confirmed cases” by which to measure 
other testing methods. RT-PCR is a relatively simple method, requiring 
a swab sample that is sent to the lab for chemical amplification.

Use case 1 would ideally involve a large number of tests being 
performed on the general public, and a number of governments have 
expressed intention to do this at scale. Use cases 2 and 3 are often per-

formed on admission to a clinical facility. Use case 3 is particularly 
important for critical workers in society, allowing them to return to 
their duties without fear of spreading the disease [4] and became a de-

ployed strategy in some regions (e.g. the UK) early in the pandemic.

These use cases, and the policies of many governments, assume low 
error rates from the tests. The reality of any test, unfortunately, is that 
errors do occur. Moreover, whilst the statistics of testing is a core com-

ponent of undergraduate scientific education, because even seasoned 
experts occasionally make statistical mistakes it is worth expending a 
little patience to cover the groundwork before tackling the main body 
of the problem.

This article will therefore summarise the known fundamentals of 
testing and Bayesian methods for a general readership. The contribu-

tions thereafter are the derivation of a correction method for public 
data to replace the belief that “a positive test equals a confirmed case”; 
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Table 1. Confusion matrix for a 
generic test.

Infected Healthy

Test negative 𝑓𝑛 𝑡𝑛

Test positive 𝑡𝑝 𝑓𝑝

before a review of clinical literature is combined with these methods. 
There are logically new implications for SARS-CoV-2 diagnosis; updated 
probabilities for various prognoses; suggestions for public policy; and 
the validity of research relying on “confirmed” cases of SARS-CoV-2 
that are described as a consequence of this work.

1.1. Test confusion matrix

A confusion matrix conveniently encapsulates the reliability charac-

teristics of a test, shown in Table 1. One column holds the positive 
condition (in this case, “Infected”) and the other column holds the neg-

ative (in this case, “Healthy”). Each row corresponds to a test result, 
either positive or negative. Thus one sees that the confusion matrix is 
a table of test results that are true positive (𝑡𝑝), true negative (𝑡𝑛), false 
positive (𝑓𝑝), and false negative (𝑓𝑛). These numbers could be given as 
tallies of results, or they could be normalised so that each column sums 
to unity and each matrix element represents a probability of that test 
result being given for a given infection status.

In addition to estimates of variables one must also propagate the 
uncertainty, error, or statistical accuracy of the values. This usually has 
the symbol 𝜎, and is given by the square root of the counts of the mea-

sured quantity. 𝜎 is widely used in physics, but frequently in medicine 
one quotes the 95% statistical confidence level, which is ∼1.96 ×𝜎. Con-

sidering a number of positive 𝑛𝑝𝑜𝑠 and negative 𝑛𝑛𝑒𝑔 test results from a 
total of 𝑛 = 𝑛𝑝𝑜𝑠 + 𝑛𝑛𝑒𝑔 tests, we estimate the probability of returning a 
positive result, and it’s confidence range, with the following well-known 
equations:

𝑝𝑒𝑠𝑡 =
𝑛𝑝𝑜𝑠

𝑛
(1)

𝑒𝑟𝑟95%(𝑝𝑒𝑠𝑡) ≈
1.96
𝑛
√
𝑛

√
𝑛𝑝𝑜𝑠𝑛𝑛𝑒𝑔 (2)

In other words, we have our best estimate of 𝑝𝑒𝑠𝑡, and 95% confidence 
that 𝑝 actually lies between (𝑝𝑒𝑠𝑡 − 𝑒𝑟𝑟) and (𝑝𝑒𝑠𝑡 + 𝑒𝑟𝑟).

The test characteristics are often presented as well-known parame-

ters. The sensitivity, 𝑠𝑒, or true positive rate (TPR) measures how much of 
the “infected” column is correctly identified. It is given by:

𝑠𝑒 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
(3)

and the specificity, 𝑠𝑝, or true negative rate (TNR) measures how much of 
the “healthy” column is correctly identified. It is given by:

𝑠𝑝 =
𝑡𝑛

𝑡𝑛 + 𝑓𝑝
(4)

These are related to the false negative rate (FNR) and false positive 
rate (FPR) by

𝑠𝑒 = 1 − 𝐹𝑁𝑅 (5)

𝑠𝑝 = 1 − 𝐹𝑃𝑅 (6)

The false positive and false negative rates are to some degree tun-

able by the test designer. This can be visualised as a “gain” control on 
an amplifier. Turning up the gain makes it more likely to catch fainter, 
positive signals, (false negatives decrease). The “gain” here in the ampli-

fication process is therefore correlated very strongly with the statistical 
sensitivity. However, increasing sensitivity therefore increases the noise 
(false positive rate increases). Conversely, turning down the gain re-

duces the noise (false positive rate goes down) but makes it more likely 
that you miss weaker signals of interest (false negative rate increases).
2

Test designers therefore try to balance these two effects to minimise 
risk. ROC curve analysis [5] can be used to tune test procedures quite 
accurately for a given prevalence. Including cost/benefit analysis in the 
test design [6] allows one to adjust the sensitivity of the test relative to 
the disease prevalence, which was summarised very well by Kaivanto 
[7]. As a side note, it seems that some batches of false positive results 
are likely to be related to incorrect sensitivity for a particular use case, 
and not simply statistical anomalies or quality issues.

The confusion matrix in Table 1 allows us to write two simultaneous 
equations for the situation where a number of tests are used in the field. 
Let us imagine that in a testing programme, 𝑛𝑝𝑜𝑠 of these tests return 
positive results, and 𝑛𝑛𝑒𝑔 return negative results. How many are actually 
infected? Let us further imagine that, before launching the mass testing 
programme, one took the essential step of fully mapping the confusion 
matrix with a thorough clinical study (currently lacking for SARS-CoV-2 
testing). One can then establish, from the test result totals, the actual 
number of infected patients 𝑁𝑖. We must first eliminate the number of 
non-infected or healthy patients 𝑁ℎ from

𝑛𝑛𝑒𝑔 =𝑁𝑖𝑓𝑛 +𝑁ℎ𝑡𝑛 (7)

𝑛𝑝𝑜𝑠 =𝑁𝑖𝑡𝑝 +𝑁ℎ𝑓𝑛 (8)

These are simply a symbolic representation of Table 1. Solving these 
simultaneous equations for 𝑁𝑖 then yields a simple equation to estimate 
for the number of patients actually infected with SARS-CoV-2:

𝑁𝑖 =
𝑛𝑛𝑒𝑔𝑓𝑝 − 𝑛𝑝𝑜𝑠𝑡𝑛

𝑓𝑝𝑓𝑛 − 𝑡𝑝𝑡𝑛
(9)

Instead of erroneously reporting 𝑛𝑝𝑜𝑠 as the number of infected people, 
𝑁𝑖 gives the accurate result if the test has been properly characterised. 
This equation is applied in sections 3.1 and 3.2.

1.2. Bayes’ theorem and base rate fallacies

If one would like to use a test to diagnose a patient, or to rule out 
possible infection so that they can be safely released back into society 
or a work function, the confusion matrix alone is insufficient. One must 
also consider the base rate, or prevalence, in the context of the test. 
For example, a test that has a 90% sensitivity incorrectly clears 10% 
of those infected. If we imagine an enclosed group, for example a jail, 
filled with sick patients in their beds, it is intuitive that any test results 
coming back negative from symptomatic patients in that group should 
be treated with caution.

Conversely, if one used a test that has a 90% specificity, it still re-

turns a false positive 10% of the time. If one then attempts to screen 
millions of citizens in an attempt to find individuals with a disease af-

flicting one in a thousand people, then one intuitively knows that the 
infected cases will be buried amongst hundreds of thousands of false 
positive results.

Ignoring the prevalence of the phenomenon for which one is test-

ing is a well known statistical error called the base rate fallacy. Taking 
into account the base rate, and the confusion matrix, one can introduce 
combinations of probabilities to study common scenarios. For example, 
whether or not a person has symptoms, and is tested, what is the prob-

ability that the person is actually infected, considering that there exist 
alternative diagnoses with similar symptoms, and that some patients 
remain symptom free?

The key to tackling these scenarios rapidly, objectively, and conclu-

sively, is Bayes’ theorem. Bayesian inference has been applied in two 
forms: both using continuous distribution functions or discrete vari-

ables. This article uses the latter, i.e. probability functions of Boolean 
variables of disease evidence 𝑒. The evidence 𝑒 = 1 could be a pos-

itive test result, or exhibition of symptoms, whilst 𝑒 = 0 is the ab-

sence of this evidence. The disease status 𝑑 = 1 indicates infection, and 
𝑑 = 0 ⇒ ¬𝑑 = 1 indicates the lack of infection. In these terms, Bayes’ 
theorem is:
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𝑝(𝑑|𝑒) = 𝑝(𝑒|𝑑) × 𝑝(𝑑)
𝑝(𝑒)

(10)

𝑝(𝑑|𝑒) is the conditional probability that we are trying to establish: 
given the evidence 𝑒, what is the probability that the person has the 
disease status 𝑑? In maths and physics, this is known as the “posterior”, 
and in the medical community it is known as the “posttest” probability.

𝑝(𝑒|𝑑) is the likelihood of obtaining evidence 𝑒, assuming that the 
patient has the disease. If the evidence is a positive test result, and one 
took all the infected patients who had the disease, then 𝑝(𝑒 = 1|𝑑 = 1) is 
the fraction of those patients that would be expected to return a positive 
test result: it is the true positive rate of the test 𝑡𝑝 from section 1.1. If 
evidence 𝑒 is a symptom of the disease, then 𝑝(𝑒|𝑑 = 1) is the fraction 
of infected patients who exhibit that symptom, based on expert clinical 
studies of the disease.

𝑝(𝑑) is the (“prior”) probability, or base rate, of any individual hav-

ing disease status 𝑑, irrespective of the evidence 𝑒. In the medical 
community, it is called the “pretest” probability.

Lastly, 𝑝(𝑒) is the (“marginal”) likelihood of obtaining evidence 𝑒
considering both that the patient may have the disease or may not.

The marginal term 𝑝(𝑒) is conveniently expanded using the law of 
total probability:

𝑝(𝑒) = 𝑝(𝑒|𝑑)𝑝(𝑑) + 𝑝(𝑒|¬𝑑)(𝑝(¬𝑑)) (11)

= 𝑝(𝑒|𝑑)𝑝(𝑑) + 𝑝(𝑒|¬𝑑)(1 − 𝑝(𝑑)) (12)

where, for example, 𝑝(𝑒 = 1|𝑑 = 1) is the probability of an infected per-

son yielding a true positive result; and 𝑝(𝑒 = 1|¬𝑑 = 1) is the probability 
of obtaining a false-positive test result 𝑒 = 1 from a non-infected pa-

tient (𝑓𝑝 in section 1.1): these variables can be obtained from tables 
of test results from clinical studies, as will be shown in Tables 2 and 
3. Equation (11) demonstrates the method of logical combinations of 
probabilities. If we imagine events 𝑃 and 𝑄 that occur independently, 
with probabilities 𝑝(𝑃 ) and 𝑝(𝑄) respectively, then:

• AND: 𝑝(𝑃 ∧ 𝑄) = 𝑝(𝑃 ) × 𝑝(𝑄)
• OR: 𝑝(𝑃 ∨ 𝑄) = 𝑝(𝑃 ) + 𝑝(𝑄)
• NOT: 𝑝(¬𝑃 ) = (1 − 𝑝(𝑃 ))

One can immediately see, then, why an impressive-sounding test 
likelihood 𝑝(𝑒|𝑑) leads people into the base rate fallacy, i.e. forgetting 
to normalise by multiplying with the base rate 𝑝(𝑑) and dividing by 
the marginal term 𝑝(𝑒). It is also the current situation facing many with 
RT-PCR test results, compounded by the use of laboratory rates of sen-

sitivity and specificity rather than those in the field.

The marginal term has one final noteworthy utility, that is to re-

move the effect of time bracketing of illnesses, symptoms, or statistics 
gathering. Some rates are given per day, per week, or per year, and the 
marginal allows us to compare fairly disparate definitions of rates.

Bayes’ theorem can be applied sequentially to multiple scenarios, 
where the “output” posterior probability of one assessment 𝑝(𝑑|𝑒) is 
used as the “input” prior probability 𝑝(𝑑) for a subsequent test, because 
combining multiple scenarios with logical 𝐀𝐍𝐃 is simply multiplication. 
This is known as Bayesian inference or Bayesian updating, where each 
step adds a new fact that is used to quantitatively adjust the confidence 
level of the hypothesis. This is also known as Bayesian belief updating 
— or evidence accumulation — where “today’s posteriors are used as 
tomorrow’s priors”.

1.3. Testing and policy

Despite being refuted by clinical expert input [8], at the time of 
writing the strategy of seeking a single negative RT-PCR test result to 
indicate an absence of infection was in use in some areas. In Sweden, for 
example, the public health agency — Folkhälsomyndigheten — stated 
[9] that “Testing people with symptoms of covid-19 who work in so-

cially important activities to be able to rule out disease is important.” 
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Which it is. The organisation then provided links, via another organisa-

tion, identifying which jobs fell into this category. It was then up to the 
regional powers to implement guidelines. At the time of writing, people 
did not have to isolate after a negative test result once symptoms disap-

pear or after waiting for 7 days [10]. This strategy is a mistake because 
it ignores false negatives: patients who are infected with SARS-CoV-2 
but for whom the test result is incorrect.

Meanwhile, the advice from the United States Centers for Disease 
Control and Prevention stated [11] for a significant part of 2020 that 
a “positive test result means you have an infection”. The published 
threshold for detection at 95% confidence by one major supplier of 
SARS-CoV-2 test kits was 136 copies/mL [12], which evidently leads 
to confidence in the test results, and by which clinical guidelines have 
been written that assert laboratory test specifications as being represen-

tative of operational specifications [13]. These both assumed, perhaps 
prematurely, a negligible operational rate of false positives: patients 
who were healthy and for whom the test result was incorrect.

During the writing of this article, the CDC have correctly updated 
their guidelines [14]. Whilst they still stated that a positive test result 
“indicates that RNA from SARS-CoV-2 was detected, and therefore the 
patient is infected with the virus and presumed to be contagious” there 
were disclaimer clauses encouraging clinical observations and context 
for positive test results, and that negative test results do not rule out 
SARS-CoV-2.

The UK guidance, from the country’s National Health Service, spec-

ified [15] that a person testing negative did not need to self isolate if 
“everyone you live with who has symptoms tests negative”, amongst 
other criteria. However, with a false negative rate of 35%, which is rep-

resentative, just over 1 in 10 infected households would return negative 
results for a couple, and more than 1 in 100 would return all negative 
for a family of four. The UK advice specified further mitigating mea-

sures, including that a person who feels sick should still isolate at home, 
but it did not offer guidelines as to how long.

In contrast, the French labour ministry specified a fairly rigorous 
quarantine protocol [16]: that anyone who had encountered an elevated 
risk situation should isolate for 7 days, then take a test. A positive test 
result required 7 further days of isolation. Even with a negative result, a 
person who had symptoms must continue isolation until 48 hours after 
the fever subsides. The public health agency stated that in the case of 
a negative test the patient should inform the doctor and respect their 
advice [17]. This is a sensible improvement over the Swedish policy, 
leaving the possibility open for expert input to rule out false negatives, 
but it carries possible inconsistency over a range of interpretations and 
diagnoses.

All of the above is not to say that any specific country, or organ-

isation, is wrong to deploy tests with significant error rates. In an 
emergency situation, it is correct that any test is better than no test 
at all. However, SARS-CoV-2 is no longer a new disease: the pandemic 
has been running for more than a year. It is essential that the error 
rates are properly understood, to minimise the impact of incorrect test 
results.

2. Existing literature

It was identified at the early stages of the pandemic that RT-PCR 
tests used outside the laboratory setting were underwhelming when used 
as a reference for other clinical testing options [3]. Using Ai’s data, one 
can construct a confusion matrix for RT-PCR tests relative to chest x-

ray combined with diagnosis from a qualified medical expert, which is 
summarised (as an example) in Table 2.

One should note that those RT-PCR tests were performed in a clinical 
setting by a trained medical worker, supported by an expert laboratory. 
Collecting the test sample is not painful, but uncomfortable because it 
triggers a gag reflex and a strong negative reaction to an object pushed 
into the nasal cavity. For a detailed overview and discussion, see Syal 
[18]. The end result is that for home testing kits, drive-thru facilities, or 
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Table 2. Confusion matrix for the RT-PCR test us-

ing data from hospital-administered tests of more 
than 1000 patients, reported by Ai et al. [3]. The 
lower upper two rows show Ai’s reported data, 
the lower two rows convert these into rates. The 
ranges in parentheses correspond to the 95% con-

fidence intervals.

Test result Infected Healthy

Negative 308 105

Positive 580 21

Negative 0.35 (0.32–0.38) 0.83 (0.77–0.90)

Positive 0.65 (0.62–0.68) 0.17 (0.10–0.23)

similar, where the patient or a family member collects the samples, and 
the processing of the kits is done at scale by non-expert technicians, one 
should therefore anticipate additional adverse effects — particularly an 
increase in false negatives.

There has been an effort to address the issues that are the primary 
subject of this paper [13]. Whilst Watson et al. used a sensitivity of 71%, 
which appears consistent with the previously mentioned literature, their 
assumed specificity of 95% was based on laboratory test data. Even if 
Watson’s assumption was correct, the results of the present study re-

main valid. Nonetheless, it appears that the confusion matrix of Table 2

from Ai et al.’s study [3] is still the best estimate of the characteristics 
of RT-PCR testing for SARS-CoV-2 in the field. Moreover, it will still be 
shown in section 4.1 that Watson’s assumption, and the USA specificity 
reverse-engineered in section 3.3, still lie below what is needed for the 
use cases of the RT-PCR test.

2.1. False negatives

The data from Ai revealed that more than 1∕3 of infected people 
would be expected to return a negative result and return to their usual 
routine. Even if this person develops symptoms later, their negative test 
result provides false security that may affect their behaviour towards 
the risk of spreading the disease.

False negatives can occur when not enough virus material is present 
in the sample, either due to the biological response of the patient or 
the sampling. They could also occur due to incorrect processing of the 
sample. The principal danger with false negatives is that an infected pa-

tient is considered safe and potentially infects others. There is evidence 
of multiple false negatives that proved challenging and time consuming 
to diagnose [19] — repeating the test may not be a valid solution (the 
statistical independence of multiple tests will be addressed shortly).

It appears that there is some time dependence as one would expect, 
as reported by Kucirca [20] and shown in Fig. 1. Virus shedding is ex-

tremely low at the moment of infection, the sensitivity first passes above 
50% around 4-5 days after exposure, reaching a peak at 8 days, before 
decreasing slowly. This goes some way to explain the challenges faced 
by multiple negative test results in a patient admitted for hospital care 
[19]. The timing of the testing with respect to the progression of the in-

fection is therefore quite important, and is in many ways linked with 
complex social factors. A test subject may be motivated to seek or avoid 
testing at certain times; they may report erroneous timings of symp-

tom onset due to poor memory or optimistic estimation; or they may 
be pressured to take a test at an inopportune moment. The worst-case 
scenario from Fig. 1 is someone taking a test in the early stages of infec-

tion and almost certainly receiving a negative result. They then believe 
themselves to be free of the disease even as symptoms develop, and do 
not take the necessary precautions to avoid spreading the infection to 
others. Even at the peak of sensitivity, one could expect false negative 
rate of 21%.

After 16 days, the sensitivity drops back below 50% again. Of 
course, at some point the lack of measurable virus presence transitions 
from a “false negative” to a status of recovered health. Many regions 
4

Fig. 1. Time dependence of the probability of obtaining a negative RT-PCR 
result from an infected patient, after Kucirca et al. [20].

have assumed a 14 day quarantine period, and a 14 day reporting sta-

tistical window, which are compatible with this curve.

The average of this curve is broadly consistent with Ai’s data, and 
so the remainder of the study will use a single false negative rate for 
simplicity.

2.2. False positives

The “Healthy” column of Table 2 shows the specificity implied by 
the Ai et al. data. Almost 1∕5 of healthy people would be incorrectly 
identified as infected.

False positives could occur with contamination and incorrect pro-

cessing of the sample, amongst other mechanisms [21]. Large “batches” 
of false positives have been tied to specific test kits [22], and how they 
were used [23] (although, as part of that explanation it appears that 
there is a misunderstanding of the false negative rates). A major risk 
scenario is admitting a sick patient, who tests positive, into a SARS-

CoV-2 ward when they actually have a different illness, a situation that 
was narrowly avoided in Japan recently [24]. Fortunately, a clinical as-

sessment intervened and the patient was separated from SARS-CoV-2 
patients pending further investigation.

False positives are less dangerous in wide screening settings — un-

like some Kafkaesque drug testing scenarios, for example — but false 
positives raise anxiety and carry social and economic costs that spread 
into the community around those tested. There is a risk that a false 
positive result creates an understandable yet mistaken belief in pos-

sessing some immunity, leading some to potentially place themselves 
and their close contacts at increased risk of infection. False positive 
test results might also affect plans for vaccination: if a significant frac-

tion of positively-tested patients have no detectable antibody level, this 
might be misunderstood as a loss of immunity rather than incorrect 
test results. The same applies for anecdotal stories of people who report 
having had mild SARS-CoV-2 in spring, then recovering, only to suffer 
a severe SARS-CoV-2 illness later in the year. Some of those cases may 
be false positive test results.

More recent indications of false positive rates [21] indicate possible 
improvements may have been made, raising sensitivity and specificity 
above 95%. However, on further examination of the cited references 
(e.g. [25, 26]) one finds that these are again laboratory studies rather 
than clinical studies. Mayers and Baker [25] state that in the UK, the 
operational false positive rate is unknown. Most recently, Cohen et al.

reviewed [27] the available literature and found two clinical studies 
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Table 3. Working confusion matrix for 
the rest of this study. Specificity of 83% 
will be called “pessimistic”, and 97.4% 
will be called “optimistic”. These data, 
obtained from the most recent clinical 
results in the literature, are used as the 
𝑝(𝑒|𝑑) and 𝑝(𝑒|¬𝑑) parameters in equa-

tions (10) and (11).

Test result Infected Healthy

Negative 0.35 0.83 – 0.974

Positive 0.65 0.17 – 0.026

reporting false positives. The first by Albendin-Iglesias et al. [28] in-

dicates clinical false positive rates of around 2.6% (CI 0.9-4.3%). The 
second by Katz et al. [29] reports the use of multiple tests and a clinical 
false positive rate of 7.1% with disruption to planned medical proce-

dures as a result. Unfortunately, in the Katz et al. publication it does 
not appear that full a data breakdown of cases and test results is given, 
with which to estimate the confidence interval.

It will be shown in section 3.3 that the clinical specificity in the USA 
is generally above 91% (i.e. the false positive rate is below 9%).

2.3. Working confusion matrix

The working confusion matrix for this study uses the sensitivity data 
implied by Ai et al. without modification. Regarding the clinical speci-

ficity, there appears to be more variation. One has a false positive rate 
of:

• 16.7% (CI 10–23%) from Ai et al. [3]

• <9% from section 3.3

• 7.1% from Katz et al. [29]

• 2.6% (CI 0.9–4.3%) from Albendin-Iglesias et al. [28]

Henceforth, two figures will be generally given, as a range. The pes-

simistic is the data of Ai (≡ 𝑃−#), and the optimistic is the data of 
Albendin-Iglesias (≡𝑂−#).

2.4. Priors

Once one has established a confusion matrix for the test, one must 
then estimate the prior, or pretest, probability of being infected (from 
the prevalence) and some conditional probabilities of shared symptoms 
with other illnesses such as colds and influenza.

One therefore requires answers to the following questions:

1. What is the prevalence of SARS-CoV-2, or what is the probability 
of being infected by SARS-CoV-2 within a given time window (e.g. 
14 days)?

2. Of those infected with SARS-CoV-2, how many have symptoms 
matching colds or influenza?

3. Of those infected with SARS-CoV-2, how many have symptoms that 
are unique indicators of SARS-CoV-2 infection?

4. What is the probability of being infected by colds or influenza 
within a given time window (e.g. 14 days)?

5. What is the probability of suffering serious symptoms (e.g. pneu-

monia, CT anomalies) whilst infected with colds or influenza?

Regarding the first point (q. 1), the infection rate has been tracked 
by ECDC. One assumes these data are mainly positive RT-PCR test re-

sults, and at the time of writing these placed many western countries 
around 600 cases per 100,000 citizens in a 14 day window at the au-

tumnal “second wave” peak in many western countries (= 0.006) [30]. 
This was still a low prevalence rate, far below the error rates of the 
test. The integral of the rate would be proportional to the seropreva-

lence as studied by Eckerle and Meyer from several hot-spots [31]. One 
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sees at most a seroprevalence of just over 7% in Sweden, and a some-

what higher level above 10% in the most infected areas around Madrid 
and Geneva, after a few months of the disease spreading. In light of 
those figures, an average 14 day infection rate of 600 cases per 100,000 
citizens seems reasonable.

Some of these questions have been answered by a study of pas-

sengers aboard the cruise ship “Diamond Princess” [32]. Around 54% 
(CI 50–57%) showed cold-like symptoms (q. 2) at the time of testing, 
around 10% (CI 7–12%) required intensive care (q. 3) and 2.4% (CI 
1–4%) died (note that there is an error in their paper). These numbers 
are about to be challenged, somewhat, in the next section.

In the absence of SARS-CoV-2, the symptoms of cough and fever 
together would indicate influenza, but this correctly identifies influenza 
around 2/3 of the time [33]. Clearly, the use of mild respiratory tract 
infection symptoms is not reliable in distinguishing between SARS-CoV-

2, common colds and influenza.

Regarding more unusual mild symptoms, a recent study by Bénézit 
et al. [34] linked positive corona tests in France with hyposmia and hy-

pogeusia, with a sensitivity of 42% and specificity of 95%. However, 
both of these symptoms are not specific to SARS-CoV-2. Indeed, a study 
pre-SARS-CoV-2 by Henkin et al. [35] reported around 61% of influenza 
patients reporting anomalous taste and smell effects. Moreover, Bénéz-

it’s study filtered SARS-CoV-2 patients using RT-PCR results! This study 
should be considered inconclusive in light of the present article, but a 
similar study focussing on patients admitted to hospital and subject to 
a more rigorous assessment would be most interesting.

There are some anecdotal links reported between dysgeusia and pos-

sible SARS-CoV-2 infection, where a metallic/sour taste is experienced 
with the other common cold symptoms (including by this author, which 
resulted in this article). Lozada-Nur et al. [36] and Aziz et al. [37] have 
reviewed the literature on this topic and suggest that it may be a rather 
common symptom, but unfortunately these studies did not isolate dys-

geusia specifically and bundled all the sensory disturbances under a 
common bracket. One therefore, regretfully, must ignore for now the 
symptoms as a distinguishing factor.

Question 4 is answered by Eccles [38], and is in the range 2-5 per 
year. The calculations in the present study use 4/yr as a working num-

ber. Assuming each cold/flu lasts on average a week, one can scale 4/yr 
to compare with 14 day infection rates of SARS-CoV-2. This 14 day 
cold rate (15%) is the prior that will be used for common colds and 
influenza.

Question 5 has been tracked by the US Centers for Disease Con-

trol and Prevention (CDC) [39] where, for example, the 2017-2018 
influenza season resulted in a hospitalisation rate of 1.8% and a death 
rate of 0.14% out of a total of around 44.8 million cases for influenza.

As mentioned earlier, a number of studies have used RT-PCR tests 
as a “gold standard” reference, without referring to the matrix of con-

fusion as given in Table 2. Therein lies our problem. For example, if the 
entire Diamond Princess population of 3711 people were healthy, then 
a RT-PCR test campaign will nonetheless return approximately P-619 or 
O-96 positive results (all false). In reality, 712 tests were returned posi-

tive, indicating a non-zero infection rate on the ship, but the number of 
infected people was clearly not 712.

If one were to look at country data, for example Sweden, the Eu-

ropean Centre for Disease Control (ECDC) reports [30] that 1000-2500 
tests were performed per week per 100,000 population. Assuming the 
number is at the low end of that range, this is a total of 100,000 tests 
per week for a population of ∼10 million. Were the whole population 
healthy, one would record 16,667 false positives per week, which is P-

2381 or O-371 false positives per day. This should be compared with 
the daily reported case rate averaged over 14 days for the same period, 
i.e. 4007 cases per day. Again we see that the actual infection rate is 
non-zero, but the false positive rate of the RT-PCR test would suggest 
that the real infection rate is lower than the reported cases.
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3. Results

3.1. Correction of Diamond Princess data

The pessimistic estimate of specificity is appropriate in this case, 
since the work was done early in the pandemic and likely used similar 
RT-PCR kits to those used by Ai et al. Using the correction equation (9) 
and the pessimistic specificity, we are solving the simultaneous equa-

tions:

2999 = 0.347𝑁𝑖 + 0.833𝑁ℎ (13)

712 = 0.653𝑁𝑖 + 0.167𝑁ℎ (14)

Solving yields the total number of infected patients aboard Diamond 
Princess to be 𝑁𝑖 = 192; of which 37 patients required intensive care 
(≈19%, CI 14–25%) and there were 9 deaths (≈5%, CI 2–8%). The 
remaining 189 symptomatic patients were possibly suffering from a dif-

ferent infection spreading through the ship. The false positive rate may 
also explain why passengers who had been isolated in their rooms were 
reported to be testing positive — at the time the air ventilation systems 
were hypothesised to be responsible for the transmission, but for some 
of those patients it is likely that the false positive rate of the test is a 
more plausible explanation.

Tabata et al. [40] reported that 107 people were taken to a mil-

itary hospital after returning positive RT-PCR tests, and the fortunes 
of 104 patients were followed after 3 withheld consent. 33/104 were 
asymptomatic at the end of the observation period; 43/104 had mild 
symptoms and 28/104 had more “severe” symptoms. Of the 33 asymp-

tomatic people, 17 had abnormal radio-graphical lung findings which 
are linked with SARS-CoV-2 diagnosis [3]. Of the 71 symptomatic pa-

tients with positive RT-PCR results, 52 (73%, CI 63–84%) had abnormal 
lung radiographical findings.

From these data, it appears that Tabata et al.’s study has captured at 
least 52 + 17 = 69 of the ∼193 infected patients. These figures indicate 
that symptom-free SARS-CoV-2 may be around 17∕69 = 25% of cases 
(CI 14–35%) — and conversely 75% (CI 65–86%) of patients exhibit 
symptoms, in answer to q. 2.

3.2. Sweden

Likewise for the previous subsection, equation (9) yields 𝑁𝑖 = 3336
infected people per day, slightly lower than the official count of 4007. 
Swedish state television reported daily intensive care admissions [41] 
at 190 per day at the time of writing, which is 5.6% of cases. The death 
rate in Sweden was 19 per day, suggesting 0.6% mortality rate. These 
are much less intimidating figures, with a broader social demographic, 
in comparison to those of the cruise ship, though the Swedish figures 
were increasing through an autumnal “second wave” and both hospital-

isation and death tend to be delayed [42], by a median of 12 days and 
19 days respectively.

Taking these delays into account, one should look at the case rates 
over the time window of 2-4 weeks prior, at which time there were a 
corrected 𝑁𝑖 = 1147 infections per day at the start of November 2020, 
implying that around 17% of patients will require intensive care, and a 
mortality rate of approximately 1.7%. These are at the lower end of the 
range of confidence of the Diamond Princess cases.

If one uses the optimistic specificity of 97.4%, the corrected infec-

tion rate increases to 𝑁𝑖 = 5797 per day, higher than the official 4007 
case rate because of the false negative rate. Time shifting 2-4 weeks 
prior, one obtains 𝑁𝑖 = 4100, coincidentally similar to the official up-

to-date case rate. This would imply 4.6% require intensive care, and a 
mortality rate of 0.5%. These seem anomalously low. There are a few 
possible explanations:

• The test false positive rate in Sweden was much higher than the 
optimistic rate (most likely explanation)
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Table 4. Parameters used in the Bayesian 
analysis. “Cvd” here denotes SARS-CoV-2. 𝑟𝑐
of 0.006 corresponds to 600 cases per 100,000 
people in a two week period.

Parameter Symbol Value

14d Cvd Rate 𝑟𝑐 0.006

14d Cold/flu Rate 𝑟𝑓 0.15

Cvd Symptoms if infected 𝑠𝑐 0.75

Cvd hospitalisation rate ℎ𝑐 0.19

Flu hospitalisation rate ℎ𝑓 0.018

• Swedish medical care provided outlooks that are significantly su-

perior to the those of the Diamond Princess population (unlikely)

• The virus in Sweden had evolved to a less dangerous form than 
experienced by those infected on Diamond Princess (unlikely)

From this, it seems logical to conclude that in Sweden the false pos-

itive rate for RT-PCR is significantly higher than the optimistic rate, and 
closer to the pessimistic values in section 2.3.

3.3. USA

The US CDC [11] reported 79,611,982 tests, of which 6,873,739 
were positive. Applying equation (9) to these data with the pessimistic 
specificity indicates a negative 𝑁𝑖. This can only happen if the model 
false positive data are too high for the USA. This is encouraging. Cal-

culating 𝑁𝑖 as a function of specificity, one sees that 𝑁𝑖 first becomes 
positive for a specificity just above 91%, suggesting that — in the USA 
at least — the false positive rate is less than half of the pessimistic es-

timate in section 2.3, and that the approach proposed by Watson et al.

[13] to use the laboratory specificity rates of 95% is close to the opera-

tional parameters in that case.

The optimistic specificity yields a solution 𝑁𝑖 = 7,659,736, again this 
is higher than the official count because it corrects for the false negative 
rate.

3.4. Bayesian inference

3.4.1. Summary of priors

The accumulated prior probabilities from the first half of this article 
are summarised in Table 4. Note that the entry “Cold/flu Rate” com-

bines both the illness rate and the probability of exhibiting symptoms.

Armed with these data, one can proceed to examine scenarios such 
as “If someone has a cough, and receives a negative RT-PCR test result, 
how probable is it that they do not have SARS-CoV-2 and are able to 
return to work?” or “If we test a person who appears healthy, and they 
test positive, what is the probability of infection?”

3.4.2. Corrected RT-PCR test curves

Taking into account the base rate and marginal probability, and us-

ing the pessimistic specificity in section 2.3, the probability of a correct 
test result vs the SARS-CoV-2 prevalence is shown in Fig. 2. There one 
can see that, at a prevalence causing alarm (600 cases per 100k popu-

lation), the positive RT-PCR tests almost always yield incorrect results. 
The negative curve, on the other hand, matches that of Woloshin et al.,

and they have a good online figure for interested readers to explore the 
maths with different levels of sensitivity and specificity.

These curves are “blind tests”: one tests everyone, irrespective of 
symptoms or other factors. In the following sections, Bayesian infer-

ence will be applied to combine sequentially the effects of reporting 
symptoms in combination of taking tests for some scenarios of interest.

3.4.3. Mild symptoms and positive test result

The first example is a person from a social pool with 600 cases per 
100k population, who has only mild symptoms and either they are re-

quested to take a test because of employment, or they are worried. The 
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Fig. 2. The probability of a correct RT-PCR test result, for both positive and 
negative test results, vs the prevalence of SARS-CoV-2 in the test pool per 100k 
population. Two curves are given for each, where (P) indicates a pessimistic 
17% false positive rate, and (O) indicates optimistic 2.6% false positive rate. At 
the time of writing, many western countries are experiencing a prevalence of 
0.6% (600 cases per 100k population in a 2 week period).

Table 5. Bayesian inference of a positive SARS-CoV-2 test on a person 
with cold/flu symptoms, assuming 600 cases per 100k population. The 
final, posterior probability of SARS-CoV-2 infection is 10% with the 
pessimistic false positive rate, and 42% with the optimistic number.

Description Posterior Likelihood Prior Marginal

Baseline / prior 0.006

+ Cold/flu symptoms 0.0286 0.754 0.006 0.16

+ Positive test (P) 0.10 0.653 0.0286 0.181

+ Positive test (O) 0.42 0.653 0.0286 0.0439

analysis is shown in Table 5. Without a test, they have a 2% proba-

bility of being infected by SARS-CoV-2, and with a positive test result 
this increases to an 10–42% probability of being infected, depending on 
whether one uses the pessimistic or optimistic false positive rate respec-

tively. As a result, 58–90% of such people will believe they have corona 
without actually having the disease. Any antibody studies performed on 
these individuals later will be erroneous, because it is unlikely that any 
antibodies will be detected.

3.4.4. No symptoms and positive test result

The next patient to consider is someone from a social pool with 600 
cases per 100k population who has no symptoms, but they take a test 
either as a mass-screening project or because through a tracing system 
someone they have contacted was identified as being positive for SARS-

CoV-2. The analysis is shown in Table 6. Before testing, this person has 
a 0.1% probability of being infected. After a positive test, they have a 
0.6% – 4% probability of being infected. This person also represents a 
spurious data point in any future research, since they most likely do not 
possess any immunity.

3.4.5. Severe symptoms

This patient from a social pool with 600 cases per 100k population 
is admitted to hospital complaining of severe symptoms and is imme-

diately given a test. The analysis is shown in Table 7. Before testing, 
the patient has a 29% probability of being infected. If the test returns 
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Table 6. Bayesian inference of a positive SARS-CoV-2 test on a per-

son with no symptoms, assuming 600 cases per 100k population. The 
final, posterior probability of SARS-CoV-2 infection is 0.6% with the 
pessimistic false positive rate, and 4% with the optimistic false posi-

tive rate.

Description Posterior Likelihood Prior Marginal

Baseline / prior 0.006

+ No symptoms 0.00148 0.246 0.006 0.995

+ Positive test (P) 0.00580 0.653 0.00148 0.167

+ Positive test (O) 0.0360 0.653 0.00148 0.0269

Table 7. Bayesian inference of a positive or negative SARS-CoV-2 
test result from a person admitted to hospital with severe symptoms, 
assuming 600 cases per 100k population. The final, posterior proba-

bility of SARS-CoV-2 infection is 62–91% for the positive test result, 
and 13–15% for the negative test result, depending on whether one 
is pessimistic or optimistic regarding false positives, respectively.

Description Posterior Likelihood Prior Marginal

Baseline / prior 0.006

+ Severe symptoms 0.294 0.192 0.006 0.0039

+ Positive test (P) 0.620 0.653 0.294 0.310

+ Positive test (O) 0.913 0.653 0.294 0.211

Baseline / prior 0.006

+ Severe symptoms 0.294 0.192 0.006 0.0039

+ Negative test (P) 0.148 0.347 0.294 0.690

+ Negative test (O) 0.129 0.347 0.294 0.789

Table 8. Bayesian inference of a SARS-CoV-2 test on a person taken 
from a social group with high prevalence and no symptoms. The fi-

nal, posterior probability of SARS-CoV-2 infection is 17–19% for a 
negative test result, and 67–93% for a positive test result, depend-

ing if one assumes a pessimistic or optimistic false positive rate, 
respectively.

Description Posterior Likelihood Prior Marginal

Baseline / prior 0.666

+ No symptoms 0.361 0.246 0.666 0.450

+ Negative test (P) 0.190 0.347 0.361 0.658

+ Negative test (O) 0.167 0.347 0.361 0.658

Baseline / prior 0.666

+ No symptoms 0.361 0.246 0.666 0.450

+ Positive test (P) 0.689 0.653 0.361 0.342

+ Positive test (O) 0.934 0.653 0.361 0.252

a positive result, they have a 62–91% probability of being infected (de-

pending on the false positive rate), and if negative they have a 13–15% 
probability of being infected.

3.4.6. Exposed person no symptoms

This person was taken from an outbreak pool where 2/3 of people 
are infected. The analysis is shown in Table 8. Before testing, the patient 
has a 36% probability of being infected. After a negative test result, 
they have a 17–19% probability of being infected, depending on the 
false positive rate. Almost 1/5 of the “cleared” patients will actually 
have the infection. On the other hand, a positive test result indicates 
a 69–93% probability of being infected for pessimistic and optimistic 
false positive rates respectively.

3.4.7. Exposed person with symptoms

This person with symptoms was taken from an outbreak pool where 
2/3 of people are infected. The analysis is shown in Table 9. Before test-

ing, the patient has a 91% probability of being infected. After a negative 
test, they have a 77–80% probability of being infected. This is perhaps 
the most challenging scenario. This person could be “cleared” by the 
test under some current policy scenarios. Keeping them quarantined 
protects others, but 20–23% of the patients are expected to be clear of 
SARS-CoV-2 and holding them back puts them at risk of infection.
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Table 9. Bayesian inference of a negative SARS-CoV-2 test on a 
person with symptoms taken from an infected group with high 
prevalence. The final, posterior probability of SARS-CoV-2 infec-

tion is 77–80% with a negative test, and 97–99.6% with a positive 
test, depending on a pessimistic or optimistic assumed false positive 
rate, respectively.

Description Posterior Likelihood Prior Marginal

Baseline / prior 0.667

+ Symptoms 0.905 0.754 0.667 0.550

+ Negative test (P) 0.798 0.347 0.905 0.393

+ Negative test (O) 0.772 0.347 0.905 0.407

Baseline / prior 0.667

+ Symptoms 0.905 0.754 0.667 0.550

+ Positive test (P) 0.974 0.653 0.905 0.607

+ Positive test (O) 0.996 0.653 0.905 0.593

On the other hand, after a positive test, they have a 97–99.6% prob-

ability of being infected.

4. Discussion

It is a known fact that low prior probabilities have a significant im-

pact on posterior probabilities, but nonetheless the worked examples 
should be a guide to informed decision making for likely scenarios.

At low prevalences, even if the test result is positive and one as-

sumes that the false positive rate is at the most optimistic end of the 
range, whether the patient has symptoms of respiratory tract infection is 
the differentiating factor, taking the infection probability from 3.6% to 
42%, as shown in Tables 5 and 6. Nonetheless, more than half of those 
testing positive and having mild symptoms will still not be infected! Sci-

entific studies using these patients can not be relied upon, unless some 
other expert input has been given in the diagnosis. Such a clinical di-

agnosis might include, for example, taking into account contact with a 
person who has exhibited more severe SARS-CoV-2 symptoms and had 
a positive test.

At the other end of the prevalence scale, one sees that in a group 
with 2/3 assumed infection prevalence, a negative test result with no 
symptoms carries just less than 20% risk of infection, whilst mild symp-

toms with a negative test result indicate just under 80% infection risk. 
Once again, it is the presence of symptoms that affects the probabilities 
more than the test result alone, and knowing that there is a delay of al-

most a week before the onset of symptoms those patients should still be 
quarantined. For positive test results in this pool, the presence or not of 
symptoms becomes irrelevant.

There are anecdotal stories of people being offered repeat tests in or-

der to reduce the error rate for the combined results. For example, let us 
assume that the false negative rate is 35% and the first test is negative 
(ignoring prevalence and symptoms). The test is repeated and it is also 
negative. The assumption at this stage is that the false negative rate is 
0.35 ×0.35 = 0.123. This is incorrect, because the false negative rate may 
be a systematic error due to the virus shedding mechanics [20], collec-

tion of sample, and its processing — the two tests are not stochastically 
independent. The same is true in the effort to guard against false posi-

tives: if the test kits both come from the same batch, are processed by 
the same people, in the same facility, using the same “black box” pro-

cedure, then they are unlikely to be stochastically independent and the 
errors in both tests are correlated. It is a standard procedure in science 
and engineering that the validation of any result be truly independent, 
for this reason. It would take an expert eye with experience in RT-PCR 
to look at the fluorescence vs cycle curves to guard against the false 
positives in this scenario, which appears to be the key to Australia’s 
successful testing programme (see next section).

From Fig. 2, one might think that as the disease spreads the positive 
test results will become more reliable. Whilst that is true, bear in mind 
that, in February 2020, the total adult critical care capacity of England 
was 4122 beds [43]. If one takes the ICU rate, computed for Sweden at 
around 17%, and from Fig. 2 a prevalence of 5,000 – 20,000 cases per 
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Fig. 3. With even a relatively high prevalence of 600 cases per 100k population, 
these curves show that a false positive rate of <0.001 is needed for a useful 
test, i.e. a specificity of >99.9%. This result is not strongly affected by the true 
positive rate, as shown by the two curves indicating a perfect test or with the 
true positive rate of 0.65 as used in the rest of this paper.

100,000 population (= 2.7–10.8 million cases in the UK) then ∼460,000 
– 1.8 million ICU admissions would be needed for half of the positive 
test results to be accurate in a general mass testing campaign. This does 
then beg the question as to what kind of test characteristics one needs?

4.1. Alternatives and required test characteristics

There are two primary use cases:

1. Reliably identifying infected people in the low prevalence popula-

tion to isolate and reduce the spreading of the disease.

2. Reliably clearing non-infected people, in high prevalence settings, 
to allow them to escape from the high risk situation, or to return to 
essential work or education.

For use case 1: the null hypothesis is that the person is not infected, 
the test procedure aims to provide sufficient evidence to reject the null 
hypothesis and demonstrate a high probability of infection. This means 
that the statistical coincidence of healthy people testing positive needs 
to be low. The requirements for this test are shown in Fig. 3, where one 
sees that a false positive rate needs to be far below the prevalence — 
the intuitive result. A false positive rate of <0.001 is needed to identify 
positive cases reliably, which corresponds to a specificity of >99.9%.

Such figures are not inconceivable. Australia has performed a total 
of 9 million tests, of which a total of 1% returned positive results, which 
implies that under the right conditions the specificity of RT-PCR can 
be excellent. Indeed, informal commentary from an Australian scientist 
[44] explains why a black-box approach to test protocols with arbitrary 
thresholds will produce erroneous results, whereas an expert in RT-PCR 
testing would use their judgement and experience in running the ap-

paratus. The variation in operational test characteristics in section 2.3

might be a reflection of our attempts to scale technical laboratory work 
beyond the hands of scientific competence, or issue performance targets 
and instructions to “take shortcuts”, in order to deal with an unusually 
high workload.

For use case 2: the null hypothesis is that the person is infected, and 
the test procedure aims to provide sufficient evidence to reject the null 
hypothesis and demonstrate a low probability of infection. The statis-

tical coincidence of infected people testing negative therefore must be 
low. The requirements for this test are answered in Fig. 4. In this case, a 
high prevalence of 0.6 is used. One can see that a false negative rate of 
<0.05 is needed to clear non-infected people at 95% confidence, match-

ing the sensitivity of >95%. This threshold is also intuitive. Given the 
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Fig. 4. In an extremely high prevalence of 0.6 (60k cases per 100k population) 
such as in a hospital, jail, or some other sealed outbreak cluster, these curves 
show that a false negative rate of <0.05 is needed for a useful test to rule out 
infection with 95% confidence, i.e. a sensitivity of >95%. This result is not 
strongly affected by the specificity, as shown by the two curves indicating a 
perfect test (specificity = 1) or with the false positive rate of 0.17 (specificity =
0.83) as used in the rest of this paper.

time dependence of the virus shedding reported by Kucirka et al. [20], 
such performance characteristics are inconceivable for RT-PCR.

Recent discussions in the literature have since turned to alternatives 
to RT-PCR. It is tempting, based on Ai’s study [3], to reach the uncom-

fortable conclusion that CT and clinical diagnosis offer a more reliable 
protocol than RT-PCR, a position that is refuted by Hope et al. with 
good reasoning [45].

Antigen tests, whilst cheaper and faster than RT-PCR, are less sen-

sitive and perhaps comparable in specificity when compared using RT-

PCR as a gold standard [46]. This makes them useful for mass testing 
to estimate prevalence, but little else.

One must face the possibility that, in the short term, and based upon 
the mathematical nature of the problem, it is unlikely that a test exists 
that can reliably:

• Clear non-infected people from a pool of potentially infected peo-

ple, given the low sensitivity in the early stages of infection (e.g. 
clearing staff and patients at medical facilities, passage at airports 
and regional borders)

• Identify and isolate infected people who are pre-symptomatic (e.g. 
finding people early before they infect others)

This viewpoint is supported by similar conclusions in the literature 
[18].

4.2. Recommendations

In future clinical studies, general at-scale RT-RCP testing alone, and 
tests with similar characteristics, should not be used as the ground 
truth SARS-CoV-2 cases. It is imperative that a more reliable diagnos-

tic method is used, before other correlations and effects are calculated. 
Restricting studies to patients with hospital admissions and thorough 
expert diagnosis, using dedicated labs with testing experts, is likely to 
yield more reliable results than the non-expert, mass-testing protocols 
that are being used in some geographical regions.

RT-RCP tests should not be used generally to “trace” infections 
through individual members of the public. Whilst some countries may 
succeed at this (e.g. Australia), it depends entirely on the bandwidth of 
expert labs. Scaling mass testing outside expert workers [47, 48, 49] ap-

pears to be expensive and futile. Governments would do better in this 
way:
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Step 1 Ensure the existence and support of a rigorous, dedicated, cen-

tral expert group to monitor operational specificity and sensi-

tivity of emergency use testing programmes as early as possible, 
on behalf of the government/region, and update Table 3 accord-

ingly.

Step 2 Use those data to correct data rates via equation (9) to monitor 
the effectiveness of the strategy to inhibit the spread of the disease 
in real time.

Step 3 Focus the tracing efforts at targeted, critical sub-populations 
(e.g. medical workers, care homes, outbreak clusters) using ex-

pert laboratories and teams dedicated to the task.

In so doing, this would represent a continuous improvement of the tech-

niques used in this paper as more data comes to light. This should prove 
less expensive and produce more reliable results than recent mass test-

ing efforts in many regions.

Negative test results (whatever the test) should not be used to “rule 
out” SARS-CoV-2 infection of those with symptoms or significant proba-

bility of being infected unless the test false positive rate is significantly 
below the prevalence. If a person exhibits symptoms of a respiratory 
tract infection, they should treat it with the respect it deserves and iso-

late themselves from society as best they can, for a duration of time 
based on the advice of a medical professional in their geographic loca-

tion. Whether or not the infection is SARS-CoV-2, this will prevent the 
spread of SARS-CoV-2 and also minimise the spread of other infections 
that represent an enormous cost. In addition to the economic impact of 
the common cold, one should not forget that, globally, influenza kills 
millions of people each year. Such a general, isolation strategy has the 
added benefit of driving the circulating viruses towards lower virulence 
via natural selection. One can but hope that the days of sick employ-

ees demonstrating their commitment by attending work (and marketing 
campaigns for over-the-counter medication targeted as such) are behind 
us.

5. Conclusions

The confusion matrix of RT-PCR tests for SARS-CoV-2 has been 
reviewed, noting also that alternative testing kit technologies have com-

parable — or inferior — error rates. A simultaneous equation correction 
procedure for estimating the true infection rates was demonstrated for 
two examples: the “Diamond Princess” cruise ship and the country of 
Sweden in Autumn 2020, providing corrected estimates for hospitalisa-

tion and mortality rates.

Discrete Bayesian inference was then demonstrated for a few likely 
scenarios.

It has been demonstrated that RT-PCR testing is not reliable for three 
important use cases:

• RT-PCR alone can not reliably identify infected patients in a low 
prevalence social situation.

• RT-PCR alone can not reliably clear patients as being non-infected, 
if they have symptoms and come from a high prevalence social 
situation.

• RT-PCR alone can not reliably filter patients for subsequent medi-

cal studies such as antibody tests, symptom correlations studies, or 
new test candidates.

The results of this study are not entirely discouraging. Recent con-

cern over the lifetime of SARS-CoV-2 antibodies, occasional anecdotes 
about repeat infection, and the need for repeated vaccination, probably 
need to be adjusted to take into account that many patients identified 
as recovered from SARS-CoV-2 who do not show measurable levels of 
SARS-CoV-2 antibodies are possibly associated with false positive test 
results in some regions (58–89% of people with mild symptoms and 
positive RT-PCR test results, for example). This may lead to real world 
antibody retention from vaccines exceeding initial expectations.
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