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Abstract: Cerebrospinal fluid (CSF) is the liquid that fills the brain ventricles. CSF represents not only
a mechanical brain protection but also a rich source of signalling factors modulating diverse processes
during brain development and adulthood. The choroid plexus (CP) is a major source of CSF and as
such it has recently emerged as an important mediator of extracellular signalling within the brain.
Growing interest in the CP revealed its capacity to release a broad variety of bioactive molecules
that, via CSF, regulate processes across the whole central nervous system (CNS). Moreover, CP
has been also recognized as a sensor, responding to altered composition of CSF associated with
changes in the patterns of CNS activity. In this review, we summarize the recent advances in our
understanding of the CP as a signalling centre that mediates long-range communication in the CNS.
By providing a detailed account of the CP secretory repertoire, we describe how the CP contributes to
the regulation of the extracellular environment—in the context of both the embryonal as well as the
adult CNS. We highlight the role of the CP as an important regulator of CNS function that acts via
CSF-mediated signalling. Further studies of CP–CSF signalling hold the potential to provide key
insights into the biology of the CNS, with implications for better understanding and treatment of
neuropathological conditions.
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1. Introduction

A singular feature of the CNS, crucial to its function following neural tube closure and homeostasis
throughout adulthood, is the presence ofCSF, which represents the key signalling interface between
various distant regions of the CNS. CSF occupies an intricate and interconnected network of ventricles
and cavities spanning the whole CNS that collectively give rise to the brain ventricular system.
This complex component of CNS architecture consists of four brain ventricles—the paired lateral
ventricles, 3rd ventricle, and 4th ventricle, that are connected to the central canal of the spinal cord
and the subarachnoid space [1]. Preservation of a tubular system filled with CSF as a hallmark of the
CNS is characteristic for the whole phylum Chordata [2], including mammals and its evolutionary
significance is further highlighted by a similar arrangement consisting of a CNS bathed in a fluid
observed even in non-vertebrate organisms such as Drosophila [3].

For most of history, CSF has been assumed to primarily act as a fluid cushion providing mechanistic
protection to the brain, an osmotic buffer system, and a route for clearance of metabolic waste and toxic
compounds from the brain. This rather narrow view has been recently challenged by the growing
evidence pointing to the expanded role of CSF as a conduit for delivery of instructive cues involved
in the regulation of multiple aspects of CNS embryogenesis, adult neurogenesis, and modulation of
adult brain function [4]. These findings helped to shed new light on the previously-underappreciated
capacity of CSF to harbour various bioactive compounds and promote long-range signalling in distinct
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regions of the CNS [5,6], putting into the spotlight distinct parts of the CNS involved in the production
of CSF, including the CP [7].

The CP is a secretory tissue located within each of the brain ventricles that is present in all
vertebrates [8]. Considering the strategic position of the CP in the CNS and the emerging understanding
of its role in the active release of various growth factors and other biologically-active substances into
the CSF, the CP has been attracting growing interest as a vital hub orchestrating various aspects of
intercellular communication via CSF in both the embryonic and the adult CNS [4,9]. Further solidifying
this concept of the CP acting as a signalling centre, recent findings point to its function as a key entry
point for signalling complexes from the blood circulation [10].

In this review, we aim to provide an overview of recent advances regarding the composition of
CSF from the standpoint of CP secretome and its multifaceted impact on the regulation of various
aspects of CNS embryogenesis and maintenance in adulthood.

2. CSF—An Intrinsic Component of CNS Environment

Specific aspects of neural tube development in vertebrates permit early and complete separation
of CSF from the surrounding environment, thus allowing for precise regulation of its content early on
during embryogenesis [11]. The importance of tight control over CSF composition is evidenced by the
rapid acquisition of barrier-like properties in early stages of development by all CNS interfaces in direct
contact with CSF, which are thus able to specifically shape and fine-tune CSF content and signalling
properties [12,13]. Dynamic changes in the embryonic CSF (eCSF) composition and properties mirror
dramatic morphological and functional changes occurring in parallel during CNS development.
Upon neural tube closure in mammals, the captured amniotic fluid becomes the nascent CSF. In the
ensuing period, preceding formation of the CP, it has been shown that CSF composition correlates
to large extent with proteomic changes observed in the developing neuroepithelium [14,15], which
displays barrier-like properties [16], enabling regulated release of growth factors and particles from
neuroepithelium into the CSF [17,18]. Interestingly, the ability of neuroepithelium to tightly control
CSF composition in early brain development exhibits interspecies differences, indicating existence of
distinct requirements for CSF regulation depending on the complexity of the developing CNS [19,20].
In later stages of the embryonic development, the importance of the neuroepithelium as the key site
for active regulation of CSF content decreases as it gradually loses its barrier properties [19]. In late
embryogenesis, the CP becomes the major site for the production of CSF and the key player in the
regulation of CSF proteomic content and capacity to modulate various biological processes in the
CNS [21,22]. Even after CP emergence as the predominant source of CSF, the contribution of other CNS
domains, such as ependymal cells lining the ventricle and spinal canal, both during embryogenesis
and in adulthood, to the production of CSF cannot be discounted [23,24].

Apart from other functions related to the mechanical protection and metabolic turnover, CSF
constitutes a signalling environment indispensable for proper growth and functional maturation
of the CNS. eCSF has been demonstrated to be crucial for proper execution of genetic programs
underlying embryogenesis of various CNS regions as well as control of adult neurogenesis [25,26].
A growing list of signalling molecules and growth factors identified in eCSF [5,27], provides compelling
evidence explaining the disruption of CNS embryonic development observed as a consequence of
CSF removal [28]. Furthermore, obstructing CSF flow has been shown to impede distribution of
supramolecular complexes such as lipid particles, thus highlighting additional mechanism through
which CSF-dependent distribution of various biologically-active compounds and complexes affects
embryonic growth [29]. CSF proteome undergoes age-dependent changes [30], likely reflecting distinct
requirements for the signalling molecules in the regulation of proper function of the CNS during
embryogenesis and adulthood [6,31]. For example, changes in the levels of CSF-borne factor IGF-II,
correlate with the age-matched ability of CSF to promote neural proliferation and survival of neural
progenitors [5].
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In addition to its role as a vehicle for distribution of bioactive molecules, hydrodynamic forces
associated with CSF flow establish instructive cues that are able to activate ion channels expressed by
adult neural stem cells (NSCs) in direct contact with CSF, which can act as mechanosensory receptors,
regulating adult neurogenesis [32]. Interestingly, CSF dynamics change in response to different
physiological states such as sleep, implying a possible role of CSF in the coordination of the biological
activity across the CNS in response to the altered physiology [33].

The ability of the4 CSF to reach and affect processes in various regions of the CNS is not limited to
the cell populations in direct contact with the ventricular space. Instead of simply being drained into
the blood stream via arachnoid villi granulations [34], it has been shown that a substantial amount of
CSF enters brain parenchyma along paravascular spaces as a part of a recently-described “glymphatic”
system [35]. This allows CSF-borne substances to spread to large number of brain regions not connected
to the ventricular system [36]. Moreover, recent findings have shown the capacity of CSF-derived
proteins to regulate proliferation in the subgranular zone (SGZ), one of the two main neurogenic niches
in the adult brain, highlighting the potential of CSF to directly control biological processes in brain
regions considered to lack direct access to the CSF [37,38].

Given the function of CSF as an essential route for the long-range trafficking of factors across the
CNS, CSF has been also explored as a potential source for biomarkers providing information allowing
for early detection and diagnosis of distinct pathological conditions such as neurodegenerative diseases
or various types of brain cancer [39,40].

Taken together, CSF constitutes crucial element of the CNS extracellular microenvironment with
increasingly appreciated roles that extend beyond being a simple mechanic buffer or drainage system
for the brain metabolism. A flurry of recent discoveries revealed CSF as a signalling nexus distributing
and integrating signals, consisting of a wide array of bioactive compounds, within the whole CNS.

3. The Choroid Plexus—Key Regulator of CSF Production

The choroid plexus (CP) is a secretory tissue protruding into the lumen of all brain ventricles, namely
the lateral ventricle CP (LV CP), the 3rd ventricle CP, and 4th ventricle CP (4V CP), in the form of a sheet
of epithelial cells that are in direct contact with the CSF and encapsulate richly-vascularized stroma [22].
Unlike other developing processes, CP development progresses in a posterior to anterior manner with 4V
CP being first to develop, followed by LV CP with 3V CP being last to emerge [7]. The CP arises from
progenitor cells, specified early in the development [41], that are distributed along the dorsal midline and
rhombic lip in the case of 4V CP [42,43]. CP epithelium (CPe), which originates in the neuroectoderm [44],
forms a monolayer of polarized cuboidal cells with high expression of various transport proteins indicating
robust secretory capacity [45,46]. Signalling from the CPe is instrumental for the induction of differentiation
of the underlying CP mesenchyme and their mutual interaction is further required for proper choroid
plexus morphogenesis [47,48]. Moreover, the CP is populated by additional cell types including immune
cells and neurons, indicative of CP functional versatility [49,50].

As such, the CP represents a complex tissue that fulfils distinct roles essential to the CNS function.
Several lines of evidence clearly established the CP as the major site for CSF production [21], despite
some controversy still remaining regarding the extent of its contribution [51]. Importantly, ablation
of various channel and transporter proteins located at the apical side of the CPe resulted in severe
decrease in the CSF production providing compelling evidence for role of the CP in this process.
Furthermore, the CP has been implicated in the CNS homeostasis via maintenance of CSF pH balance
and ion osmoregulation [46]. Along the same lines, the CP actively contributes to the removal of
harmful compounds originating from the blood stream or generated by brain metabolism [52,53].

However, the key functional feature of the CP, conferred by the presence of junction proteins in the
epithelium [12,45], is the ability of the CPe to act as a selectively-permeable interface, preventing free
passage of compounds between CSF and the blood, thus establishing the blood–CSF barrier (BCSFB) [4].
This functional aspect of CP biology is essential. Fenestrated capillaries in the CP stroma and substantial
local blood flow rate collectively create a highly-permeable environment enabling fast and unhindered
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spread of substances from blood to the CP stroma [54]. Significant protein secretion capacity displayed
by CPe in tandem with selective transport of compounds from the blood stream might explain the
differences of proteomic profiles between CSF and blood [55,56]. Due to its convoluted morphology
and presence of microvilli on the apical surface, CPe surface area corresponds up to 50% of the
overall luminal area of brain capillaries establishing the blood–brain barrier (BBB) [57,58]. Upon their
maturation, CP epithelial cells manifest increased mitochondrial density, thought to provide energy
supply for the considerable metabolic demands linked to the secretory activity of the CPe [58,59].

Despite shared morphology and function, embryonic CPs preserve their specific domain
identities. They reflect position of the CP along the midline axis and underlie distinct transcription
signatures and heterogeneous proteomic profiles observed between different embryonic CPs [49,60].
Intriguingly, secretome differences revealed across embryonic CPs are suggestive of spatially specific
gradients of signalling molecules that lead to the localized activation of downstream signalling
pathways within the brain. This site-specific effect of various CP-derived regulators further combines
with the compartmentalization of CSF flow within the ventricular system caused by ciliary beating or
bodily movements [61]. Indeed, SHH and Wnt-5a ligands, both selectively enriched in the embryonic
4V CP, have been recently linked to the modulation of proliferation and tissue patterning in the adjacent
cerebellum [62,63]. Importantly, regionalized proteomic profiles may also underlie morphological
differences between individual CPs as they have been implicated in different aspects of tissue
morphogenesis such as the maintenance of specific progenitor domain associated with the embryonic
4V CP-derived SHH or control of epithelial branching via action of Wnt-5a [64,65]. In addition, observed
molecular heterogeneity is associated not only with embryonic epithelial cells but was identified
also in other cell populations of developing CPs including fibroblasts, possibly adding another layer
to the complexity and specificity of the CP secretory repertoire [49]. Of interest, domain-specific
differences in molecular make-up of CPs are also preserved in adulthood. For example, Sod3 gene
expression, encoding a metabolic enzyme, is limited to the adult 4V CP, whereas the expression pattern
for protein kinase encoded by the Penk gene, is completely reversed [60]. The age-dependent shift
in the expression of various genes underlying CP detoxification or CSF production capacity has also
been observed [45,52], revealing the dynamic nature of the CP secretory profile over time. It, however,
seems that the importance of CSF-borne bioactive molecules released by CSF gradually decreases
with age. This view is supported by the general decline in the CPe gene expression in adulthood and
the gradual reduction in the CSF vs. brain tissue ratio [12,60]. There have also been recent findings
showing suppressed ability of CSF to promote neurogenesis correlated with age-dependent changes in
the CP secretome [5,6]. Interestingly, secreted protein Klotho associated with significant anti-aging
properties is highly expressed by the CP during early development and adulthood and its CSF levels
exhibit gradual decrease during aging [66,67]. Overall, it is possible that this altered pattern of CP
secretory activity may reflect more general changes in CNS biology at different stages of life.

Another emerging aspect of CP function is the intrinsic ability to sense and respond to changes in
the CSF as well as broader physiological changes. It has been recently shown that the CP expresses
genes encoding components of circadian clock machinery, such as Bma1, Per1, and Per2, which allow
the CP to influence activity of the key hypothalamic centre involved in the sleep/wake rhythmicity via
secreted signals carried by CSF [68,69]. Remarkably, this mode of circadian clock regulation displays
sex differences mediated by estrogen signalling [70], which is in line with the previous findings
showing sex-based variability in the CP gene expression profile and proteomic signature [71]. It is
noteworthy that it has been recently reported that the CP might be, at least partially, involved in the
contextual fear-learning as it exhibits, in some instances, stronger response to stressful stimuli at the
levels of gene transcription as compared to the hippocampus. Altered expression of multiple genes
encoding secreted molecules such as the putative hormone augurin represent an example [72,73].
Recently, the CP has been also implicated as an entry site for various hormones produced in response
to changed physiological state that are present in the blood, thus directly affecting their availability in
the brain. For example, expression of the receptor for the peptide hormone leptin in the CP, which
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is involved in the regulation of the fat balance in the body, has been shown to be the limiting step,
determining the transport rate of leptin from the blood stream into the CSF [74].

Due to the expression of specific receptors, the CP has been also shown to respond to the presence
of neurotransmitters present in CSF such as serotonin or nicotine, which are able to elicit robust changes
in the CP metabolism and transcriptome [75,76]. In addition, a recent pioneering study, leveraging a
new technique for real-time monitoring of CP activity allowed characterization of a novel mode of
apocrine secretion from the CPe in response to stimulation via a serotonin receptor agonist [77].

CSF plays an important role as the key modulator of neuroinflammation. CSF contains distinct
pools of activated immune cells, which can be enriched in various neurodegenerative diseases
such as Alzheimer’s disease (AD) [78,79]. Moreover, CSF displays a complex profile of cytokines
and chemokines, which changes dynamically in different neuropathological conditions [80,81].
Interestingly, CSF-mediated regulation of neuroinflammatory response is shaped by the glymphatic
system that serves as an important route for drainage and active clearance of immunomodulators
and immune cells present in the CSF [82]. Given the profound changes of the adult CP transcriptome
in response to inflammatory stimuli, the CP has recently emerged as an active sensor participating
in immunosurveillance within the brain that is capable of dramatically altering CSF proteome via
active secretion of cytokines or metallopeptidases [55,83,84]. The CP has been also suggested as the
primary site for the initiation of CNS inflammation, allowing free passage of immunocompetent cells
from the blood into the CP stroma and their ensuing infiltration of the CSF [77,85,86]. This process
is mediated by the upregulation of locally-secreted factors forming gradients, homing immune cells
towards the CP epithelium, which exhibits disrupted organization allowing their paracellular passage
into the CSF [87–89]. Interestingly, upon inflammation, leukocytes present in the CSF can invade
the CP, suggesting the possibility of two-way trafficking of immunocompetent cells across the CP
epithelium [90]. Considering the scope of effects associated with the CP-mediated secretion of
immunomodulators and its role in the facilitation of leukocyte entry into the brain [91], the CP has been
established as a central regulator of neuroinflammatory processes within the brain, raising important
questions regarding the immune privilege of the CNS.

By virtue of its strategic location at the centre of the brain ventricular system, possession of
barrier-like properties enabling tight control over CSF content, close contact with blood-borne signals,
robust secretory capacity, and ability to sense changes in the local environment, the CP is uniquely
poised to act as a master regulator of long-range signalling in the CNS. The CP thus acts as a principal
nexus for integration and transmission of signals along the brain–body axis.

4. The CP–CSF Signalling Axis and Its Key Mediators

Deciphering the identity of molecular components underlying the diversity of CSF-mediated
signalling along with the identification of the key sources of these factors has become undoubtedly
one of the most exciting directions pursued in the field of the CSF research [7,92], with important
implications for improvement of current therapies focused on brain regeneration [93].

Emerging knowledge of CP transcriptome and proteome profiles together with growing insight
into the CSF content brought into the spotlight the CP as an important source for a plethora of
biologically-active compounds found in the CSF at different developmental stages and physiological
states [6,27,60]. Elucidation of the molecular identity of these substances is crucial for better
understanding of the numerous ways through which CSF modulates key biological processes such as
proliferation and neuronal viability during both embryogenesis and adulthood [94,95]. The different
types of signalling molecules that were shown to be secreted by the CP to the CSF are summarized in
Table 1.
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Table 1. List of signalling factors secreted by the choroid plexus (CP).

Molecule Category Biological Function Species Stage References

ApoE Apolipoprotein Lipid transport,
Alzheimer’s disease
(AD) protection

Mouse Adult [96]

ApoJ Apolipoprotein Lipid transport, AD
protection

Mouse Embryonic [62]

sAPP Secreted protein Adult neurogenesis Mouse Adult [38]
Augurin Hormone Cell proliferation Mouse Adult [73]
BMP-5 Growth factor Adult neurogenesis Mouse Adult [6]
CT-1 Growth factor Gliogenesis regulation Rat Adult [97]
FGF2 Growth factor CP embryogenesis Human, mouse Embryonic [98]
Hepicidin Transporter protein Brain iron homeostasis Mouse, rat Adult [99]
IGF-II Growth factor Embryonic

neurogenesis
Mouse Embryonic [5]

IGFBP-2 Secreted protein IGF signalling
regulator

Rat Adult [100]

IL-1 beta Cytokine Adult neurogenesis Mouse Adult [101]
αKlotho Secreted Enzyme Anti-aging effects Human, rat Adult [102]
Megalin Heparan sulfate

proteoglycan (HSPG)
Ligand transport Human Adult [103]

Melatonin Hormone Sleep–wake cycle
regulation

Rat Adult [104]

miR-146a microRNA Inflammatory response Mouse Adult [105]
mIR-204 microRNA Adult neurogenesis Mouse Adult [106]
NT-3 Growth factor Adult neurogenesis Mouse Adult [107]
Homeobox
protein OTX2

Transcription factor Adult neurogenesis Mouse Adult [108]

Semaphorin-3B Secreted protein Neuroepithelium
proliferation

Mouse Embryonic [23]

sFRP-1 Secreted protein AD pathogenesis Human Embryonic [109]
SHH Growth factor Cerebellum

development
Mouse Embryonic [63]

Slit-1 Secreted protein Adult neurogenesis Mouse Adult [110]
Tgm2 Secreted enzyme Embryonic

development
Mouse Embryonic [111]

Transthyretin Transport protein Adult neurogenesis Rat Adult [112]
Transferrin Transporter protein Brain iron homeostasis Rat Adult [113]
VEGF Growth factor Angiogenesis Canine Adult [114]
Wnt-5a Growth factor Cerebellum

morphogenesis
Mouse Embryonic [62]

While the roles for most of these compounds remains unknown, some initial findings indicate
their involvement in diverse biological processes. We have previously shown that Wnt-5a, secreted
by embryonic 4V CP, is able to influence the morphogenesis of the developing cerebellum [64].
Likewise, bone morphogenetic protein 5 (BMP-5), a member of the BMP family of signalling proteins,
secreted by the adult LV CP was recently shown to function as a potent activator of adult neurogenesis [6].
By secretion of morphogen antagonists such as Wnt antagonist sFRP-1, CP secretome can further shape
and fine-tune the signalling gradient of the growth factors contained in the CSF [109]. In addition to
signalling peptides, the CP functions as source of other types of bioactive molecules, such as transcription
factor Homeobox protein OTX2 (OTX2), which has been implicated in the regulation of neuroblast
migration and integration of new-born neurons in the olfactory bulb [115]. Remarkably, blocking of the
extracellular OTX2 was able to disrupt maturation of parvalbumin inhibitory neurons and expression
of plasticity genes in the visual cortex of the adult mouse [116].

Further expanding the array of secreted substances, the CP has been recently established
as the major source of another important class of regulatory molecules contained in the CSF -
microRNAs [117]. Given its role in the modulation of expression of genes underlying cell cycle
progression and differentiation, specific inhibition of the action of microRNA-204 (miR-204) derived
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from CP was linked to the depletion of adult quiescent neural stem cells (qNSC). Another microRNA,
miR-128 [118], highly expressed by the CP, has been previously associated with various aspects of
differentiation of adult neuronal progenitors [119]. In addition to the CPe, single-cell analysis of the
embryonic and adult CP has demonstrated expression of genes encoding secreted factors, in additional
cell types residing in the CP stroma such as fibroblasts expressing Rbp4 or Wisp1, or endothelial cells
producing NT3, raising an interesting possibility that these cell subpopulation actively contribute to
the spectrum of signalling molecules released from the CP into CSF [49,107].

The CP is also involved in active transport of various blood-borne molecules, including
cerebral transport of various micronutrients such as folate or iron, both essential for proper brain
development [113,120]. In another example, megalin, a multiligand binding protein, secreted by the
CPe has been shown to participate in the transport of IGF1 across the BCSFB and its release into the
CSF [103,121].

Further exploration of the ability of the CP to shape CSF content led to recent findings that have
established the CP as the key producer of binding proteins and multimolecular complexes regulating
the extracellular transport of various signalling molecules via CSF [122,123]. The wide spectrum and
chemical diversity of biologically active molecules (proteins, peptides, small molecules, and nucleic
acids) produced by the CP opened the interesting question about what their cargo in the CSF is.
Exosomes and lipoprotein complexes emerged as the most relevant candidate transport mechanisms.

4.1. Exosomes in CP–CSF Signalling

Exosomes represent a novel class of membranous extracellular vesicles increasingly recognized for
their role as messengers involved in the long-range distribution of various compounds with regulatory
functions [124], thus being able to affect a wide array of physiological and pathological processes in
various tissues including the brain [125]. Proteomic analysis of CSF clearly shows enrichment of CSF
exosomes for CP-specific proteins [126]. Evidence for active release of exosomes by the CP into the
CSF came from study of the effects of systemic inflammation. Interestingly, CP-derived exosomes
contained various miRNAs such miR-146a and miR-155, expressed by the CPe, which were able to
cross the ependymal layer and be taken up by astrocytes and microglia in the brain parenchyma [105].
Increased levels of different miRNAs associated with CSF exosomes were also recently identified as
biomarkers for various neuropathological conditions such as Parkinson’s disease or epilepsy [127,128],
indicating that examination of the active secretion of different miRNAs from the CP may provide further
insights of the underlying pathophysiology. Moreover, selective inhibition of miRNA expression
using novel CP-targeting approaches opens interesting possibilities for further improvements in the
treatment of numerous CNS-related disorders [38].

Interestingly, exosomes’ cargo varies over time, a process that may contribute to the age-dependent
changes in the CNS function [129]. Exosomes were also suggested as a possible extracellular carrier for
various signalling factors, as described for SHH released from embryonic 4V CP into the CSF [130].
Furthermore, exosomes generated by the CPe were also demonstrated to provide a transport mechanism
for distribution of nutrients such as folate within the brain [120]. Moreover, exosomes secreted by
the adult CPe can be hijacked to serve as a vehicle for the spread of virus infection from periphery
to the CNS as shown for human polyomavirus (JCPyV) [131]. Intriguingly, CP-mediated release of
exosomes may underlie transmission of SARS-coronavirus 2 (SARS-CoV-2) within the CNS as the
CP displays relatively-high expression levels of ACE2 receptor, which is engaged by SARS-CoV-2 for
active invasion of host cells [132–135].

4.2. Lipoprotein Complexes in CP–CSF Signalling

Lipoproteins represent another important group of extracellular particles produced by the CP [136].
Lipoproteins consist of a lipidic core surrounded by an outer layer that consists of hydrophobic
lipids and apolipoproteins, which establish a special class of proteins with scaffolding function [137].
Lately, lipoproteins have been appreciated as being more than mere vehicles for transport of lipids,
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as evidenced by their capacity to carry various bioactive molecules with a central role in brain
biology [138,139]. First, the CPe is the site for production of two of the most abundant apolipoproteins
present in the CSF, namely apolipoprotein E (ApoE) and ApoJ [96,140–142]. Moreover, the CP was
recently identified as the main entry point for lipoproteins containing ApoA-1 from the blood stream into
the CNS [10]. Further, central components of molecular machinery underlying lipoprotein biogenesis,
ABCA1 and ABCG1 [143], are expressed in the CP both in the embryonic development and in the
adulthood [144,145]. Interestingly, apolipoprotein distribution varies between species with increased
complexity observed in mammalian eCSF compared to avian eCSF, which has been hypothesized to reflect
the more intricate neural architecture and synaptic plasticity seen in mammals [146]. Direct comparison
of lipoproteins between CSF and blood revealed distinct pattern of posttranslational modifications, that
might reflect the distinct functional properties and tissue-specific roles played by lipoproteins [147].

Underscoring the signalling potential of lipoproteins, low-density lipoproteins isolated from eCSF
are responsible, to a significant extent, for neurogenic activity of the eCSF [148]. On the other hand,
changed levels of high-density lipoproteins in CSF were linked to the pathophysiology of various
neurodegenerative diseases [149]. In the recent years, several morphogens produced by the CPe were
identified to associate directly with lipoproteins, including SHH [63,150], FGFs [98,151], or Wnts [62].
Moreover, association with lipoproteins, impaired in a mutated version of TREM2 receptor, a risk
factor for AD, leads to suppression of lipoprotein-bound β-amyloid (Aβ) uptake in the CP [152,153].

Similarly to exosomes, lipoproteins were also shown to incorporate and actively transport
miRNAs [154]. Furthermore, CSF lipoproteins are able to harbour proteins that can serve as interacting
partners for morphogens, such as the Wnt ligand-binding partner, afamin. [155,156]. Heparan sulfate
proteoglycans (HSPGs) represent a class of membrane-bound receptors for various ligands with the
ability to shape the growth factor gradient [157], which can be also actively released into extracellular
space including CSF [158]. Interestingly, it has been shown that the HSPG protein, glypican, found in
CSF can bind directly to lipoprotein particles and contribute to adult neurogenesis [159,160]. In addition
SHH, a morphogen secreted by the embryonic CP [63], was shown to associate with glypican-bound
lipoprotein particles with important functions related to its internalization and signalling [160].

Aside from serving solely as scaffolding proteins for lipoproteins, apolipoproteins recently
emerged as regulatory molecules in their own right with importance for the brain function [161].
Interaction of APOE with low-density lipoprotein receptor-related protein 1 (LRP1) was shown to affect
differentiation of cortical and spinal cord neural stem cells progenitors [162]. Competition between
APOE and tau protein for LRP1 receptor binding, which is involved in AD pathophysiology, has been
recently demonstrated as a mechanism for reduction of tau uptake and its subsequent spread within the
CNS [163]. ApoJ has been recently proposed as a molecular compound protecting against Aβ-mediated
induction of Ca2+ influx into neuronal cells probably as a function of the ability of ApoJ to directly
bind to Aβ in the CSF [164,165]. Moreover ApoJ was revealed to directly interact with Wnt-5a protein
released by the CP into the CSF during embryogenesis [62]. On the other hand, decreased CSF levels of
ApoA1 were revealed as biomarkers associated with increased risk of neurodegenerative diseases such
as AD [166]. Moreover, intravenous injection of recombinant ApoA1 was shown to efficiently reduce Aβ

load in the AD mouse model [167], thus identifying manipulation of CSF apolipoproteins as a promising
strategy for future therapeutic applications for brain-related diseases. Thus, apolipoproteins produced
by the CP and released into the CSF, tethered to lipoproteins, are linked to various aspects of CNS
development, homeostasis, and pathology of neurodegenerative diseases. Nevertheless, it should be
noted that a significant portion of the neurogenic effects associated with lipoprotein particle-mediated
signalling can be attributed to their role as vehicles for the distribution of various lipid species and
maintenance of lipid homeostasis in the brain [136].

5. The Target Brain Regions of CP–CSF Signalling

CSF-mediated signalling and neurogenesis are intimately linked processes with fundamental
role in the development and homeostasis of the CNS. This is highlighted by the fact that neural



Int. J. Mol. Sci. 2020, 21, 4760 9 of 21

precursors remain in close contact with CSF throughout life [168]. Neuroepithelium consisting of
neuronal progenitors, which segregate to the ventricular zone upon neural tube closure and concomitant
ventricular system formation, represent the chief source of cells that will give rise to the entire CNS [169].
Ample evidence collected over the last two decades has clearly established CSF as a crucial signalling
component underpinning the key aspects of neuroepithelial behaviour [5,17,170]. Signalling factors such
as Semaphorin-3B, released by the embryonic CP were shown to affect orientation of the mitotic spindle
and apicobasal polarity, thus controlling division of neural progenitors [23]. Neuronal progenitors
are characterized by the presence of sensory primary cilia enabling cells to sense and respond to the
instructive cues present in CSF [2]. Several growth factors, including SHH and IGF-I, previously
shown to be actively secreted by the CP into CSF [63,121], signal via primary cilia providing a possible
mechanism, whereby CSF may directly regulate the fate of neuroepithelial cells [171,172]. Apart from
simply regulating differentiation of neuronal progenitors, CSF-transported signalling factors were also
shown to function as important local morphogenic regulators driving acquisition of regional identity
during brain development [26,173]. Furthermore, molecular heterogeneity linked to CP positional
identity, may result in generation of locally-restricted gradients of signalling molecules [62,63], thus
contributing to the patterning effect of CSF observed during brain development.

Adult qNSCs, reside in two main anatomically-restricted germinal regions, the subventricular
zone (SVZ), localized in the wall of the lateral ventricles, and the SGZ in the hippocampus [174,175].
qNSCs residing in the SVZ display multiple features facilitating their capacity to sense and be
directly regulated by signals present in the CSF. One of the key morphological hallmarks of qNSCs
is the presence of a short apical extension, allowing direct contact with the CSF. Akin to embryonic
neuronal progenitors, the apical endings of qNSCs contain a primary cilium allowing these cells to
actively sense the composition of the CSF [176]. Consistent with their shared embryonic origin, both
neuronal precursors and qNSCs exhibit high levels of vascular cell adhesion molecule-1 (VCAM1)
that plays a vital role in qNSC fate determination during embryogenesis and their maintenance in
adulthood [101,177]. Moreover, VCAM1 has been shown to play the role of an environmental sensor
as it can be upregulated in response to increased CSF levels of interleukin 1β and SDF1, which are
highly expressed and actively secreted by adjacent LV CP [6,101]. In a similar fashion to that observed
during embryonic brain patterning [178], behaviour of the adult stem cell niche can also be modulated
by local gradients generated by CP-derived signalling molecules, such as chemorepulsive factor Slit2,
which acts as a guidance molecule underlying long-distance migration of neuroblasts from the SVZ
to the olfactory bulb [110]. Adding a further layer of complexity, recent advances using single cell
analysis revealed not only spatial- but also gender-specific transcriptomic signatures in the SVZ [179].
Interestingly, a regionalized and sex-dependent pattern of expression was also associated with genes
encoding various receptors and secreted molecules [179]. Notum, a secreted extracellular suppressor
of Wnt ligands, displays SVZ-subdomain-specific expression [180], raising an interesting possibility of
spatially-restricted regulation of Wnt pathway activation via localized deactivation of Wnt ligands,
which were previously shown to be secreted from the CP into CSF [62,111]. Corroborating these
findings, transthyretin (TTR), a thyroid hormone transporter predominantly produced by the CP [112],
exhibits a gender-specific role in the control of neurogenesis in the SVZ that is restricted to a specific
subdomain of the SVZ [181], which is in line with the gender-based differences in CP-derived TTR
levels detected in the CSF [71,182]. Molecular heterogeneity linked to the receptor repertoire can be
also observed between SVZ and SGZ, indicating intrinsic differences in the sensitivity of adult germinal
centres to signalling factors presented via CSF [183,184]. This is supported by recent finding showing
expression of LRP2, receptor for various morphogens, including BMPs and Wnts that were previously
detected in CSF, to be restricted only to SVZ and devoid from SGZ. This was further confirmed by
SVZ-specific effects of LRP-2 ablation on the regulation of neurogenesis [185,186]. Importantly, it has to
be noted that additional cell types residing in the SVZ, but lacking direct contact with CSF, can also be
a target of the CSF-borne signalling factors and complexes [105]. All these lines of evidence highlight
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the importance of CSF as a source of signalling factors in the CNS, which is preserved across the whole
lifespan of an organism.

6. Concluding Remarks

Direct contact between neurogenic brain regions and CSF is the hallmark of CNS biology throughout
life. CSF is the chief source of trophic factors and instructive cues underlying the key aspects of embryonic
development and CNS patterning. The importance of CSF is also conserved in adulthood, when it plays a
key role in the regulation of adult neurogenesis and the perturbation of its content is involved in numerous
pathological conditions. Considering major breakthroughs in our understanding of CP function, it is
becoming increasingly evident that the CP is the major player regulating signalling properties of CSF.
This view is further emphasized by a growing list of signalling factors and transporting vesicles either
directly produced in the CP or actively transferred from blood across the CP, which acts as a selective
barrier between blood circulation and CSF (summarized in Figure 1). Importantly, these factors and vesicles
have been linked to a myriad of aspects of brain biology during development and in adulthood. As a result
of age progression, active infections or changes of physiological states, CP transcriptome and secretome
can undergo dramatic changes, thus highlighting the CP as a vital component involved in the modulation
of crucial biological processes. Considering the overarching influence of the CP as the signalling hub of the
brain, the recent emergence of experimental approaches for closer examination and manipulation of various
facets of CP secretory activity promises to shed light on various outstanding challenges facing the field.
Virus-based vectors, have been described as an exciting new tool for targeted and highly efficient gene
delivery, enabling gene manipulation in the CP [187] and providing a powerful technique for modulation of
CNS biological functions via specific alterations of CP proteome [188]. In addition, there is growing scientific
interest in leveraging the potential of exosomes and lipoproteins for brain-targeted drug delivery [189,190].
At the same time, organoids have been recently recognized as an interesting model to study development
of the CP and CSF production [7,191], as evidenced by presence of functional CP-like structures connected
to fluid-filled cavities mimicking the functional CP–CSF interface [192,193]. Given the possibility of genetic
manipulation, organoids represent a tractable model for the investigation of the molecular mechanism
underlying various pathologies associated with impaired CP secretion and CSF production [130,194,195].
Thus, examination of CP secretory properties using a wide array of newly-developed molecular techniques
represents an alluring avenue for future research with important implications for our understanding of
brain biology across life and improvement of medical interventions aimed at the underlying causes of
various developmental or neurodegenerative conditions.
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BBB Brain–blood barrier
BCSFB
BMP

Blood–CSF barrier
Bone Morphogenetic Protein
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