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THE BIGGER PICTURE An intracranial aneurysm (IA) is a pathological expansion of a weak area of a blood
vessel wall in the brain because of the long-term effects of abnormal blood flow. Epidemiological estimates
suggest that approximately 3% of the population has an intracranial aneurysm.While rupture is rare (occur-
ring in less than 1% of cases), a ruptured IA has a high chance of leading to death. Treatments such as en-
dovascular coiling, a technique that involves navigating a tiny wire coil into the aneurysm, and surgical clip-
ping can reduce the risk of rupture but carry their own risks, including possible death. There is hope that
artificial intelligence combined with advanced medical imaging techniques may be able to better identify
IAs at high risk of rupture to help prioritize use of these treatments. Here, we describe a machine-learning
technique we developed to predict rupture risk from 3D computed tomography angiography data, a med-
ical imaging technique that involves injecting dyes into the blood and then imaging vascular features via
X-ray and computational reconstruction. We show that this machine-learning method performs better
than human-based predictions within our test datasets, and we hope that this work and others like it will
help eventually move these methods into clinical practice, improving treatment outcomes for patients
with IA.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
It is critical to accurately predict the rupture risk of an intracranial aneurysm (IA) for timely and appropriate
treatment because the fatality rate after rupture is 50%. Existing methods relying on morphological features
(e.g., height-width ratio) measured manually by neuroradiologists are labor intensive and have limited use for
risk assessment. Therefore, we propose an end-to-end deep-learning method, called TransIAR net, to auto-
matically learn themorphological features from 3D computed tomography angiography (CTA) data and accu-
rately predict the status of IA rupture. We devise a multiscale 3D convolutional neural network (CNN) to
extract the structural patterns of the IA and its neighborhoodwith a dual branch of shared network structures.
Moreover, we learn the spatial dependence within the IA neighborhood with a transformer encoder. Our ex-
periments demonstrated that the features learned by TransIAR are more effective and robust than hand-
crafted features, resulting in a 10% � 15% improvement in the accuracy of rupture status prediction.
INTRODUCTION

An intracranial aneurysm (IA) is a pathological expansion of a

weak area of an intracranial vessel wall because of the long-
This is an open access article under the CC BY-N
term effects of abnormal blood flow. The development of IAs is

influencedby vesselwall-related factors, leading, e.g., to a higher

prevalence for individualswith polycystic kidney disease (PKD)1,2

and Ehlers-Danlos syndrome (EDS) type IV.3,4 Local vascularwall
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Figure 1. Visualization of IAs

Aneurysms are small and difficult to find. The top left and right corners show

enlarged views of the aneurysms.

Figure 2. Visualization of IAs

It is difficult to assess whether rupture occurred from the size of the IA. The first

and second row show ruptured and unruptured IAs, respectively, and their

sizes. The top right corner of each image is a magnified view of the IA.
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damage of IAs may be caused by congenital dysplasia or

acquired injury to intracranial arteries. The prevalence of IAs in

the population is approximately 3:2%,5 and the probability of

aneurysm rupture ranges from 0:25%–0:50%.6–8 When an aneu-

rysmruptures, it results in a fatality rateofmore than50%.9–12 The

results of the International Subarachnoid Aneurysm Trial (ISAT)

demonstrated that coil embolization can be used to prevent

aneurysm bleeding.13,14 Later, it was also proven in practice

that coiling and surgical clipping can avoid the risk of aneurysm

rupture while having an acceptable level of safety. The amount

of experience of treating aneurysms continues to increase, and

equipment upgrades and safety improvements continue to be

achieved. Therefore, rapid screening and localization of

aneurysms and effective risk assessment can greatly reduce

aneurysm mortality. Unruptured IAs, when diagnosed to be low

risk, can be treated conservatively, avoiding the risks of surgery

(such as death). IAs with impending rupture can be controlled

to avoid major bleeding because of rupture.

Bo et al.15 proposed adeep-learningmodel for IA detection and

segmentation using modern imaging technologies, such as

computed tomography angiography (CTA), without manual inter-

vention.Asshown inFigure1,weused theRadiAntDICOMViewer

software (http://www.radiantviewer.com/) to display intracranial

CTA. The aneurysm itself is very small compared with the whole

skull, so it is challenging to assess the status of rupture. Related

studies have shown that rupture events can be predicted accord-

ing to the morphological characteristics of aneurysms,16–20

including aneurysmgeometry variables and surrounding vascula-

ture, such as aneurysm size, neck size, aneurysm height, vertical

height, aspect ratio, size ratio, vessel angle, anterior projection, ir-

regularity shape, vessel size, and aneurysm angle.21

Existing methods for predicting the status of IA rupture can be

classified into three types: threshold-based methods, manual

feature-based methods, and 2D convolutional neural network

(CNN)-based methods. Threshold-based methods predict the

rupture status by comparing a feature, such as the aspect ratio

or size ratio, with a threshold. The IA aspect ratio is the ratio of

IA height to aneurysm neck width. The study18 found that the

larger the aspect ratio, the greater the risk of aneurysm rupture.

Various aspect ratio thresholds have been proposed in previous

research works18–20 (e.g., 1.77, 1.18, and even 0.98), and the

reason for this is that the rupture event is not absolutely deter-
2 Patterns 4, 100709, April 14, 2023
mined by a single risk factor. We visualized examples of ruptured

and unruptured IAs in Figure 2. There is a significant overlap

between the sizes of the two IA categories. In addition, the

thresholds for rupture of aneurysms in different locations are

different. For example, the threshold for anterior communicating

aneurysms is relatively low. Therefore, there is no consensus on

the optimal threshold for the aspect ratio. The IA size ratio is the

ratio of the height of the aneurysm to the mean vessel diameter,

which is related not only to the size of an aneurysm but also the

diameter of nearby local vessels. The determined size ratio

thresholds for the height of an aneurysm and the mean vessel

diameter19,22 are 2.05 and 1.5, respectively. Wang et al.20 re-

ported that the size ratio threshold of posterior communicating

artery aneurysm rupture is 1.21. There is a gap between these

thresholds. However, it is not surprising that the single-feature

thresholds are different in various settings because the rupture

risk is affected by several complicated factors.

Manual feature-based methods assess IA rupture status by

building traditional machine-learning models, such as support

vector machine (SVM), on morphological features that are

measuredmanually and on patient auxiliary features. Elsharkawy

et al.23 and Liu et al.24 proposed that morphological features and

patient-related auxiliary features are related to rupture, and the

former are manually measured by neuroradiologists, including

aneurysm size, size ratio, aspect ratio, blood flow angle,

etc.,25–30 while the latter are usually related to age, sex, hyper-

tension, smoking history, and other factors.23,24 Liu et al.31

used a two-layer feedforward neural network for prediction. In

total, 594 IAs (54 unruptured and 540 ruptured) were collected,

with 13morphological features and 4 statistical features as input.

Zhu et al.32 collected 13 patient-specific clinical features and 18

aneurysm morphological features as input data for machine-

learning models; e.g., SVM, random forest (RF), and feedforward

artificial neural network (ANN).

In addition to manually measuring features, alternative

methods of automatically extracting features exist. Raghavan

et al.18 proposed automatically determining the size and shape

index of IAs to distinguish between ruptured aneurysms

and unruptured aneurysms, which requires semiautomatic

http://www.radiantviewer.com/


ll
OPEN ACCESSArticle
segmentation followed by automatic parameterization. Detmer

et al.33,34 collected 1; 631 IAs and related features, including

hemodynamic, morphological, and patient-related information,

to predict IA rupture status. They automatically obtained 22

hemodynamic and 25 morphological parameters of IAs through

computational fluid dynamics simulations. Although these

methods determine some parameters automatically, they are

limited to parameterization of aneurysm features to train the

classifier.

The methods relying on morphological features measured by

neuroradiologists or automatic measurement of limited features

to predict rupture status are time consuming, labor intensive,

and limited. Measurement of morphological features is based

on visualization software, which reconstructs and stereoscopi-

cally presents CTA vascular images, as shown in Figure 1. How-

ever, at present, CTA imaging technology is less sensitive for

small aneurysms35 with a maximum diameter < 3mm, and there

are still cases of missed diagnosis. The software cannot fully

display the aneurysm and surrounding blood vessels. Moreover,

neuroradiologists may be at different proficiency levels, and

manual measurement is subjective to some extent, which may

induce wide variations and uncertainties in the data. In this pa-

per, we aim to build an end-to-end model to automatically learn

the morphological features of IAs from CTA images without the

involvement of neuroradiologists and visualization software.

2D CNN-based methods utilize the 2D CNN network to extract

features from 2D IA images to assess rupture status. In a recent

study, Kim et al.9 used 2D aneurysm images rather thanmanually

measured features to predict rupture status, collecting a total of

640 patients with IAs, of which 368 patients were used in the

training set. They captured 2D images of IAs in six directions

and then performed data augmentation to expand the dataset,

adopting Alexnet_v2 as the backbone for training, and the model

was finally tested in the remaining 272 patients. Although the 2D

images have an edge over manually measured features, the 2D

projections introduce information lossand lead to limited features.

The proposed method in this paper works directly on the 3D CTA

image, and the learned features are more comprehensive.

Existing methods for predicting rupture status usually take

multiple morphological features to build prediction models,21

and the morphologies are manually measured by neuroradiolo-

gists with the assistance of machines. This paradigm has the

following limitations. First, it demands that experienced neurora-

diologists spend much time performing measurements. Second,

various standards of different neuroradiologists may induce

large variations and uncertainties in the data. Third, other un-

known important features may have been missed or difficult to

craft by neuroradiologists; for example, studies have found

that the perianeurysmal environment of an IA has a certain influ-

ence on the risk of rupture.36

The existing methods mainly focus on the morphological fea-

tures of an IA and barely consider the aneurysm’s surrounding in-

formation. Several studies have found that the perianeurysmal

environment of the IA also has a certain influence on the risk of

rupture. Sugiu et al.36 introduced the term ‘‘perianeurysmal envi-

ronment’’ to group the anatomical structures, including the brain,

dura, bone, vessels, and nerves surrounding IAs, whose influence

on IAswas considered tobebalancedor unbalancedaccording to

symmetric or asymmetric forces exerted by those structures,
respectively. They found that the perianeurysmal environment

has a significant influence on aneurysmal growth, shape, and

rupture pattern. Compared with unruptured IAs, ruptured IAs

have more contact with the perianeurysmal environment, which

is more likely to be unbalanced. The irregular shape was proven

to have a positive correlation with unbalanced contact.37 Backes

et al.38 concluded thatwhether the high risk of rupturewas caused

by contact or by aneurysm size is undefined. Because large aneu-

rysms are more likely to be in contact with the environment

because of the limited local subarachnoid space, the relationship

between large aneurysm size and rupture cannot be considered

in isolation. In other methods based on manual features, the ana-

lyses of someother parameters (including shape) also have similar

problems. Therefore, it is challenging to measure the complex in-

fluence of these risk factors on rupture. In this paper, we address

this challenge and incorporate IA neighborhood information for

rupture prediction using a deep-learningmethod.Ourmethod fea-

tures amultiscaleCNN for learning scale-invariant representations

of an IA and its neighborhood and a transformer for neighborhood

representation enhancement.

In recent years, medical imaging haswitnessed great develop-

ment thanks to deep learning, and progress has been made in

cell segmentation,39 organ segmentation,40,41 and aneurysm

detection and segmentation.42–44 Deep representation learning

creates opportunities to address the limitations of measuring

morphological featuresmanually by neuroradiologists. However,

there are two challenges. First, the geometric shapes of IAs are

usually irregular in 3D CTA data, and IAs may appear in various

directions and sizes. Second, the IA neighborhood (e.g., the

perianeurysmal environment), which is rarely taken into account

in existing methods, needs to be considered in deep representa-

tion learning for more features than hand-crafted ones because it

has a complicated impact on the rupture risk.

In this paper, we propose an end-to-end deep-learning

method, called TransIAR net, to tackle the above two challenges.

Our method takes the 3D CTA data as the input and extracts the

risk-related structural features automatically for accurate rupture

status prediction. To the best of our knowledge, TransIAR net is

the first end-to-end method for IA rupture prediction. The main

contributions are summarized below.

d We propose a multiscale 3D CNN to automatically extract

morphological features from CTA images. The 3D scale-

invariant, risk-related embedding is captured from not

only the 3D IA itself but also its cubic neighborhood.

d We further learn the spatial dependence within the IA

neighborhood by cutting the 3D CNN embeddings into

small feature cubes and modeling the cubes in order with

a transformer encoder. Then, the long-range depen-

dencies on the IA and the geometry of the surrounding

blood vessels result in more discriminative features.

d We evaluate the effectiveness of TransIAR on balanced

and unbalanced datasets. The results show that

TransIAR outperforms the existing methods in terms of

accuracy, precision, recall, area under the curve (AUC),

area under the precision-recall curve (AUPR), and F1

score. Moreover, the computed embeddings by

TransIAR are better than the features measured by neuro-

radiologists when feeding them into an RF or SVM model
Patterns 4, 100709, April 14, 2023 3



Figure 3. Comparison of diagnosis time for a doctor and our deep-

learning method

Table 1. Statistics about collected CTA imbalanced dataset and

balanced dataset

State

Imbalanced dataset Balanced dataset

Training Testing Total Training Testing Total

Ruptured 100 208 308 100 41 141

Unruptured 100 41 141 100 41 141

Total 200 249 449 200 82 282
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for rupture status prediction. In addition, as given in Fig-

ure 3, it takes approximately 2 min for our deep-learning

method to preprocess the data and make the prediction,

while neuroradiologists may take approximately 20 min

on average (this was determined by collecting the time

used by five neuroradiologists on 10 randomly selected

cases in the First Affiliated Hospital of Wenzhou Medical

University), which is 10 times longer, to measure the mor-

phologies and use the existing models for prediction.
Table 2. Statistics about IA size

< = 4 mm 4 mm � 7 mm >7 mm

Training 38 78 84

Testing 13 38 31
RESULTS

Data preparation
We collected CTA images of 556 patients with IAs from hospital

A from January 2009 to December 2019. The CTA images are

stored in DICOM (Medical Digital Imaging and Communication)

format. The hospital uses three multidetector CT scanners to

collect intracranial data: (1) Aquilion ONE (Toshiba Medical Sys-

tems, Japan), (2) Lightspeed VCT 64 (General Electrical Medical

Systems, Milwaukee, WI, USA), and (3) Lightspeed pro16 (Gen-

eral Electrical Medical Systems). Correspondingly, the section

thicknesses are 0.5 mm, 0.625 mm, and 1.25 mm; the recon-

struction intervals are 0.5 mm, 0.625 mm, and 1.25 mm; the

tube voltages are 100 kV, 100 kV, and 120 kV; the tube currents

are 300 mA, 500 mA, and 300 mA; and the matrix sizes are the

same (i.e., 512 3 512).

The data inclusion criteria were as follows: (1) patients with one

or more IAs and (B) cystic aneurysms. The data exclusion criteria

were as follows: (1) aneurysms with a diameter less than 3 mm,

(2) poor CTA image quality, (3) patients receiving surgical or inter-

ventional treatment before CTA, and (4) multiple aneurysms and

failure to identify which ruptures. Finally, 423 patients with 449

IAs (ruptured and unruptured) were retained as an internal data-

set. They were divided into internal training and test sets.

The IA annotation criteria are as follows. (1) An aneurysm is an-

notated as ‘‘ruptured’’ when its CT plain scan or cerebrospinal

fluid examination shows subarachnoid hemorrhage (SAH), which

is confirmed by CTA, DSA or surgery. (2) The remaining aneu-

rysms are annotated as ‘‘unruptured.’’

The collected dataset is an imbalanced dataset consisting of

141 cases of unruptured IAs and 308 cases of ruptured IAs, as

shown in Table 1. To better train and test the model, we conduct

experiments under balanced and imbalanced settings. For the

balanced setting, we randomly selected a completely balanced

dataset for training and testing. The numbers of ruptured IAs
Patterns 4, 100709, April 14, 2023
and unruptured IAs are the same in the training set and testing

set. To test the robustness of the model, we added an indepen-

dent set of unused 167 cases of ruptured IAs to the balanced test

set and retested the performance of themodel. The size distribu-

tion of aneurysms is given in Table 2. The dataset covers all

sizes, with small aneurysms (< = 4 mm) accounting for 19% in

the training set and 15:8% in the testing set.

To verify the generalization of our model, we also collected

CTA data from four other hospitals and merged them as an

external test set. The inclusion and exclusion criteria are the

same as those of the internal dataset. There is no intersection

between the internal dataset and the external test set. The

external test set contains 43 CTA images with 14 unruptured

IAs and 29 ruptured IAs. Details about the external test set can

be seen in supplemental experimental procedures section S1.

To enhance the model training, data augmentation is conduct-

ed for the training and testing data. Each input data cube is

augmented to have 32 different variants by randomly rotating

the cube by a certain angle in the x, y, and z directions. Note

that, to prevent the loss of information during rotation, we first

cut the cube slightly larger than our target size and cut the cube

of the target size from the center of the rotated cube.

Morphological and auxiliary features are based on ruptured and

unruptured IAs.GroupA is the set of featureshand-craftedbyneu-

roradiologistswho are familiar with CTA image reconstruction and

measurement, and group B is the set of features that can be easily

obtained, called auxiliary features (AFs). The p values were calcu-

lated by t tests and chi-square tests with Bonferroni correction.

In addition, we collected the clinical information of the patients

and thebasicmorphological parametersof the aneurysm, as listed

in Table 3. We divided these features into two groups, A and B.

Group A contained features that require neuroradiologists familiar

with CTA image reconstruction and measurement, and group B

contained features that can be obtained easily, such as age,

shape, and location. In this paper, we used group A as hand-

crafted IA features and group B as AF s. As in the literature, e.g.,

Chen et al.,21 we assessed the statistical significance of the asso-

ciation between each feature and the rupture status. In detail, we

used the t test for continuous features and the chi-square test for

categorical features, after which we adjusted the p values by Bon-

ferroni correction. Features with a p value less than 0.05 were

considered statistically significant. Notably, all features of group

A and group B were significantly associated with the rupture



Table 3. Morphological and AFs based on ruptured and

unruptured IAs

Group Features Ruptured Unruptured p Value

A AR 1.14 ± 0.54 0.86 ± 0.59 2.96E�07

height-width ratio 0.89 ± 0.25 0.77 ± 0.26 1.06E�06

SR 2.69 ± 1.61 1.94 ± 1.56 2.08E�06

Hmax (mm) 5.77 ± 2.92 4.45 ± 2.98 7.85E�06

BNF 1.3 ± 0.54 1.09 ± 0.52 0.000196

Vessel size (mm) 2.3 ± 0.5 2.46 ± 0.55 0.013133

Size (mm) 7.42 ± 3.29 6.44 ± 3.34 0.019203

H (mm) 4.68 ± 2.54 3.9 ± 2.83 0.020827

B (AF) Shape 2.98E�09

Regular 42.36% 70.42%

Irregular 57.63% 29.57%

Daughter domes 8.14E�06

No 68.42% 87.79%

Yes 31.57% 12.20%

Multiple aneurysms 8.23E�06

Single 81.12% 61.17%

Multiple 18.88% 38.83%

Location 0.000444

M1-LSAAs 1.58% 7.98%

M1-EFBAs 14.21% 18.31%

M1-ETBAs 10.26% 9.86%

MbifAs 71.58% 56.81%

MdistAs 2.37% 7.04%

Age (years) 56.28 ± 11.49 60.66 ± 11.99 0.000602

Group A is a set of hand-crafted features by neuroradiologists who are

familiar with CTA image reconstructions and measurements, and Group

B is a set of features that can be easily obtained, called auxiliary features

(AFs). The p values are calculated by t test (for continuous features) and

chi-square test (for categorical features) with Bonferroni correction. The

calculation details of the p value can be found in the Supplemental Experi-

mental Procedures Section S5. The full names and definitions of abbrevia-

tions are shown in the Supplemental Experimental Procedures Section S7.
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status. Continuous features are presented as the mean ± stan-

darddeviation, andcategorical features are presented aspercent-

ages. The features were processed using the Standard Scaler,

which normalized the features by the variance.
Results compared with those of existing methods
Automatically extracted features vs. manually extracted

features

Existingmethods usually use features (e.g., aneurysmsize, height,

parent artery width) measured manually by neuroradiologists as

input and train traditional machine-learning models such as SVM

and RF to predict the rupture status. The proposed TransIAR net

is able to learn aneurysm features in an end-to-end manner in

the absence of neuroradiologists. In the following, we evaluate

thepredictiveperformance of our automatically extracted features

in comparison with that of the human-measured features.

We implement RF and SVM from the existing methods as

baselines. We use the manually measured features (i.e., group

A in Table 3), as input to train an RF or SVM, and the trained
models are denoted as RFm or SVMm. For fair and comprehen-

sive comparison, we build models from automatically extracted

features under three scenarios: (1) RFa and SVMa, an RF and an

SVM classifier that are trained on the 8-dimensional features

learned by our TransIAR net; (2) IAR net, which is trained in an

end-to-end manner using TransIAR net without activating the

transformer module; and (3) TransIAR net, the proposed end-

to-end deep-learning model.

The prediction performance is listed in Table 4. We see that

RFa and SVMa outperform RFm and SVMm, respectively, by a

large margin in all evaluation indicators. For example, the predic-

tion accuracy of SVMa is 89:02%, approximately 10% higher

than that of SVMm. The features extracted via TransIAR are

much more effective and discriminative than the hand-crafted

features, which indicates that TransIAR net is capable of

breaking through the limitations of feature engineering by neuro-

radiologists. SVM is generally better than RF on both types of

features. The prediction AUC or AUPR is further improved by

TransIAR net over SVMa when representation learning and

classifier building are jointly optimized in one model.

It can be concluded that IAR outperforms RFm and SVMm but

is inferior to RFa and SVMa. The representation learning of

IAR net mainly relies on the multiscale 3D CNN in the

BranchNet module when the transformer module is removed.

The results indicate that the multiscale 3D CNN alone is effective

in extracting features for rupture prediction, and the transformer

module further enhances representation learning by exploiting

the contextual dependence within the IA neighborhood.

TransIAR vs. 2D and 3D models

We consider relevant state-of-the-art (SOTA) 2D or 3D models in

the literature and reproduce them for comparison. The training de-

tails can be found in supplemental experimental procedures sec-

tion S2. It should be noted that the existing 3D models are not

for the prediction problemof IA rupture status, and thuswemodify

them appropriately to adapt to the problem setting in this paper.

First, we reimplemented the network of Kim et al.,9 which used a

2D method to predict the rupture status of aneurysms. Kim

et al.9 captured aneurysm images in six directions (front and

back, both sides, and top and bottom), and then the neuroradiolo-

gists selected the regionof interest, including the aneurysm, as the

network input.

Second, we reimplemented the M3T45 3D network for

comparison. The M3T network was originally developed by

combining 3D CNN, 2D CNN, and transformer to classify

Alzheimer’s disease (AD) on 3D MRI (magnetic resonance imag-

ing) images. We slightly modify the M3T network to take CTA

images as input and train it on our CTA data.

Finally,weconsidereda3DU-Netmodel, calledDAResUNET,42

which was originally proposed for aneurysm segmentation. As

shown inFigureS1A, adual attentionblock (DAB) at thebottleneck

of 3D U-Net is added to model the semantic relationship of the

spatial and channel dimensions of IAs. Because DAResUNET

was originally developed for aneurysm segmentation, it needs to

be adjusted for rupture status prediction. As illustrated in Fig-

ure S1A, DAResUNET, published in GitHub (https://github.com/

deepwise-code/DLIA) by the original author, is a typical U-Net ar-

chitecture with an encoder and a decoder as well as skip connec-

tions from the encoder to decoder. We include two versions of

DAResUNET for comparison. One is given in Figure S1B and
Patterns 4, 100709, April 14, 2023 5
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Table 4. The results on the balanced test set

Models Feature Accuracy (95% CI) Precision Recall AUC AUPR F1 score

RFm manual (group A) 74.39 (64.94–83.84) 68.52 90.24 83.58 81.48 77.89

SVMm manual (group A) 79.27 (70.50–88.04) 81.58 75.61 85.46 82.57 78.48

RFa auto (by TransIAR) 84.15 (76.25–92.05) 80.43 90.24 88.34 90.88 85.06

SVMa auto (by TransIAR) 89.02 (82.25–95.79) 88.10 90.24 91.23 91.68 89.16

Kim et al.9 auto 79.27 (70.50–88.04) 81.58 75.61 85.07 78.86 78.48

M3T45 auto 85.37 (77.72–93.02) 87.18 82.93 87.92 89.05 85.00

DAResUNETb 42 auto 84.15 (76.25–92.05) 80.43 90.24 89.89 90.37 85.06

DAResUNETc 42 auto 84.15 (76.25–92.05) 85.00 82.93 91.97 91.12 83.95

IAR auto (by IAR) 82.93 (74.79–91.07) 81.40 85.37 88.22 88.95 83.33

TransIAR auto (by TransIAR) 89.02 (82.25–95.79) 88.10 90.24 92.15 93.16 89.16

‘‘Manual’’ and ‘‘auto’’ indicate models trained with manually extracted features or automatically extracted features, respectively. RFm and SVMm are

trained with group A setting features. The 95% confidence interval (CI) denotes the binomial proportion CI at the significance level of 95%. The best

results are shown in bold. The calculation details of CI are shown in Supplemental Experimental Procedures Section S4.
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denoted DAResUNETb, which only uses the encoder and DAB of

DAResUNET as the skeleton and a simple classifier composed

of multilayer perceptron (MLP) at the tail. Cross-entropy loss is

used to train the model. The other is shown in Figure S1C and de-

noted DAResUNETc. It uses the original DAResUNET structure to

extract features in the bottleneck layer byminimizinga reconstruc-

tion loss by the mean square error (MSE) function and adopts an

MLP classifier on the bottleneck layer features.

As reported in Table 4, the results of these models on the

balanced test set demonstrate that TransIAR is the best under

almost all metrics, while DAResUNETb demonstrates its relative

strength in terms of recall score. We visualized two examples

from misclassified samples of TransIAR in supplemental experi-

mental procedures section S6.

We released the code and the trained models of the above

methods on GitHub (https://github.com/CMACH508/TransIAR).

Results on the imbalanced test set

To demonstrate the models’ robustness, we test the models

based on the imbalanced test set, which has five times more

ruptured IAs than unruptured IAs. The results are reported in

Table 5. Generally, the IA features learned by TransIAR net are

more effective than the manually measured morphological fea-

tures. The TransIAR net, which jointly optimizes representation

learning and classifier construction, greatly outperforms the ex-

isting methods (RFm and SVMm). Again, the AF s are consistently

beneficial to improve the prediction performance of all models

(except RF), playing a similar role under the balanced setting.

Table 5 shows that RF ismore robust thanSVMunder the imbal-

ancedsetting. The features learnedbyTransIARnet enableRFand

SVMtobridge thegapandbecomecomparablewith TransIARnet.

We observe that the recent popular 2D or 3D classification

models achieve much higher accuracy than methods of

manually extracting features (i.e., RFm, SVMm). On the imbalanced

test set, TransIAR is the best under the Precision, AUC, and AUPR

metrics. The 3Dmethods (M3T, DAResUNETb, andDAResUNETc)

also exceed RFm and SVMm, but they are still inferior to TransIAR.

The impact of AFs

When neuroradiologists assess the rupture risk of an aneurysm,

they not only check the 3D reconstruction of a CTA vascular

image through software but also take AFs into consideration,

such as patient age and aneurysm location. As shown in Table 3,
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the AFs are indeed significantly associated with the rupture

status, but they may not be easily learned from the CTA image.

It would be beneficial to include the AFs for rupture prediction.

The benefit is first confirmed by the experiments on the baseline

methods in Table 6.With the AFs, the prediction accuracy of RFm

and SVMm increases by 6:10% and 4:88%, respectively.

The results of including the AFs in the training under balanced

and imbalanced settings are reported in Tables 7 and 8.

Comparing Tables 4 and 7, the incorporation of AFs further im-

proves the accuracy of IAR by 1:22% and TransIAR by 2:44%

on the balanced test set and improves the accuracy of IAR by

6:83% and that of TransIAR by 4:42% on the imbalanced test

set. The gain by the AFs is as obvious as that for RFm or SVMm

on balanced and imbalanced test sets. When comparing IAR

and TransIAR, the transformer module consistently contributes

an improvement on all metrics in the absence of AFs, while the

improvement becomes negligible with a slight tendency toward

high precision and AUC in the presence of AFs. There is no

obvious gain for RFa or SVMa. Perhaps it is better to consider

the AFs jointly with the deep representation learning on an IA

and its neighborhood so that the learned features can be further

optimized in a cooperative, complementary manner.

To summarize, the proposed TransIAR net is able to signifi-

cantly improve the prediction performance over the existing

methods; i.e., RFm and SVMm. The IA features learned by

TransIAR net can also strengthen RFa and SVMa to exceed

RFm and SVMm, respectively. The TransIAR net further improves

the prediction accuracy with the assistance of AFs.

Results on the external test set

We evaluate our model and other compared methods on the

external test set, as shown in Table 9. TransIAR is better than or

the same as traditional methods (RFm, SVMm), 2D methods (Kim

et al.9), and 3D methods (M3T, DAResUNETb, and DAResUNETc)

inperformanceonallmetrics.Tosummarize, the resultsareconsis-

tent with those on the internal test set. TransIAR has been demon-

strated to have good generalization performance.

Comparisons with MaSIF-Net and Triangle-Net for
automatic feature extraction
There exist other deep-learning methods that are able to auto-

matically extract features from 3D data. molecular surface

https://github.com/CMACH508/TransIAR


Table 5. The results on the imbalanced test set

Models Feature Accuracy (95% CI) Precision Recall AUC AUPR F1 score

RFm manual (group A) 74.70 (69.30–80.10) 90.50 77.88 75.32 93.40 83.72

SVMm manual (group A) 60.24 (54.16–66.32) 94.31 55.77 77.37 93.59 70.09

RFa auto (by TransIAR) 83.53 (78.92–88.14) 95.14 84.62 86.73 97.19 89.57

SVMa auto (by TransIAR) 79.92 (74.94–84.90) 97.02 78.37 88.44 97.28 86.70

Kim et al.9 auto 73.49 (68.01–78.97) 95.51 71.63 85.20 94.57 81.87

M3T45 auto 79.12 (74.07–84.17) 96.99 77.40 88.90 97.26 86.10

DAResUNETb 42 auto 80.32 (75.38–85.26) 94.92 80.77 87.27 97.03 87.27

DAResUNETc 42 auto 77.11 (71.89–82.33) 96.32 75.48 88.57 97.14 84.64

IAR auto (by IAR) 78.31 (73.19–83.43) 95.29 77.88 85.96 96.70 85.71

TransIAR auto (by TransIAR) 80.72 (75.82–85.62) 97.06 79.33 89.28 97.57 87.30

The labels ‘‘manual’’ and ‘‘auto’’ indicate models trained with manually extracted features or automatically extracted features, respectively. RFm and

SVMm are trained with group A setting features. The best results are shown in bold.

Table 6. The performance of RFm and SVMm when trained on

manually extracted features and AFs

Models Data settings Accuracy

RFm group A 74.39

group B 69.51

groups A & B 80.49

SVMm group A 79.27

group B 74.39

groups A & B 84.15

The results are evaluated on the balanced test set. The best results are

shown in bold.
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interaction fingerprinting (MaSIF) (https://github.com/LPDI-

EPFL/masif), a recent deep geometric learning method, has

been proven to be effective in deciphering interaction patterns

from the 3D protein’s molecular surface.46 It computes a

descriptor for each surface patch according to geometric fea-

turesandcaptures the fingerprints for specificbiomolecular inter-

actions. Inspired byMaSIF, we removed the internal points of the

segmented aneurysm annotated by neuroradiologists and con-

structed a mesh on the IA surface. Around each vertex of the

mesh, a patch with a fixed geodesic radius is extracted, and for

each vertex in the patch, two geometric features are calculated;

namely, shape index and distance-dependent curvature.

Because of memory limitations, 64 patches randomly selected

from the aneurysm surface were utilized as the input of MaSIF

Net. Finally, we obtained a predicted score for aneurysm rupture

status.Under thebalanceddataset, our test accuracyon thecon-

structedaneurysmmesh is 0.6951,which is poorer than the exist-

ing methods, RFm and SVMm, as shown in Table 4. Additionally,

we include an experiment to investigate the effects of the number

of patches on the performance.More details can be found in sup-

plemental experimental procedures section S3.

Triangle-Net47 is another effective deep-learning method for

point cloud learning, with an invariance property against rotation.

It utilizes the graph structure of the point cloud to extract hyper-

edge features and then uses graph aggregation to obtain latent

representation for classification. We process the segmented

aneurysm annotated by neuroradiologists, remove the internal

points, interpolate and sample, and then feed them into

Triangle-Net. The testing accuracy on the balanced dataset is

0.7195, lower than that of RFm and SVMm according to Table 4.

The major reason for the poor performance of these two

methods is that they can extract the structural and geometric

featuresof theaneurysm itself but fail to learn thedetailed informa-

tion about the nearby blood vessel structure. It is difficult for them

to obtain the diameter of the surrounding blood vessel, the angle

ofbloodflow, thewidthof theaneurysmneck, andother important

features that affect the rupture. In contrast, the proposed

TransIAR net fully excavates information from aneurysm data in

an end-to-end way and optimizes the relationship between data

features and rupture status. It achieves a prediction accuracy as

high as 89:02% (Table 4), exceeding the existing methods, even

in the absence of AFs.
Clinical experiment
To show the clinical applicability of TransIAR, we conducted a

clinical experiment to compare the accuracy of doctors and

TransIAR net in IA rupture prediction. In clinical experiments,

doctors need to predict whether the aneurysm is ruptured ac-

cording to morphological parameters.

The clinical experimental scheme is as follows. (1) The 3D CTA

imagesandshapeparameters areprepared for doctors topredict

IA rupture status. It is necessary to comprehensively display the

morphological characteristics of the aneurysms and mark

the size of the aneurysms. (2) Two doctors (a radiologist and a

neurosurgeon) assessed the rupture status of the aneurysms.

The ‘‘ruptured’’ IA is annotated as 1, and the ‘‘unruptured’’ IA is

annotated as 0. The time each doctor spends is recorded. (3)

The results of two doctors with the ground truth labels are

compared.

The results of clinical performance are shown in Table 10. We

see that TransIAR outperforms doctors in accuracy and AUC in

practice. The average time doctors spend is approximately 1 h,

and TransIAR spends less than 4 s, which is far less than the

time doctors spend.
The impact of the neighborhood of an IA
First, we determine the size of the neighborhood of an IA. A pa-

tient’s 3D CTA image data usually have S35123512 voxels,

where S is the patient-specific number of slices, and each slice

is a 5123512 image. The distribution of the aneurysm size (i.e.,

maximum diameter in voxels) is given in Figure 4. In our collected
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Table 7. Performance of models trained with additional AFs and tested on the balanced test set

Models Feature Accuracy (95% CI) Precision Recall AUC AUPR F1 score

RFm manual (groups A & B) 80.49 (71.91–89.07) 75.51 90.24 84.41 77.22 82.22

SVMm manual (groups A & B) 84.15 (76.25–92.05) 85.00 82.93 87.03 80.79 83.95

RFa auto (by TransIAR) & group B 84.15 (76.25–92.05) 80.43 90.24 88.25 89.48 85.06

SVMa auto (by TransIAR) & group B 87.80 (80.72–94.88) 86.05 90.24 93.22 92.52 88.10

IAR auto (by IAR) & group B 84.15 (76.25–92.05) 78.00 95.12 89.83 89.89 85.71

TransIAR auto (by TransIAR) & group B 91.46 (85.41–97.51) 94.74 87.80 92.09 89.58 91.14

The labels ‘‘manual’’ and ‘‘auto’’ indicate the manually extracted features and the automatically extracted features, respectively. The best results are

shown in bold.
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dataset, the size of the largest aneurysm was 42 voxels, and the

smallest was 5 voxels. The aneurysms are very small compared

with the entire intracranial CTA. If the entire brain is regarded as

the IA neighborhood, it would be difficult for the model to focus

on the tiny aneurysm. Instead, we crop a cube from the 3D CTA

around the center of an IA. Because the size of the maximum

aneurysm is 42 voxels, we choose 48 voxels as the smallest

edge length of the cubic neighborhood to cover the whole aneu-

rysm. For more neighborhood information when the aneurysm is

large, we also consider 96 voxels as the edge size of the

neighborhood.

The cropped cubic data around the aneurysm centers contain

the morphological structure of the IA and its neighborhood with

surrounding anatomical structures; e.g., small blood vessels and

impurities. The input data include not only the cropped cube but

also the cube processed by the breadth first search (BFS) method

to obtain the IA and parent arteries. Note that the BFS process

removes much neighborhood information from the cropped cubic

data. Figure5 visualizes thepreprocessingof thedataof the IAand

its neighborhood. The cubic neighborhood of 963 voxels (in red) is

downsampled to 483 voxels, which is kept as the input size for the

TransIAR net. The cubic data of the third column (before BFS)

contain the IA and its neighborhood, while the ones of the fourth

column (after BFS) contain themorphology of the IA and its parent

arteries. We consider different combinations of cubic data of both

columns and evaluate the impact of neighborhood information on

the prediction performances in Table 11.

It can be seen in Table 11 that the prediction performance of

TransIAR net drops by a large margin when BFS is used to

remove much neighborhood information. The performance is

better when the neighborhood size is 96. The BFS-derived cubic

data, when fed into the network together with the cropped cubic

data, are beneficial to improve the prediction performance

because they are able to strengthen the representation learning
Table 8. Performances of models trained with additional AFs and te

Models Feature Accuracy (95% CI)

RFm manual (groups A & B) 72.29 (66.73–77.85)

SVMm manual (groups A & B) 70.68 (65.03–76.33)

RFa auto (by TransIAR) & group B 83.13 (78.48–87.78)

SVMa auto (by TransIAR) & group B 84.34 (79.83–88.85)

IAR auto (by IAR) & group B 85.14 (80.72–89.56)

TransIAR auto (by TransIAR) & group B 85.14 (80.72–89.56)

The labels ‘‘manual’’ and ‘‘auto’’ indicate the manually extracted features an

shown in bold.
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on the IA’s geometry features by reducing the disturbance

from the neighborhood. The best result is achievedwith the com-

bination of all sizes and BFS cases. To summarize, the IA neigh-

borhood information, which has been largely ignored by other

existing methods, plays a very important role in rupture status

prediction, and the diverse, multiscaled input enhances the

deep representation learning on the IA and its neighborhood.

DISCUSSION

The existing machine-learning methods require neuroradiolo-

gists to manually measure the characteristics of IA morphology

or semiautomatic segmentation followed by automated shape

parameterization to predict the status of aneurysm rupture,

and the process is time consuming, labor intensive, and limited

in feature extraction, and it barely takes into account IA neigh-

borhood information. In this paper, we propose an end-to-end

deep-learning method, TransIAR net, for aneurysm rupture pre-

diction. Amultiscale deep 3D CNN is developed to automatically

extract the morphological features of an IA and its neighborhood

information directly from the 3D CTA image data. A transformer

module is devised tomodel the spatial dependencewithin the 3D

CNN embeddings of the aneurysm and its surrounding anatom-

ical structures, and the representation learning is strengthened

to be more discriminative and predictive for rupture prediction.

We evaluate the TransIAR net by experiments on balanced and

unbalanced datasets. The prediction performance becomes

much better when the hand-crafted features collected by the

neuroradiologists are replaced by the features learned by the

TransIAR net in a traditional machine-learning model such as

RF or SVM. The performance is further improved when the

representation learning and classifier construction are jointly

optimized by the TransIAR net. To the best of our knowledge,

the TransIAR net is the first end-to-end model with a fast and
sted on the imbalanced test set

Precision Recall AUC AUPR F1 score

92.64 72.60 76.90 92.86 81.40

95.92 67.79 82.42 94.52 79.44

96.11 83.17 87.36 97.12 89.18

96.69 84.13 89.99 97.66 89.97

94.30 87.50 88.63 97.41 90.77

98.86 83.17 90.00 97.27 90.34

d the automatically extracted features, respectively. The best results are



Table 9. Performance of models on the external test set

Models Feature Accuracy (95% CI) Precision Recall AUC AUPR F1 score

RFm manual (group A) 65.12 (50.87–79.37) 76.92 68.97 72.66 83.99 72.73

SVMm manual (group A) 58.14 (43.39–72.89) 82.35 48.28 80.05 89.79 60.87

Kim et al.9 auto 65.12 (50.87–79.37) 100.0 48.28 91.63 96.01 65.12

M3T45 auto 76.74 (64.11–89.37) 95.24 68.97 94.09 97.12 80.00

DAResUNETb 42 auto 83.72 (72.69–94.75) 95.83 79.31 94.58 97.54 86.79

DAResUNETc 42 auto 88.37 (78.79–97.95) 100.0 82.76 97.29 98.71 90.57

IAR auto (by IAR) 90.70 (82.02–99.38) 96.30 89.66 95.32 97.80 92.86

TransIAR auto (by TransIAR) 93.02 (85.40–100.0) 100.0 89.66 98.03 99.17 94.55

The best results are shown in bold.

Table 10. Comparison of clinical diagnosis and TransIAR on the

balanced test set

Doctor Accuracy (95% CI) AUC (95% CI) Time

Doctor1 82.90 (74.75–91.05) 73.20 (62.00–84.30) 57 min

Doctor2 87.80 (80.72–94.88) 76.80 (66.20–87.40) 62 min

TransIAR 89.02 (82.25–95.79) 92.15 (85.97–98.33) 3.46 s

TransIARAF 91.46 (85.41–97.51) 92.09 (85.89–98.29) 3.47 s

TransIARAF means adding auxiliary features (AFs) for training. The best

results are shown in bold. In the clinical experiment, the measured

morphological features are provided to doctors, so the diagnosis time

of doctors does not include the measurement time. It usually takes

10–20 min to measure the morphological characteristics of each patient.

The time spent by TransIAR does not include data preprocessing time. It

takes an average of 50 s to preprocess the CTA data of each patient.
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accurate prediction of IA rupture status from 3DCTA data, which

is a promising tool to assist doctors in clinical practice.

Moreover, it is convenient to extend our method to be an

end-to-end deep-learning method for IA detection and rupture

status prediction. Our method takes as input 3D CTA data and

a center coordinate of IA location, which can be easily obtained

by existing IA detection methods.15,42,44 With this paradigm,

segmenting an IA from 3D CTA data is not necessary. Even

when the segmentation of IA morphology is perfect, it is not

enough to accurately predict the rupture status because neigh-

borhood information is also valuable and must be supplemented

in representation learning. Under the end-to-end extension for

detection and rupture status prediction, the two tasks can be

jointly implemented. The learning process may benefit from

both sides and lead to more interpretable features. We hope

that it will help to transform and enhance the clinical diagnostics

and precision treatments of cerebrovascular diseases.

Prior to our method, the risk-relevant features, mainly of IA

morphology, were usually extracted manually by neuroradiolo-

gists. This manual process usually requires approximately 20 min

and is limited by geometric distances or angles. Our method not

only reduces the time to approximately 2 min but also breaks

through the limitations. For example, it effectively captures neigh-

borhood information that isdifficult tomeasuremanually. The infor-

mation tends to be related to the perianeurysmal environment36 of

the IA, which has been largely ignored by existing methods. The

perianeurysmal environment is a group of anatomical structures,

including the brain, dura, bone, vessels, and nerves surrounding

IAs, and studies36 have found that the perianeurysmal environment

hasacertain impacton the riskof rupture.Becauseof theblackbox

characteristics of deep learning, further investigation of the clinical

interpretability of deep features is needed, whichmay provide new

insights into rupture risk studies.

It is difficult to learn the representations of the irregular shape of

an IA and its complex surrounding environment from3DCTAdata.

Deep learningmethods, suchasMaSIF46andTriangle-Net,47have

been developed to extract features from 3D data in various appli-

cations. Although MaSIF or Triangle-Net are easy to adopt to

extract the structural and geometric features of an IA, learning

information about the nearby vascular structure is very difficult.

Moreover, IAs may appear in different sizes and orientations. The

proposed multiscale 3D CNN is more effective in meeting these

challenges, and the transformer on the CNN embedding space is

effective in learning the surrounding information. Comparisons
with the state-of-the-art 3D deep networks, including U-Net vari-

ants, indicate that the TransIAR net outperforms the existing 3D

network structures in addressing the IA rupture prediction

problem. However, there is still room for improvement. It would

be beneficial to incorporate the recent advances in geometric

deep learning and equivariant neural networks.48,49

It is noted from the experimental data that the study conducted

in this paper is retrospective, that selection bias is inevitable, and

that this study has limitations for assessing rupture risk. To

predict the actual rupture risk, the ideal data should be collected

from patients with aneurysms that are ‘‘about to rupture but have

not yet ruptured.’’ However, such samples are rare. (1) Most

patients are sent to the hospital with ruptured aneurysms, and

fewopportunities areprovided toobtainaneurysmsamplesbefore

rupture. (2) For patients with aneurysms, doctors may perform

surgery when they judge that the aneurysm is likely to rupture,

and this cannot be recognized as a sample ‘‘to be ruptured but

not yet ruptured’’ because it is not possible to know whether the

aneurysm will eventually rupture if it is not treated. One imperfect

but practical way is to use ruptured cases as samples at risk of

rupture for training and testing based on the assumption that the

geometric features of aneurysms will not change after rupture.

The predictionprobability of the ruptured status still provides help-

ful information about the rupture risk. Many related papers in the

literature adopt the same settings as we did in this

paper.9,31,33,50,51 Although the assumption may not be true for all

aneurysms, as mentioned in the literature,52,53 it is likely to hold

for most aneurysms in real-world data, or the changes in most
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Figure 4. The distribution of aneurysm size (in the unit of voxels) of

the entire dataset

The average is 13.78 voxels.
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ruptured aneurysms are very small. For example, related litera-

ture54,55 indicates that the morphology of aneurysms basically

does not change before and after rupture. After the aneurysm rup-

tures, the adjacent parent artery may continue to supply blood.

Bleeding may be blocked, and thus the morphology of the aneu-

rysm before and after rupture barely changes.

Additionally, the number of unruptured samples is much

smaller than that of ruptured samples. Most of the cases come

from patients who went to the hospital for examination after

having severe symptoms of a ruptured aneurysm. Only a few

cases are from patients whose aneurysms were detected before

rupture. One possible way to remedy the selection bias is causal

analysis methods.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

The lead contact is Shikui Tu (tushikui@sjtu.edu.cn).

Materials availability

There are no newly generated materials.
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Data and code availability

We provide a test set at Zenodo (https://doi.org/10.5281/zenodo.7536330) for

the reviewer to run the test for review. The data in the test set have been pre-

processed to be in the same format as the input to our model and the imple-

mented baselines. The AFs for the test set are also given at Zenodo (https://

doi.org/10.5281/zenodo.7536330).

Please note that the test set is only used to verify ourmodel during the review

process. Because of hospital regulation restrictions and patient privacy con-

cerns, the CTA image data of the patients are only available upon request

for academic purposes.

The source code for training and testing has been released at Zenodo

(https://doi.org/10.5281/zenodo.7536386) and in the GitHub repository

(https://github.com/CMACH508/TransIAR).

Overview of the proposed network

An overview of the proposed TransIAR net is given in Figure 6. The architecture

contains three components: (1) aBranchNetmodule toextract 3Dscale-invariant

features of IAs frommultiple scales, (2) a transformer module to capture depen-

dencies between the aneurysm and its surrounding related anatomic structures,

and (3) a feature fusion module to fuse aneurysm data features and AFs to

increase the discriminative power. Specifically, the two branches in BranchNet

have the same structure, consisting of 3D convolution, rectified linear unit

(ReLU), dropout, and max-pooling layers. After concatenating the output of the

two branches and performing linear projection, it is sent to the transformer

module, which is composed of four encoders, each of which has four heads,

and the dimension of each head is 256. The output features then go through

the fully connected (FC) andReLU layers for feature fusionwith auxiliary informa-

tion. Finally, the classification result is obtained through the prediction layers.

BranchNet module

We devise the BranchNet module to extract features of aneurysms of different

scales and forms, including large and small sizes, and, more importantly, to

learn the representations of IA neighborhood information. The module

contains two branches for IA neighborhoods of various sizes. In one branch,

a data cube x1 ˛R48348348 is cropped from the 3D CTA data around the IA’s

center. We obtain a follow-up data cube, ~x1 ˛R48348348 from x1, by taking a

point in the aneurysm as the starting point and using the BFS method to

connect all of the pixels. As a result, the IA and its parent arteries are preserved

in ~x1 with the removal of surrounding vascular information of nonparent

arteries. Ideally, x1 already contains the information of ~x1, and it should be

sufficient as the input to the deep CNN for automatic feature extraction. In

practice, it would be difficult for the 3D CNN to learn the IA’s own geometry

and its surrounding anatomic structures from x1 only because an IA is a

relatively small 3D object drowned in the data cube. Hence, we take x1 and

~x1 as a two-channel input, and the data cube ~x1, which contains the IA and
Figure 5. Two examples of cropping an IA

and its cubic neighborhood from the 3D
CTA data

The blue and red squares indicate neighborhood

sizes of 48 and 96 voxels.

mailto:tushikui@sjtu.edu.cn
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https://doi.org/10.5281/zenodo.7536330
https://doi.org/10.5281/zenodo.7536330
https://doi.org/10.5281/zenodo.7536386
https://github.com/CMACH508/TransIAR


Table 11. The impact of IA neighborhood on prediction performance

Size BFS Accuracy (95% CI) Precision Recall AUC AUPR F1 score

48 Y 69.51 (59.55–79.47) 90.00 43.90 74.54 78.18 59.02

96 Y 71.95 (62.23–81.67) 72.50 70.73 74.36 75.89 71.60

48 N 82.93 (74.79–91.07) 78.72 90.24 85.31 82.10 84.09

96 N 85.37 (77.72–93.02) 79.59 95.12 92.86 93.20 86.67

48+48 Y+N 84.15 (76.25–92.05) 80.43 90.24 89.35 90.51 85.06

96+96 Y+N 87.80 (80.72–94.88) 86.05 90.24 93.22 93.99 88.10

48+48+96+96 Y+N+Y+N 89.02 (82.25–95.79) 88.10 90.24 92.15 93.16 89.16

The results are obtained on balanced datasets in the absence of AFs. The symbol ‘‘+’’ indicates combinations of input data. ‘‘Y’’ and ‘‘N’’ represent

‘‘yes’’ and ‘‘no,’’ respectively. For example, the setting ‘‘48 + 48, Y + N’’ denotes taking both ‘‘48, Y’’ and ‘‘48, N’’ as input. The best results are shown

in bold.
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its parent artery, is a helpful supplement to enhance the representation

learning on the geometry of the IA, such as aneurysm size, neck width, and

the widths of the parent artery and the nonparent artery.

Although x1 contains the entire aneurysm and part of the surrounding

anatomic structures, the surrounding information may not be sufficient for

aneurysms with large sizes. In the other branch, a data cube of size 963

96396 is cropped from the 3D CTA data around the IA’s center and down-

sampled to x2 ˛R48348348. Similarly, x2 is processed by BFS to obtain ~x2,

and x2 and ~x2 are used in deep learning. The two branches enable a multiscale

capacity of deep representation learning. To summarize, we have

bi = BranchNetiðxi ; ~xiÞ; i = 1; 2;
b = Concatðb1;b2Þ; (Equation 1)

where the two branches have the identical structure as the convolutional part

of VoxNet,56 Cð32;5; 2Þ � Cð32; 3;1ÞÞ � Pð2Þ, and ‘‘Concat’’ denotes the

concatenation operator, Cðf ;d; sÞ indicates f filters of size d and at stride s,

and PðmÞ indicates pooling with area m. Note that b is the embedding output

by the BranchNetmodule, andwe still keep it as 3D cubes inmultiple channels.

Because the centers of the input data cubes x1 and x2 are always constrained

to be the center of the IA, the representations of the IA and its neighborhood

are also around the center of the CNN embedding b.
Transformer module

Note that the 3D CNN embedding b in Equation 1 spatially corresponds to the

data cubes x1 and x2; i.e., the inner volume around b’s center is mostly the ge-

ometry features of the IA, while the outer volume mainly represents the IA

neighborhood features. It allows us to further capture the spatial dependence

of the local features in b, which are obviously not independent from each other.

As illustrated in Figure 6, we divide b into a sequence of equal-sized small

cubic patches and introduce a transformer57 to extract the patterns in the

patch sequence. The self-attention mechanism enables the central aneurysm

patch to exchange information with the surrounding vascular patches and im-

proves the learned representations of the IA and its neighborhood.

Concretely, similar to the operation of Vision Transformer (ViT)58 on 2D

images, we divide b˛RC3L3L3L into a sequence of P3P3P patches in each

channel, where C is the number of channels. Patches of each channel in the

same position are concatenated and flattened to mi ˛RC$P3

and mapped to

a fixed dimension d with a trainable linear projection. Then, we obtain a

sequence of embedded patches with length N = ðL=PÞ3. Similar to [class] to-

ken of bidirectional encoder representations from transformers (BERT),59 an

extra learnable class embedding eclass is attached to the sequence. To retain

positional information, standard learnable 1D position embeddings are added

to the sequence of embeddings. Finally, we formulate the input of the Trans-

former module as

h = ½eclass;m1A;m2A;/;mNA�+Epos; (Equation 2)

where A˛RðC$P3Þ3d is the linear projection matrix, and Epos ˛RðN+ 1Þ3d is the

standard learnable 1D position embedding.
Then, h is sent to the transformer encoder to calculate t˛R256, and t is post-

processed by the dropout, FC, and LeakyReLU layers to compute the final

features of the aneurysm:

t = TransformerðhÞ;
t1 = LeakyReLUðFCðDropoutðtÞÞÞ; (Equation 3)

where t1 ˛R8 represents the final extracted aneurysm features. The detailed

network structure of the transformer encoder is given at the bottom right

corner of Figure 6. The self-attention mechanism can integrate all information

of relevant patches into the patch being processed by the model. It should be

noted that t1 in Equation 3 collects the end-to-end automatically learned

features, and it can be used to replace the manually measured features by

neuroradiologists for rupture prediction.

Feature fusion module

The featuresofaneurysmsand their surroundingstructures canbeextracted from

the3DCTA imagesby theBranchNetmoduleand transformermoduleas inEqua-

tion 3, and they are ready to be used to build a classifier for rupture prediction. In

addition, some characteristics can be easily obtained by neuroradiologists

through simple observation of the aneurysm without shape, location, and other

precise measurements. Moreover, certain characteristics, such as patient age,

are not included in the CTA images but are related to the aneurysm rupture risk.

These AFs are complementary to the IA features learned by the deep neural

networks. Therefore, on the basis of aneurysm data, we add AFs x3 ˛R5 to

help network prediction. In general, theAFsare flexible to includeanynewly found

features according to the research on predicting IA rupture status.

The AFs are incorporated via a feature fusion module including Auxiliary net

(AuxNet) andFusionoperation.AuxNetextractsAFs x3 toobtain t2, and it consists

of the FC layer and ReLU activation function. Finally, t1 ˛R8 by Equation 3 and

t2 ˛R10 are concatenated to obtain the fused feature vector f ˛R18 as follows:

t2 = AuxNetðx3Þ;
f = Concatðt1; t2Þ: (Equation 4)

Then, the final prediction is computed through the following network

process:

z = LeakyReLUðFCðDropoutðfÞÞÞ;
s = FCðDropoutðzÞÞ; (Equation 5)

where s˛R2 refers to the logit probability of ruptured and unruptured.

Loss function

The aneurysm rupture prediction is actually a binary classification problem.We

train our model by minimizing the cross entropy loss function:

Loss = � 1

Ns

XNs

i = 1

log pi = � 1

Ns

XNs

i = 1

log
esyi

PNc

j = 1e
sj
; (Equation 6)

where pi represents the probability of the i-th sample belonging to its target

class yi, Ns and Nc denote the total number of samples and the number of
Patterns 4, 100709, April 14, 2023 11



Figure 6. An overview of the TransIAR network

It includes the BranchNet module, transformer module, and feature fusion module.
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categories, respectively, and s = ½s1; s2� represents the logit output of the last

FC layer by Equation 5. Here, Nc = 2 for two classes; i.e., ruptured or

unruptured IA.

Experimental settings

The training set was expanded by data augmentation 32 times to 6; 400,

each as an independent instance. The number of epochs is set to 100, the

learning rate is 0.0001, which remains unchanged, and Adam is adopted

to optimize our model. During testing, the average (Bayes voting) predicted

probability of 32 variants is calculated as the final rupture probability of

this sample.
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