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Abstract

Background: Functional task performance requires proper control of both movement and force generation in
three-dimensional space, especially for the hand. Control of force in three dimensions, however, is not explicitly
treated in current physical rehabilitation. To address this gap in treatment, we have developed a tool to provide
visual feedback on three-dimensional finger force. Our objective is to examine the effectiveness of training with this
tool to restore hand function in stroke survivors.

Methods: Double-blind randomized controlled trial. All participants undergo 18 1-h training sessions to practice
generating volitional finger force of various target directions and magnitudes. The experimental group receives
feedback on both force direction and magnitude, while the control group receives feedback on force magnitude
only. The primary outcome is hand function as measured by the Action Research Arm Test. Other outcomes include
the Box and Block Test, Stroke Impact Scale, ability to direct finger force, muscle activation pattern, and qualitative
interviews.

Discussion: The protocol for this clinical trial is described in detail. The results of this study will reveal whether
explicit training of finger force direction in stroke survivors leads to improved motor control of the hand. This study
will also improve the understanding of neuromuscular mechanisms underlying the recovery of hand function.

Trial registration: ClinicalTrials.gov NCT03995069. Registered on June 21, 2019

Keywords: Stroke, Upper extremity, Physical rehabilitation, Hand function, Grip force, EMG, Biofeedback, Control,
Paralysis, Randomized controlled trial
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Introduction
Background and rationale {6a}
Our hands constitute our primary means of interacting
with the external world. They allow us to complete
activities of daily living and dexterously manipulate
objects such as tools, dishes, and smartphones.
Unfortunately, more than two-thirds of stroke survivors
have hand impairment [1]. Hand impairment results in
objects being mishandled or not handled at all and fail-
ure at task execution. Thus, hand function, and thereby
utility of the entire upper extremity, can be dramatically
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diminished, leading to decreased independence, dimin-
ished work opportunities, and reduced satisfaction from
leisure pursuits [2].
Successful object manipulation requires not only

proper finger placement and movement, but also digit
force control. Specifically, fingertip and thumb tip forces
need to be properly directed and scaled to accomplish
tasks (e.g., securely holding a paper cup against gravity,
without crushing the cup, while coffee is poured into it)
[3–9]. This force generation must be controlled
dynamically as the object properties change or the finger
posture changes [10–14]. After stroke, not only finger
movement [15–17] but also force control [18] is
impaired. Stroke survivors exhibit impairment in the
ability to apply force in the proper direction per task
demand [19, 20]. The altered grip force directions result
in difficulty in picking up objects for activities of daily
living as the objects slip out of the hand [21].
Neuromechanical investigations revealed that this

altered paretic grip force direction arose from altered
muscle activation patterns [19, 20]. Investigators have
suggested that the central nervous system uses two
separate neural strategies to control digit force and
movement [22]. Therefore, both neural strategies must
be independently rehabilitated to achieve proper hand
function [23]. Current therapy focuses on the training of
volitional movement which inherently provides visual
feedback for both the client and the therapist [24].
Unfortunately, digit force control is rarely explicitly
addressed in therapy. Currently, the only explicit visual
feedback of force direction occurs when an object
grasped by the paretic fingers is dropped or cannot be
held safely. While skin mechanoreceptors can provide
sensory information about contact forces with objects
[25–27], net three-dimensional force direction may be
difficult to explicitly recognize, and this sensation may
be compromised in stroke survivors [28, 29]. Treatment
of force generation can be much more challenging for
therapists to direct as they receive only gross cues about
client performance and have few tools for guiding repeti-
tive practice.
To fill this gap in treatment, we have developed a

novel training tool in which the three-dimensional (3D)
grip force applied to an instrumented object is displayed
in real time on a computer screen. This training tool en-
ables stroke survivors to practice generating fingertip
force in a variety of magnitudes and directions. A pilot
study using a single group pre-post design showed the
following preliminary evidence: (1) stroke survivors im-
proved their control of digit force direction using the
tool, (2) the improvement was accompanied by changes
in muscle activation pattern, and (3) the improved force
direction translated to an increased ability to manipulate
objects [30].

As a next step, a randomized controlled trial is
described herein. This research is expected to fill the gap
in the current rehabilitation therapy treatment by
evaluating a tool to enable training of digit force control
with explicit feedback. This training tool for force control
will complement the existing movement training, both of
which are independently essential to obtain proper hand
function [22].

Objectives {7}
The objective of this study is to determine if training
force directional control with this tool is effective in
restoring hand function post-stroke. Specifically, we will
determine the effect of this training on clinical hand
function, the ability to control digit force direction, and
muscle activation patterns.

Trial design {8}
The trial design is a double-blind randomized controlled
trial involving two parallel groups. Participants and out-
come assessors will be blinded to the group assignment
to increase the rigor of the study. Participants will be
randomly assigned to either the experimental or control
group (see the “Assignment of interventions: allocation”
section). Half will be in the experimental group, and the
other half will be in the control group. Both groups will
undergo training to practice generating volitional finger
force to various target directions and magnitudes. The
experimental group will receive feedback on both force
direction and magnitude. The control group will receive
feedback on force magnitude in the target direction only,
which represents the current force feedback capacity.
The superiority of the experimental intervention over
the control will be examined.

Methods: participants, interventions, and
outcomes
Study setting {9}
The study setting is the research laboratory of the Ralph
J. Johnson Veterans Affairs (VA) Medical Center,
Charleston, SC, USA.

Eligibility criteria {10}
Inclusion criteria
The following are the inclusion criteria:

� Survived a stroke at least 3 months ago
� Moderate to severe hand impairment (Chedoke-

McMaster [31] Hand Stage 2–4)
� Ability to generate palpable volitional grip force

upon cue
� Sufficient cognitive ability to participate (NIH Stroke

Scale [32], questions and commands score = 0–1)
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� Ability to recognize all quadrants of the visual field
(NIH Stroke Scale, visual field test score = 0)

Exclusion criteria
The following are the exclusion criteria:

� Concurrent upper limb rehabilitation
� Inability to follow 2-step commands
� Severe muscle tone prohibiting the passive

movement of the fingers or proper placement of the
fingers on the force sensors as needed to participate
in the training (Modified Ashworth Scale [33] = 4–5
out of 5)

� Change in spasticity medication or botulinum toxin
injection in the upper limb within 3 months prior to
or during enrollment

� Total sensory loss on fingertips (NIH Stroke Scale
[32], sensory score = 2)

� Comorbidity (e.g., orthopedic conditions that limit
ranges of motion, premorbid neurologic conditions)

� Language barrier or cognitive impairment that
precludes providing consent

Who will take informed consent? {26a}
Research staff approved by the Medical University of
South Carolina Institutional Review Board will take the
informed consent. The consent process will take place in
a private room when the potential participant comes to
the laboratory at a scheduled time agreed upon between
the study personnel and the participant. The content of
the consent will be verbally explained to the participant,
and the participant will be asked to raise any questions
and concerns.

Additional consent provisions for collection and use of
participant data and biological specimens {26b}
The consent includes sharing of de-identified data with
the public and other investigators in publications and
ClinicalTrials.gov. The consent also includes sharing of
de-identified data with the collaborating site, North Car-
olina State University, for analysis. In addition,
authorization for use and release of individually identifi-
able health information collected for research with the
Institutional Review Board of the Medical University of
South Carolina, the funding agency, the collaborating
sites of Medical University of South Carolina, and VA
Centralized Transcription Services Program will be ob-
tained in writing. This trial does not involve collecting
biological specimens for storage.

Interventions
Explanation for the choice of comparators {6b}
The control group receives feedback on the force
magnitude in the target direction only and receives no

explicit feedback on forces in other directions and, thus,
no training in force directional control. The control
condition is akin to a standard treatment of repeatedly
squeezing a ball. The control condition would be more
accessible in a clinic setting. Specifically, force magnitude
feedback can be provided with a conventional grip
dynamometer readily available in rehabilitation clinics,
whereas feedback of both force magnitude and direction
requires multi-axial force sensors with specialized soft-
ware which tend to be more expensive. While the control
condition is more accessible [34], it does not provide ex-
plicit feedback for digit force directional control which is
hypothesized to have a significant role in improving hand
force control and manipulation ability. The control condi-
tion may be viewed as analogous to practicing multi-joint
upper limb movement within the abnormal flexion syn-
ergy pattern [35], without explicit feedback to break out of
the abnormal flexion synergy pattern. The experimental
vs. control comparison will determine the therapeutic
value of the force direction feedback.

Intervention description {11a}

Intervention duration All participants will complete a
1-h force training session, 3 times per week for 6 weeks
(a total of 18 training sessions). This schedule simulates
the outpatient rehabilitation model [36] and thus facili-
tates the potential translation of the protocol for imple-
mentation in rehabilitation practice.

Force training For those whose hands can be
comfortably placed in our instrument in the precision
pinch posture [37], training will take place in a precision
pinch posture. Otherwise, a cylindrical grip posture will
be used as described later. For precision pinch, the
intervention primarily focuses on the training of
isometric force production with the index finger and
thumb. Participants place their finger and thumb into a
custom apparatus that includes two 6-axis force sensors
(Mini45, ATI Industrial Automation Inc., Apex, NC,
USA) (Fig. 1A). The apparatus is attached to a robot
(Phantom® Premium™ 3.0/6DOF, 3D Systems Inc.) that
provides stability to achieve the target force generation.
A total of 14 target force directions will be trained.

The target directions for the thumb are (0, 0, ± x), (0, ±
y, 0), (0, 0, ± z), and (± x, ± y, ± z), with ± x, + y, and + z
representing proximal/distal, medial/lateral, and
extension/flexion direction of the thumb, respectively
(Fig. 1B). These training directions encompass the whole
sphere from the digit tip. The corresponding target
directions for the finger are the opposite of that for the
thumb.
A custom-developed computer program for the train-

ing provides visual feedback for performance relative to
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the targets. An example of visual feedback on the com-
puter screen is shown for the experimental group (Fig.
1C) and for the control group (Fig. 1D). Thumb force is
shown as a blue ladder (composed of the two blue paral-
lel lines and X in the center). Finger force is shown as a
red ladder. For the treatment group, the x and y loca-
tions for the center of the ladder (marked as X in Fig.
1C) are determined by the digit force in the x and y di-
rections (proximal/distal and medial/lateral direction as
shown in Fig. 1B). The cross in the center (in Fig. 1C)
represents zero force in both x and y directions. The fill
of the ladder in the positive or negative direction (from
X in Fig. 1C) is determined by the digit force in the z

direction (gripping/opening direction as shown in Fig.
1B). The goal is to place the center of the ladder inside
the target, while matching the fill to the fill target. Spe-
cifically, to achieve the example target in Fig. 1C with
the right hand, the thumb should produce 5 N in the
distal direction (− x in Fig. 1B) and the index finger
should produce 5 N in the proximal direction (+ x in
Fig. 1B), while maintaining little force in the y and z di-
rections. This target mimics sliding the thumb and a fin-
ger in the opposite direction to open a plastic produce
bag. The experimental group receives the visual feedback
of their true force control (Fig. 1E showing 2 axes of the
actual force for illustration purposes only). For the

Fig. 1 A Finger apparatus attached to the robot. B Notation system for describing target directions in x, y, and z axes. An example of visual
feedback is shown for the experimental (C) and control (D) groups. Thumb force is shown as a blue ladder (composed of the two blue parallel
lines and X in the center). Finger force is shown as a red ladder. The location for the center of the ladder (X) is determined by the digit force in
the x and y direction, relative to the zero (the cross in the center). Digit force in the z direction is shown as the “fill” of the ladder. The goal is to
place the center of the ladder inside the target, while matching the fill to the fill target. The actual force in all 3 directions is shown in the visual
feedback to the experimental group (C). The actual force vector in the x and y directions is shown for illustration purposes only in E. For the
control group, the same actual force is projected to the target direction in 3D (F, showing only 2 axes for illustration only). The projected force is
shown for visual feedback for the control group (D)
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control group, the same actual force vector is projected
on the target vector in 3D (Fig. 1F showing projection
on 2 axes for illustration purposes only). This projected
force is shown as visual feedback to the participant, such
that force in the non-target direction (e.g., medial/lateral
and flexion/extension direction in this example) is
shown as zero (Fig. 1D), when it is not zero in reality.

Training structure The 18 training sessions will be
structured such that all participants in both groups will
experience training with different arm postures, whole-
body postures, digits, laterality, force variability, magni-
tude, and visual feedback conditions in a progressive
manner (Table 1). This progression framework enables
the variable practice structure (vs. constant practice) that
has been shown to induce greater retention in motor
learning [38]. The control group will experience the
same progression, except that they will receive feedback
in force magnitude only.
Specifically, the following conditions will be employed:

upper arm on the side of the body, elbow flexed, and
forearm horizontally rested on a forearm rest in (1)
midprone, (2) pronation, and (3) supination and forearm
midprone with (4) elbow extended, (5) shoulder flexion
with an external arm support provided from Armeo
Boom (Hocoma AG, Switzerland), and (6) shoulder
flexion without support. The whole-body postures will
include sitting, standing, and walking on a treadmill
(with a harness for safety). These varying arm and
whole-body postures will be used because these attri-
butes are known to elicit different levels of abnormal
flexion synergy often present in stroke survivors [35]
that can impede hand motor control [35, 39–44]. The
training will progress by working against the abnormal
flexion synergy. The digit used in training will primarily
be the 2nd digit (against the thumb), while the 3rd and
4th digits will also be used (Table 1). The laterality

condition will include unilateral (i.e., paretic only, Fig.
1A) and bilateral (Fig. 2) as described below.
For the bilateral training, a custom-developed bilateral

apparatus with one force sensor for each hand will be
used, with visual feedback showing each hand’s index
finger forces on a computer screen (Fig. 2). The bilateral
apparatus will be fixed for the initial session and uncon-
strained in the next session to increase the challenge as-
sociated with manipulating a stable vs. unconstrained
object [45]. For the fixed condition, targets for the two
hands will be the same at first (i.e., both hands try to do

Table 1 Overall structure for the 18 training sessions

Arm posture # Whole body Digit Laterality Variability Magnitude Feedback No. of sessions

1–6 Sitting 2 Unilateral 65–40% 4–11 N 30 and 0.5 Hz 6 for each arm posture

1, 5, 6 Standing 2 Unilateral 55–40% 4–11 N 30 and 0.5 Hz 3 for each arm posture

1, 6 Walking 2 Unilateral 55–40% 4–11 N 30 and 0.5 Hz 2 for each arm posture

1, 4, 5, 6 Sitting 2 Bimanual fixed 55–40% 5–7 N 30 Hz 1

1, 4, 5, 6 Sitting 2 Bimanual unconstrained 55–40% 5–7 N 30 and 0.5 Hz 1

1, 4, 5, 6 Standing 2 Bimanual fixed 55–40% 5–7 N 30 Hz 1

1, 4, 5, 6 Standing 2 Bimanual unconstrained 55–40% 5–7 N 30 and 0.5 Hz 1

1, 4 Sitting 3 Unilateral 55–40% 5–8 N 30 and 0.5 Hz 1

5, 6 Sitting 3 Unilateral 55–40% 5–8 N 30 and 0.5 Hz 1

1, 4, 5, 6 Sitting 4 Unilateral 55–40% 5–8 N 30 and 0.5 Hz 1

Total 18 sessions

Fig. 2 Bilateral training apparatus
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the same thing, mirroring activity). Later, to dissociate
activities between the two hands [46], targets for the two
hands will be opposite of each other. For example, tar-
gets will require generating opening force with the par-
etic hand while creating gripping force with the
nonparetic hand and vice versa, pull/push mimicking
pulling/pushing a cap on a pen, and twist in the opposite
directions (mimicking twist off of a cap). For the uncon-
strained condition, targets will be chosen such that force
equilibrium is maintained.
Additional training variables of force variability,

magnitude, and visual feedback delay will be modified to
adjust difficulty from one set to the next within a
training session (Table 1). For example, force variability
will be gradually restricted as the participant progresses.
Initially, large variability (margin of error) from the
target will be allowed. Then, allowed variability will be
progressively reduced. The allowed variability will be
shown as the size of the square target for vertical and
horizontal forces and the thickness of the mark in the
ladder for the gripping/opening direction force (Fig. 1C,
D). Participants will be required to keep the force vector
within the margin of error for 1 s continuously for a
successful trial [30]. Furthermore, the target force
magnitude will be gradually increased over a range
needed to open a conventional bottle, not exceeding
approximately half the fingertip strength [47, 48]. Lastly,
visual feedback delay will be initially imperceptible (i.e.,
refresh rate of 30 Hz) and later introduced at a 0.5-Hz
refresh rate to solicit increased reliance on intrinsic
sensory feedback (vs. external visual feedback).

Difficulty adjustment To keep participants engaged and
challenged, the difficulty level of the training will be
adjusted per the Challenge Point Framework [49].

Specifically, if the success rate in a single set
encompassing all target force directions is > 80%, then
one of the difficulty attributes (e.g., force variability,
magnitude, visual feedback delay) will change to the
next difficulty level for the next set. If the success rate is
< 40%, an easier setting will be used for the next set. For
the success rates in between, the difficulty level will be
maintained in the next set. If the performance plateaus
over 3 sets, the next difficulty set will be used to reduce
frustration and ensure exposure to various training
conditions. A maximum of 30 s will be allowed for each
target as in the preliminary study [30] except when
explaining the training to the participant in which case
60 s will be allowed.

Alternative strategies For those who cannot train in the
precision pinch posture, the cylindrical grip posture may
be used. We will use a custom-developed cylindrical grip
device [20] that can measure multi-axial force for the
distal phalanx of the thumb and the finger separately
and simultaneously (Fig. 3A). The force directions ap-
propriate for the cylindrical grip will be trained (Fig. 3B).
The visual feedback and the progression through various
arm postures, whole-body posture, force variability, mag-
nitude, and visual feedback delay conditions will stay the
same.

Criteria for discontinuing or modifying allocated
interventions {11b}
Depending on their functional level, some participants may
not be able to perform the training in some conditions.
Training difficulty will be adjusted appropriately following
the Challenge Point Framework [49], and adjustments to the
training variables such as the force variability and magnitude
will be made to keep the participant actively engaged in the

Fig. 3 A Cylindrical grip device. B Force target directions for the cylindrical grip
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intervention. Wheelchair users with no ability to stand or
walk will not perform training in standing or walking but
will explore other training variations more.

Strategies to improve adherence to interventions {11c}
The intervention requires an in-person visit to the la-
boratory. Support for parking and transportation assist-
ance will be provided as necessary. The visit schedule
will be printed and handed out to each participant. Re-
minder phone calls will be made. A waiting room will be
provided within the building for caregivers. Remuner-
ation for participation will be provided. All COVID-19
precautions are taken to ensure the health and safety of
participants and study personnel. All training activities
will be automatically logged by the custom-developed
computer program used for training. The time lapsed
for each training session is also provided by the com-
puter program.

Relevant concomitant care permitted or prohibited during
the trial {11d}
Concurrent upper limb rehabilitation is prohibited
during participation in the study. Change in spasticity
medication or botulinum toxin injection in the upper
limb is prohibited during the study. Concomitant care
for other issues is permitted.

Provisions for post-trial care {30}
Participants will be followed up until 1 month post-
intervention for adverse events. Necessary medical treat-
ment will be provided by the VA.

Outcomes {12}
The primary outcome measure is the hand function
measured by the Action Research Arm Test (ARAT)
[50]. The primary time point is from the baseline
immediately prior to the intervention to the end of the
intervention. Other outcome measures are as follows.
Hand function will also be assessed using the Box and

Block Test (BBT) [51]. Patient-centered outcome mea-
sures of the Stroke Impact Scale hand and activities of
daily living sections and perceived meaningfulness of the
intervention [52] will also be obtained. Qualitative inter-
views will delineate why and how subjects perceive the
intervention to be meaningful or not meaningful, after
completion of training.
To provide insights into the biomechanical mechanisms

underlying the change in hand function, the digit force
direction control and muscular coordination will be
assessed. The ability to direct digit force will be quantified
as the angular deviation of digit force from the target
direction. Coordination of upper limb muscles will be
assessed using the metrics of (i) the attainable muscle
activation space as assessed by electromyography (EMG)

workspace volume [53], (ii) motor complexity assessed by
the number of paretic muscle synergies [54, 55], (iii)
assimilation of the paretic muscle synergy structure
toward that of the nonparetic side, and (iii) abnormal
flexion synergy [35].

Participant timeline {13}
The participant timeline is shown in Fig. 4. Baseline
assessments will take place 3 times over 3 weeks to
establish baseline trends. Interventions will entail a total
of 18 training sessions over 6 weeks. Biweekly assessments
will be performed during a 6-week intervention to exam-
ine the pattern of progress. The post-assessment will take
place within a week from the last intervention session.
The purpose of the 1-month follow-up is to assess
retention.

Sample size {14}
The study was designed primarily to ensure adequate
power to analyze the hypothesis on digit force direction.
Given the sample size for this hypothesis, detectable
effect sizes for the other clinical outcomes were
determined. Reduction of force deviation to a value
below 20° is expected to result in increased ability to
manipulate objects [21]. The mean force deviation for
stroke survivors in Chedoke Hand Stage 2–4 was 25.6°
[21]. Therefore, a 6° change in force direction is
expected to lead to a substantial functional improvement
and is considered to be a clinically meaningful difference
in force direction. Our pilot data indicate that such
change is achievable in stroke survivors with severe
hand impairment [30].
Our study is longitudinal with 4 primary time points.

In the analyses, an autoregressive (AR(1)) covariance
structure will be considered for the within-subject corre-
lations (while other structures will also be examined).
For a standard deviation of 6.6° (based on the force dir-
ection data in our preliminary study), an alpha level of
0.05, 90% power, and the AR(1) correlation between ob-
servations on the same subject of 0.8 (based on the pre-
liminary study), a sample size of 22 participants per
group will be adequate to detect a difference of 6°.
Adjusting for an expected attrition rate of 15% and
screen failure rate of 12%, a sample of 30 per group (for
a total of n = 60) is planned.
For other outcomes, this sample size will guarantee at

least 80% power for respective minimum clinically
important differences. For instance, this sample size will
be sufficient to detect a change in the ARAT score of
5.7 [50] and BBT score of 5.5 [56] with a power of 80%
and 99%, using the standard deviation of 8.1 and 4.3,
respectively (based on our preliminary study [30]) for an
overall significance of 5%.
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Recruitment {15}
Participants will be recruited from the Ralph H. Johnson
VA Medical Center, Charleston, SC. The Charleston VA
treats > 300 new stroke cases every year. We will send a
recruitment letter to patients who had a stroke identified
by the VA Informatics and Computing Infrastructure.
We will also receive referrals from clinicians in the
outpatient neuro clinic at the VA. A dedicated recruiter
will visit the clinic onsite to recruit referred patients. We
also have access to the Medical University of South
Carolina (MUSC) Stroke Center, a tertiary stroke center
that treats > 500 new stroke cases each year. The
Institutional Review Board (IRB)-approved MUSC stroke
registry has > 1000 stroke survivors who are interested
in participating in research. Approximately two-thirds of
those in the registries have moderate to severe upper
limb impairment appropriate for the trial. The registry
continues to grow with around 10 new enrollees each
month due to community outreach efforts. These efforts
include visiting local stroke support group meetings, or-
ganizing stroke caregiver summits and stroke recovery
community engagement events, and sending newsletters
to develop grassroots connections with stroke survivors,
caregivers, clinicians, and clinics in the community. In
addition, trial information will be available via the Inter-
net (e.g., ClinicalTrials.gov, South Carolina Research
Studies Directory).

Assignment of interventions: allocation
Sequence generation {16a}
A computer-generated random allocation sequence will
be used. Block randomization will be used to ensure bal-
ance (half in the experimental, half in the control). Block
sizes will be random (4, 6 or 8). The block randomization
will be stratified by the moderate vs. severe impairment
level according to the Fugl-Meyer Assessment of Motor
Recovery after Stroke for the Upper Extremity (FMUE)
scores [57]. The block randomization will also be stratified
equally by sex as a biological variable.

Concealment mechanism {16b}
On the first intervention day, the FMUE score and sex
will be entered into the custom-developed computer

program used for the intervention. The program will
then access the computer-generated random sequence
for that stratification category, find the next assignment
available, and apply that group assignment to the visual
feedback display for all training sessions of the partici-
pant. Therefore, nobody will know the group assignment
until the intervention.

Implementation {16c}
The allocation sequence will be generated by the
computer. The approved study staff not involved in
providing the intervention will enroll the participants.
The custom-developed computer program used for
training will assign the participants to the group accord-
ing to the computer-generated allocation sequence.

Assignment of interventions: blinding
Who will be blinded {17a}
Participants will remain naïve to the group assignment
as they will not be exposed to the other study condition.
Care providers, outcome assessors including qualitative
interviewers, and data analysts except for the primary
biostatistician will be blinded to the group assignment.

Procedure for unblinding if needed {17b}
Permission for unblinding will be deliberated and
reviewed by the Data and Safety Monitoring Board
(DSMB) if unanticipated intervention-related serious ad-
verse events warrant investigation using the group as-
signment information.

Data collection and management

Plans for assessment and collection of outcomes {18a}
The outcome assessment timeline is provided in Fig. 4.
All clinical hand function tests (ARAT and BBT) will be
administered by a blinded research therapist, videotaped,
coded in names, and scored by 2 raters who are blinded
to the group assignment as well as the timing of the
videos (i.e., before or how many weeks after training).
Raters will be trained until excellent intra/interrater
reliability is met with a correlation greater than 0.9. All
force and muscle activity data will be analyzed using a

Fig. 4 Participation timeline. All participants will have 3 baseline assessments, 6 weeks of training with biweekly assessments, post-assessment,
and 1-month follow-up assessment
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custom-scripted code in MATLAB (the MathWorks,
Natick, MA) to obtain the final metrics by the blinded
researcher post-data collection.
The clinical hand function tests, ARAT and BBT, have

been used to show a significant change with force
training in our preliminary study [30]. In addition, both
ARAT and BBT have been standardized [58, 59],
validated for test-retest and interrater reliability [56, 60],
and shown to be responsive to changes in stroke survi-
vors [51]. Clinically meaningful levels of change for
ARAT [50] and BBT [56] have been reported. The
patient-centered outcome measures of the Stroke Im-
pact Scale [61, 62] hand and activities of daily living
sections gauge what participants can do functionally
that they could not do before. The perceived mean-
ingfulness of the intervention will be obtained on a 7-
point Likert scale [52] (1 = much better; 2 = a little
better, meaningful; 3 = a little better, not meaningful;
4 = about the same; 5 = a little worse, not meaning-
ful; 6 = a little worse, meaningful; 7 = much worse)
after completion of the training. For qualitative inter-
views [63], semi-structured interviews with individual
participants [64, 65] will be conducted to provide an
insightful story about the impact of the training on
their life. The key topic will be focused on what con-
stitutes meaningful changes vs. not meaningful, how,
and why. The interview will last approximately 30
min. The interviewer will be blinded to the partici-
pants’ group assignments.
The digit force direction control is a measure that

has been shown to be a powerful biomarker for
predicting object grasping abilities and hand function
[21]. The previously published methods [21] will be
followed for this assessment. Muscular coordination
will be assessed using the following well-established
metrics. First, the attainable muscle activation space
will be computed as EMG workspace n-volume repre-
senting every recorded EMG vector of activities across
upper limb muscles [53]. Second, the degree of motor
complexity will be described by the number of paretic
muscle synergies [54, 55]. Muscle synergies will be
found using the non-negative matrix factorization
method [54] and the number of synergies explaining
most (> 90%) of the variance in the EMG data [54,
55] will be quantified. Third, assimilation of the par-
etic muscle synergy structure to the nonparetic side
will be quantified as the decreased angle between the
subspace defined by the paretic muscle synergies and
the subspace defined by the nonparetic muscle syner-
gies [54]. Lastly, to examine training-induced break-
away from the abnormal flexion synergy [35], the
extent of co-activation among finger flexor, elbow
flexor, and shoulder abductor muscles will be quanti-
fied using cross-covariance analysis [66, 67].

Plans to promote participant retention and complete
follow-up {18b}
To promote participant retention and complete follow-
up, effective communication will be maintained between
the study staff and participants. Schedules, changes to
schedules, and expectation for each visit will be clearly
communicated.

Data management {19}
All electronic data will be stored in a password-
protected secure research server. Visit records in paper
will be scanned and stored in the password-protected se-
cure research server. Data will be entered into a
computer-based database. Quarterly data quality assess-
ments will be performed by examining the outcomes da-
tabases for missing data, unexpected distributions or
responses, irregularities, and outliers. Accuracy and
completeness of the data collected will also be ensured.

Confidentiality {27}
The consent and HIPAA forms where personally
identifiable information is recorded will be stored in a
locked cabinet in a locked office. Only study personnel
will have access to this personally identifiable
information. For the video recording of the upper limb
function tests, we will set the camera angle such that the
video recording does not capture the participant’s face
while capturing the hand and arm movements and the
interaction between the hand and objects in hand
manipulation. For the audio recording of the qualitative
interviews, we will not use the participant’s name and
will not disclose any identifiable information in the
recording, such that the entire audio recording is de-
identified. All data will be coded with a participant code,
and no personally identifiable information will be used
to label the data. This means individual results would
not be able to be linked to the participant by others who
review the results of this research. De-identified paper
data including testing sheets documenting testing se-
quences and notes will be stored in a cabinet in a key-
locked room that is accessible to study personnel only.
The linkage between the participant identities and par-
ticipant codes will be stored in a locked cabinet in a
locked room and will be accessible to study personnel
only.

Plans for collection, laboratory evaluation, and storage of
biological specimens for genetic or molecular analysis in
this trial/future use {33}
This trial does not involve collecting biological
specimens for storage.
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Statistical methods
Statistical methods for primary and secondary outcomes
{20a}
The primary formal analysis for the primary outcome
measure will be a repeated measures general linear model
with an AR(1) structure, although other structures will be
considered and compared. Diagnostics will be performed on
the residuals, and appropriate actions will be taken if
assumptions required for the statistical tests are not met.
The primary independent variables are group (experimental
vs. control), evaluation time (3rd baseline, 2 and 4weeks of
training, and post for the primary analyses; all 3 baselines
and follow-up will be included in subsequent analyses), and
their interaction (group × evaluation time). In addition, we
will include sex as an independent variable along with its in-
teractions to study sex differences. If the group × evaluation
time interaction is significant, then the main alternative hy-
pothesis of interest, that at post, there is a difference between
the two groups, will be tested using post hoc tests. Greater
improvement for the experimental than for the control
group will support the hypothesis.
In the secondary analysis with 3 baseline measures, the

slope of improvement during the baseline will be
quantified and tested to determine if it differs from zero,
and change in the slope of improvement during training
will be compared between the experimental vs. control
group. The persistence of the effect will also be
examined using data obtained in the follow-up phase of
the study.
The same analysis approach will be applied to each of

the other outcome measures. Bonferroni correction will
be applied to adjust for multiple comparisons. To gauge
the level of efficacy of the force training, we will compare
the extent of improvements in ARAT, BBT, and Stroke
Impact Scale with minimal clinically important differences
established in the literature [50, 56, 61, 68] as well as other
large trials [68–72]. We will also examine the proportion
of subjects who perceive that the intervention has made a
meaningful improvement in their function.

Interim analyses {21b}
No interim analysis is planned. The DSMB may
recommend stopping the study if the study has
unanticipated safety concerns that warrant stopping.

Methods for additional analyses (e.g., subgroup analyses)
{20b}
Other covariates such as initial impairment levels, stroke
type, spasticity, and somatosensory deficits will be
included. Given the number of covariates, we will first
use univariate analyses to choose a smaller pool of
potential predictors and apply model selection methods
such as the forward stepwise regression approach.

Multivariate extensions that include all variables
together will be considered.
Correlations between outcome measures will be

calculated. Data reduction methods, such as factor
analysis or principal component analysis, will be
considered if the multiple outcome measures are highly
correlated.

Methods in analysis to handle protocol non-adherence
and any statistical methods to handle missing data {20c}
We will use intent-to-treat analysis. If missing data arise,
multiple imputation methods will be applied under the
assumption of missing at random.

Plans to give access to the full protocol, participant-level
data, and statistical code {31c}
The protocol will be shared on ClinicalTrials.gov. De-
identified participant-level dataset and/or statistical code
will be shared upon reasonable request in writing.

Oversight and monitoring
Composition of the coordinating center and trial steering
committee {5d}
Study oversight will be provided by the DSMB. The
DSMB will be composed of a board-certified stroke neur-
ologist, a registered and licensed occupational therapist,
and a biostatistician with expertise in the design and ana-
lysis of clinical trials. The DSMB members will be experi-
enced in the care of stroke survivors and/or stroke
recovery research. The DSMB will convene semiannually
to review the enrollment and study progression.
The trial management will be performed by the

principal investigator, co-investigators, and the IRB-
approved study personnel. The trial team will meet weekly
or as necessary to discuss the trial setup, operation, pro-
gression, data analysis, interpretation, and dissemination.
The principal investigator and study personnel are respon-
sible for the day-to-day operation and organization of the
trial including identifying potential recruits and taking
consent.

Composition of the data monitoring committee, its role,
and reporting structure {21a}
The DSMB will also ensure the safety of participants
and the validity and integrity of data collected during
the study. The DSMB will review the adverse event data
and provide a report to the IRB. The DSMB will be
independent from the sponsor and competing interests.

Adverse event reporting and harms {22}
Adverse events will be solicited at each visit, recorded,
and coded in terms of frequency, severity, relatedness to
the intervention, and unanticipated nature using
established guidelines [73–75]. All serious adverse
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events will be investigated by an independent medical
monitor to determine the relatedness to the
intervention. The report by the independent medical
monitor will be reviewed by the DSMB. All related
serious adverse events will be reported to the IRB as
they occur. All adverse event data will be tabulated and
reported to the DSMB and ClinicalTrials.gov.

Frequency and plans for auditing trial conduct {23}
The sponsor will audit the study annually. The sponsor
will review the study progression, regulatory compliance,
and training compliance of all study personnel.

Plans for communicating important protocol amendments
to relevant parties (e.g., trial participants, ethical
committees) {25}
Any changes will be approved by the IRB prior to being
in effect. Changes will be updated in ClinicalTrials.gov.

Dissemination plans {31a}
Trial results will be disseminated in ClinicalTrials.gov, in
publications, and in conferences and in-service/commu-
nity presentations.

Discussion
To ensure participants understand the task, participants
may perform the task with the unaffected hand and
demonstrate their understanding of the training prior to
training with the affected hand. For participants with a
high level of tonic muscle tone in the finger flexor that
interferes with producing force in the extension
direction, the resting-state grip force may be zeroed out
to facilitate the training. While primary statistical ana-
lysis is focused on determining the group and evaluation
time interaction effect, the association between the
changes in upper limb function, digit force direction,
and muscle activation will be examined using
correlations.
This trial will evaluate a novel training tool to improve

force control, thereby addressing the unmet need in the
current rehabilitation. This research will also determine
the underlying muscular mechanisms as well as the
training’s impact on the functional use of the hand. As a
result, this research is expected to enhance hand
function, contributing to improved independence and
quality of life post-stroke.

Trial status
Protocol #9. February 8, 2022. Recruitment began on
October 28, 2020, and is expected to conclude in
October 2023.
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