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Abstract: Lectins, carbohydrate-binding proteins, are attractive biomolecules for medical and biotech-
nological applications. Many lectins have multiple carbohydrate recognition domains (CRDs) and
strongly bind to specific glycans through multivalent binding effect. In our previous study, pro-
tein nano-building blocks (PN-blocks) were developed to construct self-assembling supramolecular
nanostructures by linking two oligomeric proteins. A PN-block, WA20-foldon, constructed by fusing
a dimeric four-helix bundle de novo protein WA20 to a trimeric foldon domain of T4 phage fibritin,
self-assembled into several types of polyhedral nanoarchitectures in multiples of 6-mer. Another
PN-block, the extender PN-block (ePN-block), constructed by tandemly joining two copies of WA20,
self-assembled into cyclized and extended chain-type nanostructures. This study developed novel
functional protein nano-building blocks (lectin nano-blocks) by fusing WA20 to a dimeric lectin,
Agrocybe cylindracea galectin (ACG). The lectin nano-blocks self-assembled into various oligomers
in multiples of 2-mer (dimer, tetramer, hexamer, octamer, etc.). The mass fractions of each oligomer
were changed by the length of the linkers between WA20 and ACG. The binding avidity of the lectin
nano-block oligomers to glycans was significantly increased through multivalent effects compared
with that of the original ACG dimer. Lectin nano-blocks with high avidity will be useful for various
applications, such as specific cell labeling.

Keywords: artificial protein; avidity; fusion protein; lectin engineering; multivalent binding effect;
protein complex design; protein nano-building block; protein oligomer

1. Introduction

Many proteins form oligomers and complexes, which perform advanced and coop-
erative functions, such as allosteric regulation and multivalent binding [1]. In protein
engineering, the artificial design of proteins and oligomers/complexes is an attractive
topic [2,3]. Many studies have reported constructing artificial protein oligomers and com-
plexes using various approaches [4–6].

WA20 is a de novo protein obtained from a library of binary-patterned four-helix
bundles [7,8]. The crystal structure of WA20 revealed an intermolecularly folded dimeric
four-helix bundle with a bisecting U topology (PDB ID: 3VJF) [9]. Based on the dimeric
structure of WA20, the stability of WA20 was improved by introducing five amino acid
substitutions to enhance the hydrophobic core and α-helix stability [10]. This mutant
(super WA20, SUWA) showed an extremely high denaturation midpoint temperature (Tm)
above the boiling point of water. Moreover, based on the rational prediction of stabilizing
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mutations using high-temperature molecular dynamics (MD) simulations, three mutations
(N22A, N22E, and H86K) of WA20 were found. A double mutant (N22E and H86K) of
SUWA (rationally optimized SUWA, ROSA) showed the highest Tm (129.0 ◦C) [11].

Furthermore, we developed protein nano-building blocks (PN-blocks) to construct self-
assembling supramolecular nanostructures by utilizing the characteristic dimeric structure
of WA20 as a component of artificial protein complexes. One of the PN-blocks, WA20-
foldon, constructed by fusing the dimeric WA20 to a trimeric foldon domain of T4 phage
fibritin, formed several types of self-assembled nanostructures in multiples of 6-mer in-
cluding a barrel-like hexamer and a tetrahedrally shaped dodecamer [12]. In addition, we
developed extender protein nano-building blocks (ePN-blocks) constructed by tandem
joining two copies of WA20 with various linkers [13]. The ePN-blocks self-assembled
into cyclized and extended chain-type nanostructures. Although various nanostructures
have been constructed from PN-blocks, the development of functional PN-blocks remains
a challenge.

Lectins are a class of proteins that bind to specific glycans through the carbohydrate
recognition domain (CRD) [14,15]. Glycans cover various types of cells and generally exist
as glycopolymers, as well as glycoconjugates appended to proteins and lipids. Changes
in glycan composition and structure are related to many biological functions, such as
interactions between cells, cancer progression, and microbial infections [16]; therefore,
lectins have been studied in a wide range of fields of protein engineering [17–19] as
candidates for medical applications, including as drug carriers for cancer therapy [20] and
new antiviral drugs [21]. However, the affinity of lectins for glycans is lower than the
affinity of the antibody for antigen [22,23], which is a major problem in the application
of lectins. Many lectins have multiple CRDs within molecules through oligomerization
or tandem repeats and enhance their avidity for glycans through multivalent binding
effect [23,24]. Several studies have reported that the avidity of lectins can be enhanced
by artificially increasing their multivalency through tandem repeats or oligomerization of
CRDs [25–27].

Agrocybe cylindracea galectin (ACG) is a dimeric fungal lectin from the mushroom
A. cylindracea [28] and it has a wide range of specificity for β-galactoside derivatives
including Galβ1-3/4GlcNAc (LacNAc) and Galβ1-3GalNAc (T antigen). Especially, ACG
preferentially bind the derivatives whose C-3 position of nonreducing terminal Gal is
substituted with Siaα2-3, Sulfo-3, or GalNAcα1-3 [29–31]. ACG is a suitable target for lectin
engineering [32] because its stable recombinant protein can be easily produced in Escherichia
coli. Additionally, various ACG mutants that modify specificity have been reported [31–35].

To develop novel functional PN-blocks, we constructed lectin nano-building blocks
(lectin nano-blocks) with the ability to bind to target glycans. The lectin nano-blocks,
constructed by fusing WA20 to ACG with various linkers, formed several self-assembling
oligomers in multiples of 2-mer (dimer, tetramer, hexamer, octamer, and decamer). The
glycoconjugate microarray, hemagglutination assay, and cell staining experiments showed
that the lectin nano-blocks had higher binding ability than recombinant ACG (rACG).
Furthermore, we examined the binding ability of each oligomer of the lectin nano-blocks
by surface plasmon resonance (SPR) experiments and found that larger oligomers tend to
have higher binding ability. These results suggest that the construction of lectin nano-block
oligomers is a useful strategy for enhancing the binding avidity of lectins.

2. Results
2.1. Design and Construction of Lectin Nano-Blocks

Lectin nano-blocks were designed by fusing the dimeric de novo protein WA20 to
the dimeric lectin ACG (Figure 1). The WA20_H86K mutant was used as a component of
the lectin nano-block in this study as it was a thermally stabilized mutant with a 3.5 ◦C
higher denaturation midpoint temperature (Tm) than the original WA20 [11] and formed
a stable dimer in solution (Figure S1A). Thereafter, “WA20” refers to the WA20_H86K
mutant in this study. The rACG also formed dimer in solution (Figure S1B). In constructing
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the lectin nano-blocks, we changed the length and rigidity of linkers between WA20 and
ACG, which potentially affected the conformation of lectin nano-blocks. We designed lectin
nano-blocks with various length and rigidity linkers [36] (Figure S2): WA20-HL4-ACG
with helical linker 4 (HL4) consisting of 27 amino acids (aa) of KLA(EAAAK)4AAAH,
which forms an α-helix [37,38]; WA20-FL4-ACG with flexible linker 4 (FL4) consisting of 27
aa of KLS(GGGGS)4AAAH, which is rich in glycine and serine residues; WA20-SL-ACG
with a short linker (SL) consisting of 6 aa of KLAAAH; and WA20-H-ACG with H linker
containing 1 aa of histidine, which is derived from the NdeI restriction site. WA20-∆N3ACG
is a lectin nano-block without a linker and with the deletion of the N-terminal 3 aa of ACG
which is thought to have little effect on the dimeric structure and binding to glycans of
ACG (Figure S3B). Because both WA20 and ACG usually form dimers (Figures S1 and
S3), the lectin nano-blocks were expected to form various oligomers in multiples of 2-mer
(Figure 1).
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Figure 1. Schematics of the lectin nano-blocks. (A) Design of the lectin nano-blocks. The lectin
nano-blocks were constructed by fusing the dimeric de novo protein WA20 (PDB ID: 3VJF) [9] to
the dimeric lectin Agrocybe cylindracea galectin (ACG) (PDB ID: 1WW7) [30] with different type of
linkers (HL4, FL4, SL, and H). In addition, WA20-∆N3ACG was constructed by fusing WA20 and
ACG without a linker and with the deletion of the N-terminal 3 aa of ACG. Since both WA20 and
ACG form dimer, the lectin nano-blocks are expected to form self-assembling oligomers in multiples
of 2-mer. (B) Schematics of the binding of the lectin nano-blocks and ACG to target glycans on cells.
Because the lectin nano-block oligomers have more carbohydrate recognition domains (CRDs) than
the original ACG, they are expected to enhance the binding avidity to target glycans by multivalent
binding effect.

These five lectin nano-block proteins were expressed in E. coli and purified by immo-
bilized metal affinity chromatography (IMAC) (Figure S4).
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2.2. Structural Characterization of Lectin Nano-Blocks
2.2.1. Size Exclusion Chromatography–Multi-Angle Light Scattering
(SEC–MALS) Analysis

To evaluate the oligomeric states of the five lectin nano-block proteins linked by
different linkers, we performed SEC–MALS analysis on samples purified by IMAC. The
chromatograms showed multiple UV peaks in all the lectin nano-block proteins (Figure 2),
suggesting that they self-assembled into multiple oligomers, such as PN-blocks, as previ-
ously reported [12,13].
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Figure 2. SEC–MALS profiles of the five lectin nano-blocks. The blue and the black lines represent the
normalized intensity of UV absorbance (A280 nm) and the molecular mass of each peak, respectively.

To estimate the oligomeric state of each peak, we calculated the values of the weight-
average molecular mass (Mw) divided by the theoretical molecular mass (m) of a monomer
of each lectin nano-block (Table 1 and Figure S2). The values of each peak were close to
multiples of two, regardless of the type of linker between WA20 and ACG. These results
suggest that the lectin nano-blocks form regularly discrete oligomers in multiple 2-mer, such
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as dimer, tetramer, hexamer, octamer, and decamer, probably because of the combination of
WA20 dimers and ACG dimers.

Table 1. Summary of the SEC–MALS results.

Sample (Peak) Mass Fraction
(%)

Molecular Mass (Mw)
(kDa)

Mw/Theoretical m of
a Monomer

Oligomeric State
(mer)

WA20-HL4-ACG (i) 5.9 289 9.0 8, 10
WA20-HL4-ACG (ii) 16.3 214 6.7 6
WA20-HL4-ACG (iii) 30.4 125 3.9 4
WA20-HL4-ACG (iv) 47.3 61.6 1.9 2

WA20-FL4-ACG (i) 3.5 288 9.1 8, 10
WA20-FL4-ACG (ii) 7.0 190 6.0 6
WA20-FL4-ACG (iii) 22.7 121 3.8 4
WA20-FL4-ACG (iv) 66.8 59.8 1.9 2

WA20-SL-ACG (i) 5.3 339 11.3 10, 12
WA20-SL-ACG (ii) 6.5 261 8.7 8, 10
WA20-SL-ACG (iii) 11.8 185 6.1 6
WA20-SL-ACG (iv) 37.2 122 4.0 4
WA20-SL-ACG (v) 39.2 62.0 2.1 2

WA20-H-ACG (i) 19.1 310 10.4 10
WA20-H-ACG (ii) 11.6 237 8.0 8
WA20-H-ACG (iii) 16.7 173 5.8 6
WA20-H-ACG (iv) 36.1 118 4.0 4
WA20-H-ACG (v) 16.5 62.4 2.1 2

WA20-∆N3ACG (i) 16.7 329 11.3 10, 12
WA20-∆N3ACG (ii) 11.9 234 8.0 8
WA20-∆N3ACG (iii) 19.0 169 5.8 6
WA20-∆N3ACG (iv) 44.8 113 3.9 4
WA20-∆N3ACG (v) 7.5 61.1 2.1 2

The mass fractions of each peak varied according to linker length (Table 1, Figure 2).
The dimer peaks (iv) of WA20-HL4-ACG and WA20-FL4-ACG with long linkers occupied
47.3% and 66.8% of the total mass, respectively. The dimer peaks (v) of WA20-SL-ACG,
WA20-H-ACG, and WA20-∆N3ACG with short linkers or no linker occupied 39.2%, 16.5%,
and 7.5% of the total mass, respectively. In contrast, the tetramer peaks (iii) of WA20-
HL4-ACG and WA20-FL4-ACG with long linkers occupied 30.4% and 22.7% of the total
mass, respectively. The tetramer peaks (iv) of WA20-SL-ACG, WA20-H-ACG, and WA20-
∆N3ACG with short linkers or no linker were 37.2%, 36.1%, and 44.8%, respectively. As
the linkers became short, the mass fractions of the dimer peaks decreased and those of the
tetramer and higher oligomer peaks increased. These results indicate that the linker length
affects the formation of lectin nano-block oligomers.

2.2.2. Small-Angle X-ray Scattering (SAXS) Analysis

To further analyze the lectin nano-block oligomers, small-angle X-ray scattering (SAXS)
experiments were performed on WA20-SL-ACG, WA20-H-ACG, and WA20-∆N3ACG
fractionated by SEC purification (Figure S5). WA20-HL4-ACG and WA20-FL4-ACG mainly
formed dimers, and the amount of higher oligomers required for SAXS experiments could
not be prepared. Figures 3 and S6 and Table 2 show a summary of the SAXS results and
the weight-average molecular mass (Mw) of each sample. Forward scattering intensity
and radius of gyration (Rg) were calculated from the Guinier plots (Figure S7 and Table 2).
The Mw values of each fraction obtained from the SAXS experiments were approximately
consistent with those obtained from the SEC–MALS analysis (Table 1). The pair-distance
distribution functions (p(r)) indicate that higher oligomers of the lectin nano-blocks have
larger maximum dimensions (Dmax) (Figures 3 and S8 and Table 2).
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Figure 3. SAXS analysis. (A) Concentration-normalized absolute scattering intensities of the frac-
tionated samples (Fr.) of WA20-SL-ACG, WA20-H-ACG, and WA20-∆N3ACG. Ovalbumin was
used as a reference standard of the molecular mass. (B) Concentration-normalized pair-distance
distribution functions of WA20-SL-ACG, WA20-H-ACG, and WA20-∆N3ACG obtained by inverse
Fourier transforming the SAXS data. (C) Native PAGE analysis of the samples fractionated by SEC
purification for the SAXS experiments. Proteins were stained with Coomassie brilliant blue. The
oligomeric states of the protein bands were estimated from the SEC–MALS results.

In addition, further analysis of the WA20-SL-ACG oligomers was performed to obtain
more structural insights from the SAXS data by utilizing the high-resolution structures of
WA20 and ACG since the dimer, tetramer, and hexamer of WA20-SL-ACG were purified
mostly well in the result of native PAGE (Figure 3). The rigid-body models of each oligomer
were constructed based on the crystal structures of the dimeric WA20 (PDB ID: 3VJF) [9]
and the dimeric ACG (PDB ID: 1WW7) [30] using the CORAL (complexes with random
loops) program [39]. The simulated SAXS intensity curves of all the constructed models
were in agreement with the experimental data (Figure S9). As shown in Figure 4, the
rigid-body models of the WA20-SL-ACG oligomers seem to be reasonable shapes that
connect the WA20 and ACG structures.
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Table 2. Summary of the SAXS results.

Sample (Fraction) I(q→0)/c
(cm−1 mg−1 mL)

Dmax
(nm)

Rg
(nm)

Mw
(kDa)

WA20-SL-ACG (i) 0.2125 36.0 7.6 340
WA20-SL-ACG (ii) 0.1397 29.0 6.6 223
WA20-SL-ACG (iii) 0.0936 24.2 5.4 150
WA20-SL-ACG (iv) 0.0650 18.6 4.7 104
WA20-SL-ACG (v) 0.0378 14.9 3.4 60.5

WA20-H-ACG (i) 0.2003 36.0 8.3 320
WA20-H-ACG (ii) 0.1362 34.0 6.5 218
WA20-H-ACG (iii) 0.0971 30.6 6.3 155
WA20-H-ACG (iv) 0.0669 18.4 4.8 107
WA20-H-ACG (v) 0.0394 18.1 3.9 63.0

WA20-∆N3ACG (i) 0.2046 34.0 8.1 327
WA20-∆N3ACG (ii) 0.1370 29.0 6.5 219
WA20-∆N3ACG (iii) 0.0996 23.2 5.5 159
WA20-∆N3ACG (iv) 0.0689 17.4 4.5 110
WA20-∆N3ACG (v) 0.0416 21.6 4.1 66.5

rACG 0.0199 6.8 2.2 31.8

WA20_H86K 0.0157 11.0 2.7 25.1

Ovalbumin * 0.0277 8.2 2.3 44.3
* Ovalbumin was used as a reference standard for molecular mass.

2.3. Functional Characterization of Lectin Nano-Blocks
2.3.1. Glycoconjugate Microarray Analysis

To examine the binding specificity of the lectin nano-blocks, we performed a glyco-
conjugate microarray based on evanescent-field fluorescence-assisted detection [40] for
the lectin nano-blocks, WA20, and rACG (Figures 5 and S10). All the Cy3-labeled lectin
nano-blocks and the rACG protein bound to almost the same glycans immobilized on the
array, whereas WA20 did not bind to any glycans, suggesting that the lectin nano-blocks
can bind to specific glycans through the ACG domain. The strongly bound glycans were
several α2-3-sialylated glycoproteins including fetuin (FET), α1-acid glycoprotein (AGP),
porcine thyroglobulin (TG), and several desialylated (asialo) glycoproteins (Table S1). These
results were consistent with a wide range of specificity of wild-type ACG for β-galactoside
derivatives in previous studies [29–31,33]. In addition, all the lectin nano-blocks showed
higher fluorescence intensity than rACG at the same concentration (1 µg/mL). The samples
of WA20-SL-ACG, WA20-H-ACG, and WA20-∆N3ACG with a large amount of tetramer
and higher oligomers tended to have higher fluorescence intensity than the samples of
WA20-HL4-ACG and WA20-FL4-ACG.

2.3.2. Hemagglutinating Activity of Lectin Nano-Blocks

To examine the biological activity of the lectin nano-blocks, we performed a hemag-
glutination assay against rabbit erythrocytes (Figure S11). All the lectin nano-blocks and
rACG agglutinated erythrocytes; however, WA20 did not agglutinate erythrocytes. All the
lectin nano-blocks had a smaller minimum concentration for agglutination (MCA) than
rACG (Table 3), indicating that the lectin nano-blocks exhibited stronger hemagglutinating
activity than rACG.
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Figure 4. Rigid-body models of the lectin nano-block oligomers of WA20-SL-ACG. The rigid-body
models of (A) dimer, (B) tetramer, and (C) hexamer of WA20-SL-ACG. The models were constructed
based on the crystal structures of WA20 (PDB ID: 3VJF) [9] and ACG (PDB ID: 1WW7) [30] using the
SAXS data and the rigid-body modelling program CORAL [39] without a symmetry constraint.

Table 3. MCA of the lectin nano-blocks.

Sample MCA

WA20 No agglutination
rACG 42 nM

WA20-HL4-ACG 5.2 nM
WA20-FL4-ACG 1.3 nM
WA20-SL-ACG 1.3 nM
WA20-H-ACG 1.3 nM

WA20-∆N3ACG 2.6 nM
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Figure 5. Glycoconjugate microarray analysis. Specificity profiles of rACG, WA20, and the five
lectin nano-blocks. The Cy3-labeled proteins (1 µg/mL or 10 µg/mL) were applied to the array, and
binding was detected by the scanner multiple times by varying the exposure time (0.1–3 s). The
fluorescent intensity was normalized to the intensity per second. Abbreviations: FET, fetuin; AGP,
α1-acid glycoprotein; TG, porcine thyroglobulin; TF, transferrin; BSM, bovine submaxillary mucin,
and GP; human glycophorin.

2.3.3. Cell Staining Experiments with Lectin Nano-Blocks

To examine whether the lectin nano-blocks could be of practical use for detecting
target cells with specific glycans, we performed cell staining experiments on the lectin
nano-blocks (Figure 6), WA20-SL-ACG, WA20-H-ACG, and WA20-∆N3ACG, which tend
to bind to specific glycans more strongly than do WA20-HL4-ACG and WA20-FL4-ACG,
according to the results of the glycoconjugate microarray (Figure 5). The lectin nano-blocks
(WA20-SL-ACG, WA20-H-ACG, and WA20-∆N3ACG) and rACG, labeled with fluorescein,
stained the cells of the human pancreatic cancer cell line BxPC-3, presenting some sialyl
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glycoepitopes [41], whereas fluorescein-labeled WA20 did not stain the cells (Figure 6A).
The cells stained with the lectin nano-blocks appeared brighter than the cells stained
with rACG, suggesting that the lectin nano-blocks bound to the target cells more strongly
than rACG.
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Figure 6. Cell staining experiments. (A) Fluorescence microscopy images. BxPC-3 cells of a human
pancreatic cancer cell line were stained with the fluorescein-labelled samples of lectin nano-blocks,
rACG, and WA20. (B) Flow cytometry results. The experiments were performed on BxPC-3 cells. The
histogram of each sample is shown with a black line. The negative control, fluorescein isothiocyanate
(FITC)-labelled bovine serum albumin (BSA), is shown in the gray area.
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Moreover, flow cytometry analysis of the stained cells showed a higher binding ability
of the lectin nano-blocks to BxPC-3 cells than that of rACG (Figure 6B).

2.3.4. Surface Plasmon Resonance (SPR) Analysis of Lectin Nano-Block Oligomers

To examine multivalent binding effect, we performed SPR analysis for the lectin
nano-block oligomers fractionated by SEC purification (Figure S12). We focused on WA20-
H-ACG and WA20-∆N3ACG for SPR experiments as they contained a relatively high
proportion of large oligomers (tetramers, hexamers, octamers, and decamers) (Table 1).

The sensorgrams showed that rACG and all oligomers of WA20-H-ACG and WA20-
∆N3ACG bound to 3′-sialyllactose polyacrylamide biotin conjugate (Neu5Acα2-3Galβ1-
4Glcβ-Gly-PAA-biotin) ligand immobilized on a streptavidin sensor chip, whereas WA20
did not bind to the ligand (Figures 7, S13 and S14). The sensorgram of rACG showed a box-
shaped response, which is typical for rapid association and dissociation. The sensorgrams of
all the oligomers of the lectin nano-blocks showed higher responses with a slow dissociation.
The sensorgrams of the lectin nano-block oligomers containing larger oligomers showed
higher response values (Figure 7), suggesting that the larger multivalent oligomers of the
lectin nano-blocks have higher binding avidity to the glycans.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 14 of 22 
 

 

 

Figure 7. SPR analysis. Sensorgrams of the fractionated samples (Fr.) of the lectin nano-block oligo-

mers of (A) WA20-H-ACG and (B) WA20-ΔN3ACG at 1 µM bound to the 3′-sialyllactose ligand. 

The sensorgram of rACG at 1 µM is also shown for comparison. Sensorgrams of all samples at all 

concentrations are shown in Figures S13 and S14. Bold lines show the fitting curves used for calcu-

lating the apparent dissociation rate constants kd_app_early in the early phase (181–211 s) and kd_app_late 

in the late phase (480–780 s) of the lectin nano-block oligomers. The apparent dissociation rate con-

stant kd_app of rACG was calculated using the data in the entire dissociation time (181–780 s). 

Table 4. Summary of the SPR analysis results. 

Sample (Fraction) Rmax_app (RU) KD_app (M) kd_app_early (s
−1

) (181–211 s) kd_app_late (s
−1

) (480–780 s)  

WA20-H-ACG (I)  

(≥ decamer) 
889.8 3.07 × 10

−7
 4.46 × 10

−2
 1.57 × 10

−4
 

WA20-H-ACG (II)  

(octamer) 
875.9 2.55 × 10

−7
 3.89 × 10

−2
 1.92 × 10

−4
 

WA20-H-ACG (III)  

(hexamer) 
799.4 2.84 × 10

−7
 5.23 × 10

−2
 2.83 × 10

−4
 

WA20-H-ACG (IV)  

(tetramer) 
675.5 7.40 × 10

−7
 6.69 × 10

−2
 5.49 × 10

−4
 

WA20-H-ACG (V)  

(dimer) 
556.8 1.36 × 10

−6
 1.02 × 10

−1
 3.62 × 10

−4
 

WA20-ΔN3ACG (I)  

(≥ decamer) 
937.7 3.75 × 10

−7
 4.49 × 10

−2
 1.46 × 10

−4
 

WA20-ΔN3ACG (II)  

(octamer) 
870.0 3.89 × 10

−7
 3.60 × 10

−2
 1.80 × 10

−4
 

WA20-ΔN3ACG (III)  

(hexamer) 
733.6 6.08 × 10

−7
 6.01 × 10

−2
 3.13 × 10

−4
 

WA20-ΔN3ACG (IV)  

(tetramer) 
613.5 1.12 × 10

−6
 7.80 × 10

−2
 7.27 × 10

−4
 

WA20-ΔN3ACG (V)  

(dimer) 
519.3 1.99 × 10

−6
 9.13 × 10

−2
 3.51 × 10

−4
 

rACG (dimer) 490.6 1.97 × 10
−5

 1.14 × 10
−1

 (kd_app) 

  

A B WA20-H-ACG

Fr. (I)

Fr. (II)

Fr. (III)

Fr. (IV)

Fr. (V)

rACG

kd_app_early kd_app_late

WA20-ΔN3ACG

Fr. (I)

Fr. (II)

Fr. (III)

Fr. (IV)

Fr. (V)

rACG

kd_app_early kd_app_late

Figure 7. SPR analysis. Sensorgrams of the fractionated samples (Fr.) of the lectin nano-block
oligomers of (A) WA20-H-ACG and (B) WA20-∆N3ACG at 1 µM bound to the 3′-sialyllactose ligand.
The sensorgram of rACG at 1 µM is also shown for comparison. Sensorgrams of all samples at
all concentrations are shown in Figures S13 and S14. Bold lines show the fitting curves used for
calculating the apparent dissociation rate constants kd_app_early in the early phase (181–211 s) and
kd_app_late in the late phase (480–780 s) of the lectin nano-block oligomers. The apparent dissociation
rate constant kd_app of rACG was calculated using the data in the entire dissociation time (181–780 s).

Because it is practically difficult to apply any available binding models of kinetic
analysis to the SPR data of the lectin nano-blocks due to multivalent binding, we attempted
to roughly estimate the apparent dissociation constant (KD_app) by applying a 1:1 binding
steady state model (Table 4, Figures S15 and S16). The KD_app of each lectin nano-block
oligomer (~10−6–10−7 M) was smaller than that of rACG (2.0 × 10−5 M), suggesting that
the lectin nano-blocks have a higher binding ability than rACG. The larger oligomers
tended to have a smaller KD_app, suggesting that the binding avidity is increased by the
multivalent binding effect.

Although it is practically impossible to analyze association rate constants due to
multivalent binding in the lectin nano-blocks, to roughly estimate apparent dissociation
rate constants, the SPR data in the dissociation phase were fitted to the pseudo-first-order
kinetic equation (Figures 7, S13 and S14). The response of rACG rapidly returned to the
baseline in the dissociation phase, and the apparent dissociation rate constant (kd_app) was
approximately calculated using the entire dissociation data from 181 to 780 s. In contrast,
the sensorgrams of the lectin nano-blocks in the dissociation phase showed fast dissociation
in the early phase and very slow dissociation in the late phase; their response did not return
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to the baseline within the measurement time, suggesting that the dissociation data of the
lectin nano-blocks consist of different components of dissociation rates. We hypothesized
that the fast dissociation rate component dominantly appears in the early dissociation
phase (181–211 s), and the slow dissociation rate component dominantly appears in the late
dissociation phase (480–780 s). The dissociation data of the early phase (181–211 s) and the
late phase (480–780 s) were separately fitted to the pseudo-first-order kinetic equation [42]
to calculate the different components of the apparent dissociation rate constants in the early
phase (kd_app_early) and the late phase (kd_app_late) (Table 4). Compared with the kd_app of
rACG, the kd_app_early of the lectin nano-block oligomers was not very different, whereas
the kd_app_late of the lectin nano-block oligomers was much smaller than that of rACG.
These results suggest that the improvement in the binding ability of the lectin nano-blocks
may be attributed in part to the very slow dissociation rate component found in the data of
the lectin nano-block oligomers.

Table 4. Summary of the SPR analysis results.

Sample (Fraction) Rmax_app (RU) KD_app (M) kd_app_early (s−1)
(181–211 s)

kd_app_late (s−1)
(480–780 s)

WA20-H-ACG (I) (≥ decamer) 889.8 3.07 × 10−7 4.46 × 10−2 1.57 × 10−4

WA20-H-ACG (II) (octamer) 875.9 2.55 × 10−7 3.89 × 10−2 1.92 × 10−4

WA20-H-ACG (III) (hexamer) 799.4 2.84 × 10−7 5.23 × 10−2 2.83 × 10−4

WA20-H-ACG (IV) (tetramer) 675.5 7.40 × 10−7 6.69 × 10−2 5.49 × 10−4

WA20-H-ACG (V) (dimer) 556.8 1.36 × 10−6 1.02 × 10−1 3.62 × 10−4

WA20-∆N3ACG (I) (≥ decamer) 937.7 3.75 × 10−7 4.49 × 10−2 1.46 × 10−4

WA20-∆N3ACG (II) (octamer) 870.0 3.89 × 10−7 3.60 × 10−2 1.80 × 10−4

WA20-∆N3ACG (III) (hexamer) 733.6 6.08 × 10−7 6.01 × 10−2 3.13 × 10−4

WA20-∆N3ACG (IV) (tetramer) 613.5 1.12 × 10−6 7.80 × 10−2 7.27 × 10−4

WA20-∆N3ACG (V)(dimer) 519.3 1.99 × 10−6 9.13 × 10−2 3.51 × 10−4

rACG (dimer) 490.6 1.97 × 10−5 1.14 × 10−1 (kd_app)

3. Discussion

In many lectins, binding avidity to target glycans is enhanced by forming multivalent
oligomers [23,24]. To enhance the avidity of ACG, this study developed the lectin nano-
blocks by linking the dimeric artificial protein WA20 to the dimeric lectin ACG (Figure 1).
The SEC–MALS results showed that all lectin nano-blocks with various linkers form
oligomers in multiples of 2-mer probably because of the combination of WA20 dimers and
ACG dimers (Figure 2 and Table 1). In addition, according to the native PAGE results
(Figure S17), the SEC fractionated oligomers of the lectin nano-blocks did not change
essentially to the other oligomeric states for five weeks at 4 ◦C, suggesting that each lectin
nano-block oligomer is very stable and does not exchange with other oligomeric states on a
timescale of several weeks.

The formation of each lectin nano-block oligomer was affected by the linker length
between WA20 and ACG. The mass fractions of tetramer and higher oligomers increased in
the lectin nano-blocks with short linkers (WA20-SL-ACG and WA20-H-ACG) and without a
linker (WA20-∆N3ACG), whereas the lectin nano-blocks with long linkers (WA20-FL4-ACG
and WA20-HL4-ACG) preferentially formed dimers. The distance between the C-termini
of the WA20 dimer (PDB ID: 3VJF) [9] is ~6 nm and the distance between the N-termini
of the ACG dimer (PDB ID: 1WW7) [30] is ~2 nm (Figure S18A). Because there is a gap
between the distance of the C-termini of the WA20 dimer and the distance of the N-termini
of the ACG dimer, the lectin nano-blocks cannot form the usual dimers of WA20 and ACG
simultaneously when the WA20 domain and the ACG domain are connected with an H
linker that is too short or without a linker (∆N3), as shown in Figure S18B. Thus, the lectin
nano-blocks of WA20-H-ACG and WA20-∆N3ACG preferentially formed tetramers and
higher oligomers (Figure 2 and Table 1). In contrast, when the WA20 and ACG domains
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are connected with long linkers (FL4, HL4), the linkers are long enough to form the usual
dimers of WA20 and ACG (Figure S18B), and the lectin nano-blocks of WA20-FL4-ACG
and WA20-HL4-ACG preferentially formed dimers (Figure 2 and Table 1).

In addition, SAXS analysis of the fractionated oligomers of WA20-SL-ACG, WA20-
H-ACG, and WA20-∆N3ACG provided the structural information (Figure 3 and Table 2).
As shown in Figure S8A, the shape of the p(r) function of the WA20-SL-ACG dimer was
different from those of the WA20-H-ACG dimer and the WA20-∆N3ACG dimer. To obtain
structural insights into these dimers, low-resolution dummy atom models were constructed
based on the SAXS data (Figure S19). The ab initio dummy atom models suggest that
the WA20-SL-ACG dimer had a shape corresponding to the combination of the crystal
structures of WA20 and ACG, whereas the models of the WA20-H-ACG dimer and the
WA20-∆N3ACG dimer had more elongated shapes than those of the WA20-SL-ACG dimer.
This suggests that the structures of the WA20-H-ACG dimer and the WA20-∆N3ACG
dimer may be deformed from the original crystal structures of WA20 and ACG, as shown
in Figure S18B.

In the case of the rigid-body model of the WA20-SL-ACG dimer (Figure 4A), the SL
linker seems to have almost the minimum distance to form the usual dimers of WA20
and ACG, suggesting that the SL linker may slightly affect the formation of the dimer and
consequently the dimer and the tetramer of WA20-SL-ACG formed in approximately the
same amounts (Figure 2 and Table 1). In contrast, the rigid-body models of the WA20-H-
ACG dimer and the WA20-∆N3ACG dimer could not be constructed because of the too
short linker or no linker connecting the WA20 and ACG structures.

The experimental results of the glycoconjugate microarray analysis (Figure 5), hemag-
glutination assay (Table 3), and the cell staining experiments (Figure 6) show that the lectin
nano-blocks have the same specificity as rACG and the higher binding ability for the target
glycans than rACG, as intended. To examine whether these functional improvements are
attributed to multivalent binding effect, we performed SPR analysis of the fractionated
samples of the WA20-H-ACG and WA20-∆N3ACG oligomers (Figures 7, S13 and S14). In
the SPR results of the lectin nano-blocks, the larger oligomers showed relatively higher
Rmax_app, smaller KD_app, smaller kd_app_early, and smaller kd_app_late, suggesting an im-
provement in their avidity through the enhanced multivalent binding effect (Table 4).
However, the dimers of WA20-H-ACG and WA20-∆N3ACG, which have two binding
sites, as in the case of rACG dimer, also showed significant improvements in the binding
ability to glycans compared with rACG (Table 4), suggesting a factor enhancing the binding
ability of the lectin nano-blocks other than the multivalent binding effect. In this experi-
ment, Neu5Acα2-3Galβ1-4Glcβ-Gly-PAA-biotin, a polyacrylamide biotin conjugate with
many target glycans (3′-sialyllactose), was used as a ligand to examine the multivalent
binding effect. Binding of biotin to tetrameric streptavidin was used for immobilization.
Multivalent interactions with many target glycans densely conjugated with polyacrylamide
chains immobilized on the sensor chip may slow the dissociation of the lectin nano-block
oligomers with a large molecular size and enhance their reassociation, possibly resulting in
the very slow dissociation rate component of the lectin nano-block oligomers.

In this study, we developed lectin nano-blocks by fusing the dimeric de novo protein
WA20 and the dimeric lectin ACG, and the lectin nano-block oligomers obtained higher
avidity to the target glycans than rACG through the multivalent binding effect. Because
the lectin nano-block strategy demonstrated in this study can be applied to a variety
of oligomeric lectins, this strategy is a useful method to improve the avidity of lectins,
contributing to lectin engineering and applications.

4. Materials and Methods
4.1. Construction of WA20-ACG Protein Expression Plasmids

The protein expression plasmids of the lectin nano-blocks of WA20-HL4-ACG, WA20-
FL4-ACG, and WA20-SL-ACG were constructed using the plasmids pET_WA20-HL4-
WA20 [13], pET_WA20-FL4-WA20 [13], and pET_WA20-(SL)-foldon [12]. The H86K muta-
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tion of WA20 was introduced by site-directed mutagenesis of the transfer-PCR method [43]
with oligo-DNA primers (Table S2) and KOD-Plus-Neo DNA polymerase (Toyobo, Osaka,
Japan). The DNA fragment encoding ACG was prepared by digestion of the pET27b_rACG
plasmid [31] with NdeI and XhoI, and cloned into the pET plasmids with the genes
of WA20_H86K and each linker to give the expression plasmids pET_WA20-HL4-ACG
(Figure S20A), pET_WA20-FL4-ACG, and pET_WA20-SL-ACG. The protein expression
plasmids of WA20-H-ACG and WA20-∆N3ACG were prepared from pET_WA20-SL-ACG
using inverse PCR with the oligo-DNA primers (Table S2) and DNA ligation to give the
expression plasmids pET_WA20-H-ACG and pET_WA20-∆N3ACG (Figure S20B).

4.2. Protein Expression and Purification

The five lectin nano-blocks were expressed in E. coli BL21 Star (DE3) (Invitrogen,
Carlsbad, CA, USA) harboring the expression plasmid in 2 L of LB broth (Lennox) (Nacalai
Tesque, Kyoto, Japan) containing 100 µg/mL ampicillin sodium salt at 37 ◦C. The expres-
sion was induced by 0.1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) at an optical
density of 600 nm (OD600) of ~0.6 and cells were cultured for 16 h at 16 ◦C. Proteins were
extracted from the harvested cells by freezing–thawing and sonication with a VC 505 ultra-
sonic processor (Sonics and Materials, Newtown, CT, USA) in 50 mM sodium phosphate
buffer (pH 7.5) containing 300 mM NaCl and 10% glycerol. The proteins were purified
by immobilized metal affinity chromatography (IMAC) with TALON metal affinity resin
(Takara Bio, Kusatsu, Shiga, Japan). Because many histidine residues are exposed on the
surface of WA20 (PDB ID: 3VJF), the lectin nano-blocks without a His-tag can bind to the
IMAC resin. These resins were washed with 50 mM sodium phosphate buffer (pH 7.5)
containing 300 mM NaCl and 10% glycerol, and the proteins were eluted with 50 mM
sodium phosphate buffer (pH 7.5) containing 300 mM NaCl, 10% glycerol and 200 mM
imidazole. The protein concentration was determined by measuring the absorbance at
280 nm using a NanoDrop Lite spectrophotometer (Thermo Fisher Scientific, Waltham,
MA, USA). The molar extinction coefficient of each protein was calculated according to the
amino acid sequence (Trp: 5500, Tyr: 1490) [44]. The WA20_H86K protein, called as WA20
in this study, was expressed in E. coli BL21 Star (DE3) harboring the expression plasmid
pET_WA20_H86K in 1 L LB broth (Lennox), as described in a previous study [11]. E. coli
cells were cultured for 16 h without induction by IPTG. The protein was extracted from the
harvested cells and purified by IMAC in the same way as the lectin nano-blocks.

The rACG protein was also expressed in E. coli BL21 Star (DE3) harboring the expres-
sion plasmid pET27b_rACG in 1 L of LB broth (Lennox) containing 30 µg/mL kanamycin
sulfate at 37 ◦C. The expression was induced with 0.1 mM IPTG at OD600 = ~0.6, and cells
were cultured for 16 h at 20 ◦C. The rACG protein was extracted from the harvested cells by
freezing–thawing and sonication with a VC 505 ultrasonic processor (Sonics and Materials,
Newtown, CT, USA) in 50 mM sodium phosphate buffer (pH 7.5) containing 300 mM NaCl
and 10% glycerol. The rACG protein was purified by affinity chromatography with lactose-
immobilized Sepharose CL-4B (Cytiva, Little Chalfont, Buckinghamshire, U.K.) [45]. The
resin was washed with 50 mM sodium phosphate buffer (pH 7.5) containing 300 mM NaCl
and 10% glycerol, and rACG was eluted with 50 mM sodium phosphate buffer (pH 7.5)
containing 300 mM NaCl, 10% glycerol, and 200 mM lactose.

Before the glycoconjugate microarray, hemagglutination assay, and cell staining exper-
iments, the protein samples were dialyzed overnight against 20 mM HEPES buffer (pH 7.5)
containing 150 mM NaCl.

4.3. Size Exclusion Chromatography–Multi Angle Light Scattering (SEC–MALS)

The SEC–MALS experiments for samples purified by IMAC were performed using an
Alliance e2695 HPLC system (Waters, Milford, MA, USA) equipped with a Superdex 200 In-
crease 10/300 GL column (Cytiva), which was connected in line with a DAWN HELEOS II
multi-angle static light scattering detector (Wyatt Technology, Santa Barbara, CA, USA). The
data were collected at 20 ◦C with 20 mM HEPES buffer (pH 7.5) containing 150 mM NaCl
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and analyzed using ASTRA 6 software (Wyatt Technology) [46]. Protein concentration was
determined using a refractive index detector. A dn/dc value of 0.185 mL/g was generally
used for the proteins.

4.4. Small-Angle X-ray Scattering (SAXS)

For the SAXS experiments, the protein samples were further purified by SEC (20 mM
HEPES buffer (pH 7.5) containing 150 mM NaCl and 5% glycerol) with a Superdex 200 In-
crease 10/300 GL column (Cytiva). SAXS measurements were performed for samples
(~1–4 mg/mL) and chicken ovalbumin (5 mg/mL) (A7641; Sigma-Aldrich, St. Louis, MO,
USA) dissolved in the HEPES buffer at 20 ◦C using synchrotron radiation (λ = 1.0 Å) at the
Photon Factory (PF) BL-10C beamline, High Energy Accelerator Research Organization
(KEK) (Tsukuba, Japan) [47] with a PILATUS3 2M detector (Dectris, Baden, Switzerland) at
a sample-detector distance of 2.08 m.

The two-dimensional scattering images were radially integrated into one-dimensional
scattering intensities I(q) as a function of the magnitude of the scattering vector, as shown
by the following equation using SAngler [48]:

q = (4π/λ) sin(θ/2) (1)

In this equation, θ means the total scattering angle.
The indirect Fourier transformation (IFT) technique was used to calculate the pair-

distance distribution function p(r) using GNOM [49] in the ATSAS program suite [50].
The forward scattering intensity, I(q→0), and radius of gyration, Rg, were estimated using
the Guinier approximation [51] in the range of qRg < 1.3 using the ATSAS program [50]
with SAngler [48]. Assuming that the proteins have practically the same scattering length
density and specific volume and that the structure factor is almost unity (S(q) ≈ 1) for
the dilute samples, the forward scattering intensity normalized by the protein concen-
tration (mg/mL), I(q→0)/c, is proportional to the weight average molecular mass (Mw).
Ovalbumin (Mw = 44.3 kDa) was used as the reference standard for the molecular mass.

The low-resolution dummy atom models were constructed from the SAXS data using
ab initio shape modelling programs in the ATSAS program suite [50] for small-angle scatter-
ing data analysis from biological macromolecules. The calculations of rapid ab initio shape
determination were performed ten times by DAMMIF [52] without a symmetry constraint,
and the generated models were aligned and averaged using DAMAVER [53]. The averaged
model was modified with the fixed core by DAMSTART, and further refinement of the
model was performed by DAMMIN [54]. The images of the dummy atom models were
prepared using UCSF Chimera [55].

The rigid-body models of the WA20-SL-ACG oligomers were constructed from the
SAXS data based on the crystal structures of WA20 (PDB ID: 3VJF) [9] and ACG (PDB ID:
1WW7) [30] using CORAL [39] in the ATSAS program suite [50]. For the construction of the
models, the residue R102 was disordered in the crystal structure at the C-terminus of WA20,
the SL linker residues (six residues) between WA20 and ACG, and the three residues at the
N-terminus of ACG were regarded as random loop residues because the three residues at
the N-terminus in the crystal structure of ACG seem to have a relatively flexible structure.
The images of the rigid-body models were prepared using UCSF Chimera [55].

4.5. Glycoconjugate Microarray

The general experimental procedure was described in a previous study [40]. Proteins
were fluorescently labeled with Cy3 mono-reactive dye (Cytiva). Thereafter, 80 µL of
Cy3-labeled proteins (at a final concentration of 1.0 µg/mL or 10 µg/mL) was applied to
the glycoconjugate microarray and incubated overnight at 20 ◦C. After the wells on the
glass were rinsed twice with the probing buffer (Tris-buffered saline (pH 7.4) containing 1%
Triton X-100, 1 mM CaCl2, and 1 mM MnCl2), fluorescence images were acquired using an
evanescent-field activated fluorescence scanner (Bio-REX Scan 200; Rexxam, Osaka, Japan).
The net intensity value of each spot was obtained by subtracting the background from the
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signal intensity. The signals of the three spot samples were averaged, and the intensities
were normalized by the exposure time.

4.6. Hemagglutination Assay

Serial 2-fold dilutions of 25 µL of the protein samples (initial concentration: 1 µM) in
HEPES buffer (20 mM HEPES buffer (pH7.5), 150 mM NaCl) were prepared in a U-bottom
96-well microtiter plate. Thereafter, 50 µL of 2% glutaraldehyde-stabilized rabbit red blood
cells (Cedarlane, Burlington, ON, Canada) in HEPES buffer was added to each well in
the plate, and the plate was shaken gently (150 rpm) for 30 min at 20 ◦C. The plate was
then statically incubated for 30 min at 20 ◦C. The threshold concentration of the protein
sample that caused hemagglutination was determined as the minimum concentration for
agglutination (MCA).

4.7. Cell Staining Experiment

The protein samples of rACG, WA20-SL-ACG, WA20-H-ACG, WA20-∆N3ACG, and
WA20 were fluorescently labeled using Fluorescein Labeling Kit-NH2 (Dojindo, Kumamoto,
Japan). After cells of the human pancreatic cancer cell line BxPC-3 were cultured in 24-
well plates, the cells were washed with phosphate buffered saline (PBS) and fixed in 4%
paraformaldehyde for 20 min. After washing the cells with PBS three times, the cells were
incubated with 1 µg/mL or 10 µg/mL of the fluorescein-labeled protein samples for 1 h
at room temperature. After washing twice with PBS, the cells were observed under a
fluorescence microscope.

4.8. Flow Cytometry

BxPC-3 cells (1× 105) were washed with 1% BSA in PBS and incubated with 10 µg/mL
of the fluorescein-labeled protein samples or FITC-labeled BSA on ice for 1 h. After two
cycles of centrifugation and washing with 1% BSA in PBS, the cells were analyzed using a
CytoFLEX flow cytometer (Beckman Coulter, Brea, CA, USA).

4.9. Surface Plasmon Resonance (SPR) Analysis

For the SPR experiments, the lectin nano-blocks (WA20-H-ACG and WA20-∆N3ACG)
and rACG were further purified by SEC (20 mM HEPES buffer (pH 7.5) containing 150 mM
NaCl) with a Superdex 200 Increase 10/300 GL column (Cytiva). The IMAC-purified WA20
was dialyzed overnight against 20 mM HEPES buffer (pH 7.5) containing 150 mM NaCl.
Molar concentrations of protein samples were calculated as monomers. SPR measurements
were performed at 25 ◦C using a Biacore T200 (Cytiva) equipped with a Series S Sensor
Chip SA (Cytiva), whose surface consisted of a carboxymethylated dextran matrix pre-
immobilized with streptavidin, and 20 mM HEPES buffer (pH 7.5) containing 150 mM
NaCl and 0.05% Tween 20 was used as the running buffer. Neu5Acα2-3Galβ1-4Glcβ-Gly-
PAA-biotin ligand (GlycoNZ, Auckland, New Zealand) was immobilized on streptavidin
on the chip surface (RU = 82.1). The response of each protein sample was measured at a
flow rate of 30 µL/min, binding time of 180 s, and dissociation time of 600 s. The amount of
binding of each protein sample to the ligand was determined by subtracting the response
of the analytical flow cell to that of the reference flow cell that was not immobilized as the
background. The sensor chip was regenerated by flowing 20 mM HEPES buffer (pH 7.5)
containing 150 mM NaCl, 0.05% Tween20, and 200 mM lactose at 30 µL/min for 120 s after
each measurement.

The calculation of the apparent amount of maximum binding (Rmax_app) and appar-
ent dissociation constant (KD_app) were calculated by fitting the data of multiple protein
concentrations of each sample to the 1:1 binding steady-state affinity model in BIAeval-
uation software (version 3.0). In this model, KD_app is calculated by regarding it as an
apparent first-order binding reaction between the analyte and ligand, as shown in the
following equation:

Req = c Rmax_app/(KD_app + c) + offset (2)
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In this equation, c is the concentration of the analyte and Req is the response at the
equilibrium state for each measured concentration.

The apparent dissociation rate constants in the early dissociation phase (181–211 s)
(kd_app_early) and the late dissociation phase (480–780 s) (kd_app_late) were calculated by
globally fitting the SPR data of several protein concentrations to the following equation
for the classical pseudo-first-order kinetics [42] using Igor Pro (version 7.08) (WaveMetrics,
Portland, OR, USA) with global fitting analysis package.

For the kd_app_early in the early dissociation phase (181–211 s):

Rt = R0 exp(− kd_app_early (t − t0)) + R1 (3)

For the kd_app_late in the late dissociation phase (480–780 s):

Rt = R0 exp(− kd_app_late (t − t0)) (4)

In this equation, Rt is the response at time t, R0 is the response strength at t0 (kd_app_early:
181 s, kd_app_late: 480 s, respectively), and R1 is the offset. The kd_app_early and kd_app_late of
the lectin nano-blocks were calculated using Equations (3) and (4), respectively.

The kd_app of rACG was calculated using Equation (5) for the entire dissociation phase
(181–780 s).

Rt = R0 exp(− kd_app (t − t0)) (5)
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