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ABSTRACT

All vertebrates including human have evolved from
an ancestor that underwent two rounds of whole
genome duplication (2R-WGD). In addition, teleost
fish underwent an additional third round of genome
duplication (3R-WGD). The genes retained from these
genome duplications, so-called ohnologs, have been
instrumental in the evolution of vertebrate com-
plexity, development and susceptibility to genetic
diseases. However, the identification of vertebrate
ohnologs has been challenging, due to lineage spe-
cific genome rearrangements since 2R- and 3R-WGD.
We previously identified vertebrate ohnologs using a
novel synteny comparison across multiple genomes.
Here, we refine and apply this approach on 27 verte-
brate genomes to identify ohnologs from both 2R-
and 3R-WGD, while taking into account the phylo-
genetically biased sampling of available species. We
assemble vertebrate ohnolog pairs and families in
an expanded OHNOLOGS v2 database. We find that
teleost fish have retained more 2R-WGD ohnologs
than mammals and sauropsids, and that these 2R-
ohnologs have retained significantly more ohnologs
from the subsequent 3R-WGD than genes without
2R-ohnologs. Interestingly, species with fewer ex-
tant genes, such as sauropsids, have retained sim-
ilar or higher proportions of ohnologs. OHNOLOGS
v2 should allow deeper evolutionary genomic analy-
sis of the impact of WGD on vertebrates and can be
freely accessed at http://ohnologs.curie.fr.

INTRODUCTION

Gene duplication provides raw material for the evolution
of new gene functions (1). Duplication of single genes or
genomic segments is a continuous evolutionary process

that creates diversity in terms of copy number variations
across individuals, and paralogs across species. In addition,
dramatic evolutionary accidents corresponding to whole
genome duplication (WGD) have also occurred in the evo-
lutionary past of most eukaryotic lineages including plans,
fungi and animals (2-4). For example, all extant verte-
brates have experienced two rounds of WGDs (2R-WGD)
in their evolutionary past (5-8). In addition, a third round
of genome duplication has also occurred in the teleost fish
linecage (3R-WGD) (9-11). 2R-WGDs likely played impor-
tant roles in the evolution and diversification of vertebrate
specific innovations such as neural crest cells, placodes and
a complex brain (12,13). Many key genes implicated in the
development of these structures can be traced back to 2R-
WGD. Similarly, 3R-WGD likely played an important role
in the expansion of the diversity of teleost fish lineage mak-
ing it the most species rich vertebrate group (14-17). Hence,
the genes retained from these three WGD events have been
instrumental in the evolution of vertebrates (18).

The genes originated from these ancient polyploidy
(paleo-polyploidy) events are now called ohnologs after
Susumu Ohno who first hypothesized the two rounds of
WGD events in vertebrate ancestors (1,5,19). Ohnologs are
known to have distinct evolutionary, genomic and func-
tional properties that distinguish them from small-scale du-
plicates and singletons (20-23). They also show greater as-
sociation with diseases and cancer than non-ohnolog genes
(24-29), and have been suggested to be dosage balanced
(24), which was subsequently argued to be indirectly me-
diated by their high susceptibility to dominant mutations
(25,28), as supported by quantitative population genetics
models (27) and by a global inference approach assessing
direct versus indirect causal relationships across multiple ge-
nomic properties (30).

Given the specific impact WGDs have had on the evo-
lution of vertebrates, a comprehensive database of verte-
brate ohnologs is highly desirable. While there are some
useful resources available for comparison of synteny across
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species (31-34) there is no database that reliably identi-
fies ohnologs from both vertebrate 2R-WGDs and fish
3R-WGD. To start filling this gap, we developed in 2015,
OHNOLOGS, a repository of ohnologs retained from the
2R-WGD in six amniote vertebrates (human, mouse rat,
pig, dog and chicken) (34). OHNOLOGS is based on a
novel comparative macro-synteny approach that reliably
identifies ohnologs, despite lineage specific genome rear-
rangement, gene loss and small scale duplication events,
by combining macro-synteny information (gene content re-
gardless of exact order) across multiple outgroups and ver-
tebrate genomes (34).

Here, we expand this multiple genome synteny compari-
son approach to 27 vertebrate species including four teleost
fish species. We further improve the statistical confidence as-
sessment of each ohnolog pair with a weighted quantitative
confidence score (g-score) taking into account the phylo-
genetically biased sampling of available vertebrate species.
In addition, we uncover ohnologs, including in non-protein
coding RNA gene classes, from both 2R-WGD in early ver-
tebrates (2R-ohnologs) and 3R-WGD in teleost fish (3R-
ohnologs). The expanded OHNOLOGS database is the
most comprehensive repository of ohnologs in vertebrates.
Using the new OHNOLOGS database we show that on av-
erage 25% of extant genes are 2R-ohnologs in vertebrates
and that 18% of extant genes are 3R-ohnologs in teleost
fish. Sauropsids show the highest lineage-specific loss of 2R-
ohnologs, and teleost fish show the highest lineage specific
retention of 2R-ohnologs. We also found that 2R-ohnologs
are significantly more likely to retain 3R-ohnologs in teleost
fish, in agreement with earlier reports (35). OHNOLOGS v2
should facilitate deeper evolutionary analysis of the unique
properties of ohnologs, and their lineage-specific retention
and loss in different vertebrates.

RESULTS
Data collection and processing

OHNOLOGS v2 includes 2R-ohnolog pairs and families in
27 vertebrates that have a chromosome level assembly with
a majority of their genes anchored on chromosomes in En-
sembl version 84 (36). This includes 18 mammals, 4 saurop-
sids (lizards and birds), 4 teleost fish and spotted gar. In ad-
dition, we also included 3R-ohnolog pairs and families in
four teleost fish genomes. We used five non-vertebrate out-
groups to identify 2R-ohnologs and seven vertebrate out-
groups to identify fish specific 3R-ohnologs (Figure 1 and
Supplementary Table S1).

We collected genes (protein coding, micro-RNA, miscel-
laneous RNA, rRNA, snRNA and snoRNA) for all these
organisms from Ensembl v84 using biomaRt (37,38). These
six classes of genes were chosen because they have informa-
tion on orthologs and paralogs across many vertebrates. Or-
thologs, paralogs and relative duplication node for all the
genes were obtained from Ensembl comparative genomics
resource (39). These homology relationships and their rel-
ative duplication time have been computed by reconciling
gene based phylogenetic trees with the species phylogeny
for each Ensembl gene family (40). To identify duplication
time of paralogs consistently, we took the consensus tim-
ing across 7 Ensembl versions (v80-v86). Genes with a lot
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Figure 1. A schematic phylogeny (not scaled) of the organisms in the
OHNOLOGS v2 database. Vertebrates analysed for 2R-WGD are in or-
ange, and teleost fish species analysed for 3R-WGD are underlined. Out-
group species used to identify 2R- and 3R-ohnologs have been highlighted.

of small-scale duplications (>30), which inflate the synteny
calculations, were excluded from analysis. Genome data
for Amphioxus was obtained from JGI and amphioxus or-
thologs with other organisms were identified using BLASTp
(8).

We adapted the macro-synteny comparison approach,
previously developed in (34), to identify ohnologs retained
from both 2R-WGD (2R-ohnologs) and 3R-WGD (3R-
ohnologs). Briefly, for each pair of outgroup and paleo-
polyploid organisms, we first identified blocks of conserved
macro-synteny using windows ranging from 100 to 500
genes (outgroup comparison). These macro-synteny blocks
have a pattern of doubly conserved synteny, where a window
in the outgroup genome shares orthology with at least two
other windows in the paleo-polyploid genome. The paralogs
residing on these windows and duplicated at the time of 2R-
or 3R-WGD are candidates for being 2R- or 3R-ohnologs,
respectively. Similarly, we also identified syntenic windows
by comparing each paleo-polyploid genome to itself (self
comparison).

To refine these ohnologs further and eliminate spurious
synteny patterns, we computed a quantitative score (called
g-score) to assess the probability that any ohnolog pair
could be identified by chance, following the approach de-
veloped in (34). In brief, all g-scores from different windows
and outgroups were combined to give a global g-score for
each ohnolog pair from outgroup comparison. Using mul-
tiple outgroups allowed us to identify ohnologs that may
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have moved to non-syntenic locations in some of the out-
group genomes. Similarly we obtained a g-score for self
comparison to assess the chance of spurious association. In
addition, while we used a simple geometric average of g-
scores in (34), which cannot capture the gain of statistical
power expected from the integration of multiple vertebrate
genomes, here we developed a refined weighting scheme of
species, which also takes into account the strong phyloge-
netically biased sampling of included species by using dif-
ferent weights for each vertebrate genome depending on its
shared homology with other included genomes (see Supple-
mentary Methods for details, Supplementary Tables S2 and
3).

Using both self and outgroup weighted g-scores, we gen-
erated three sets of ohnologs (corresponding to strict, in-
termediate and relaxed criteria) and combined them into
ohnolog families. At last, we compiled both the 2R- and
3R-ohnolog pairs and ohnolog families for each organism
in the interactive OHNOLOGS v2 database using Apache,
CGl, Perl, Bootstrap and jQuery.

Navigating the OHNOLOGS database

The home page lists all the organisms that are included in
OHNOLOGS for 2R and 3R-WGD along with an intro-
duction on ohnologs and WGDs. The search page allows
a user to search for a gene symbol, Ensembl Id GO term
or any keyword (Figure 2A). The search page also allows
one to generate ohnolog families for any user-defined q-
score criteria for a given organism. Upon a keyword or GO
term query, all matching genes will be displayed along with
their ohnolog status (Figure 2B). If a queried gene is an
ohnolog, its ohnolog family will be displayed on the result
page (for both 2R and 3R WGD for teleost fish) (Figure 2C
and D). We show families for our strict q-score filter, and
display the intermediate and relaxed families only if addi-
tional ohnologs are identified upon relaxing the g-score fil-
ter. The result page also includes links to pair page that has
all ohnolog pairs that went into constructing that family
(Figure 2E). The family result pages also links to the or-
thologous genes and ohnolog families in other vertebrates,
to study the conservation of ohnolog families in other ver-
tebrates.

The ohnolog pairs and families for our three pre-defined
g-score filters can be explored and downloaded from the
Browse/Download pages (Figure 2F). We link the genes on
the browse pages to external databases including Ensembl,
NCBI gene, GeneCards (for human), MGI (for mouse) and
ZFIN (for zebrafish). The details of our approach, family
descriptions and more details on g-score have also been in-
cluded on the help page.

Summary of the contents of the OHNOLOGS database

Using the expanded OHNOLOGS database we assessed
the retention and loss of ohnologs across different verte-
brates. We found that on average 25% of extant genes are
2R-ohnologs in vertebrates (intermediate criterion), which
include two rounds of WGD, and that 18% of extant genes
are 3R-ohnologs in teleost fish, which include an additional
WGD (Figure 3A and B; Supplementary Table S4). Teleost

fish have also retained more 2R-ohnologs in both abso-
lute numbers (Figure 3A) and relative proportion of ex-
tant genes (32% on average). Interestingly, while saurop-
sids have usually fewer extant genes and 2R-ohnologs than
other vertebrates (Figure 3A), they have retained similar or
higher proportions of 2R-ohnologs in their genomes (28%
on average). Similarly, at the level of individual species,
we observe that more compact genomes, such as turkey
and tetraodon, which typically contain also fewer genes,
have retained about the same numbers and thus larger pro-
portions of ohnologs than other birds or fish, respectively
(Supplementary Table S4). This enhanced conservation of
ohnologs in individual species or clades with fewer extant
genes is consistent with their proposed retention mecha-
nism through purifying selection in paleo-polyploid species
(25,27-28).

A vast majority of retained ohnologs consists of protein-
coding genes, while non-protein coding genes represent only
a small fraction of ohnologs (Supplementary Table S5). For
example, in human, out of the 7358 2R-ohnolog pairs from
the relaxed criterion only 28 (0.4%) are mi-RNA ohnolog
pairs and 2 (0.02%) are sno-RNA ohnolog pairs (Supple-
mentary Table S5).

Remarkably, for all analysed vertebrates the size of 2R-
ohnolog families rarely exceeds four ohnologs (Figure 3C),
as expected for two rounds of WGD events. Similarly, virtu-
ally all 3R-ohnolog families are of size 2, as they are derived
from just a single WGD event (Figure 3D). These family
sizes also suggest a low rate of small-scale duplications and
genome rearrangements following both 2R and 3R-WGD
as previously noticed (24).

We then assessed whether teleost fish with their ad-
ditional 3R-WGD event had further expanded the same
ohnolog families as from the previous 2R-WGD events.
Indeed, we found that in all four analysed teleost species,
2R-ohnologs tend to retain significantly more 3R-ohnologs
(Figure 3E), in agreement with earlier reports (35). The
retention of 3R-ohnologs is even higher for 2R-ohnologs
that have retained three or four family members, and for
the 2R-ohnologs that have been retained in all the 27 ver-
tebrates (Figure 3E). For example zebrafish 2R-ohnologs
from the intermediate criteria that have been also retained
in all the analysed vertebrates are twice as likely to retain
their 3R-ohnologs compared to genome-wide expectation
(P = 5e-88, Chi-square test). This suggests that the evolu-
tionary mechanism for the expansion of specific gene fami-
lies through the retention of 2R-ohnologs (25,27-28) might
also explain the biased retention of 3R-ohnologs.

We next compared the new OHNOLOGS v2 database
(this study) with the 2015 version (v1) (34) to quantify the
changes due to the improved pipeline. We noticed that the
majority of ohnologs are shared between the two versions
for all the six species included in vl (Figure 4A and B).
For example, using the relaxed criterion, 87% of individ-
ual ohnologs (Figure 4A) and 65% of ohnolog pairs (Fig-
ure 4B) in human were already present in the 2015 ver-
sion. These differences are due to the improved weighted q-
score taking into account the phylogenetically biased sam-
pling of species, a broader taxonomic range and changes in
ortholog/paralog relations in the recent Ensembl versions.
Indeed, out of 3090 ohnolog pairs not identified in the up-
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Figure 2. Navigating the OHNOLOGS database. (A) Screenshot of the search page. (B) Result page for a keyword search of ‘rat sarcoma viral oncogene’
shows the matching genes in human. (C) Ohnolog family page for HRAS gene in the human genome. (D) From the family page, users can navigate to
ortholog families in other vertebrates, e.g. zebrafish HRASA. (E) Ohnolog pair page for zebrafish for NRAS gene. (F) Browse/Download page for zebrafish

showing both 2R and 3R-ohnolog pairs and families for all the three criteria.

dated v2 version for human using relaxed criterion (Figure
4B), 36% are filtered out due to poor g-score, 38% due to
duplication timing not being at the base of vertebrates, 25%
due to changes in orthologs with outgroup genome(s) and
1% due to other Ensembl version related changes. We also
compared ohnologs from the current study with ohnologs
from Makino et al. (24) and Sacerdot et al. (41) studies
that used different methodological approaches. All these
datasets share a significant overlap between them. For ex-
ample, using the relaxed criterion, 75% of v2 ohnologs are
common to the three ohnolog datasets (Figure 4C). We
noticed that out of 1089 ohnolog pairs identified by both
Makino et al. and Sacerdot et al. studies but excluded by
our analysis (Figure 4D), 56% are filtered out due to poor
g-scores and 44% due to changes in ortholog/paralog re-
lationships or Ensembl version related differences. These

comparisons suggest that in addition to synteny, identifi-
cation of the correct timing of duplication and homology
relationships are also critical for accurate identification of
ohnologs.

At last, the OHNOLOGS v2 database can be used to
analyze the branch-specific loss and retention of ohnologs.
For instance, we found that 1316 out of 2373 ohnolog
families with relaxed confidence criterion in human had
an identical size in nearly all the 18 mammals (i.e. cor-
responding to a variance over mean size ratio lower than
0.1 across all 18 mammals, where ohnolog family sizes are
not affected by additional small-scale duplicates). Then,
out of these 1316 conserved 2R-ohnolog families in mam-
mals, 702 have an identical size in teleost fish, including
396 families which also share the same size in sauropsids
while the remaining 306 families correspond mainly to ad-
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A Individual 2R-ohnologs, pairs and families in vertebrates
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Figure 3. Description of the ohnolog genes, pairs and families in the database. (A) Number of retained individual 2R-ohnolog genes, pairs and families
in all the 27 vertebrates. Bars represent the numbers from the intermediate criterion. Ohnologs from strict and relaxed criteria are indicated by dots. (B)
Number of retained individual 3R-ohnolog genes, pairs and families in the four teleost fish species. Bars represent the numbers from the intermediate
criterion. Ohnologs from strict and relaxed criteria are indicated by dots. (C) Size of the 2R-ohnolog families from the intermediate criterion in vertebrates.
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Chi-square test. Family counts are from the intermediate criterion.
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A Overlap between individual ohnologs from OHNOLOGS version 2 (this study) and version 1 (Singh et al. 2015)
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the six vertebrates already included in v1. (B) Comparison of ohnolog pairs from OHNOLOGS v2 (this study) and v1 (34). The majority of individual
ohnologs and pairs are shared between both versions. (C) Overlap among individual ohnologs from this study, Makino ez a/. (24) and Sacerdot et al. (41).
(D) Overlap among ohnolog pairs from this study, Makino et a/. (24) and Sacerdot et al. (41). The majority of individual ohnologs and pairs are shared
across the three studies. The venn diagram between three sets have been generated using nVenn (42).

ditional 2R-ohnolog losses in sauropsids; 119 families are
larger in teleost fish and contain fish-specific 2R-ohnologs,
while 86 families are smaller in teleost fish and correspond
to 29 amniota-specific, 49 mammalia-specific and only 8
sauropsida-specific retentions of 2R-ohnologs.

CONCLUSION

The updated OHNOLOGS v2 database is a comprehen-
sive resource for the genes retained from WGDs across
27 vertebrates. It includes ohnologs from both ancestral
vertebrate 2R-WGDs and teleost fish specific 3R-WGD.
It is based on a robust pipeline that downloads and pro-
cesses datasets automatically using Ensembl, which makes
it amenable to easy updates. We plan to expand and update
OHNOLOGS periodically. Algorithmically, it is based on
a quantitative comparative macro-synteny approach, which
also takes into account the phylogenetically biased sam-
pling of available vertebrate species. This approach assesses
the confidence in each ohnolog pair and robustly identi-
fies ohnologs, despite lineage specific genome rearrange-
ment, gene loss and small-scale duplication events. Using
the datasets in OHNOLOGS we show a greater lincage-

specific ohnolog loss in sauropids compared to other verte-
brate groups, and a high retention of 2R-ohnologs in subse-
quent 3R-WGD in teleost fish. In the light of the evolution-
ary significance of ancient WGDs and ohnologs for verte-
brate evolution, the expanded and improved OHNOLOGS
database should facilitate deeper comparative, evolution-
ary, genomic and functional analyses of the ohnolog genes
in vertebrates.
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