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Abstract 

Background:  Half of the adults with current asthma among the US National Health and Nutrition Examination 
Survey (NHANES) participants could be classified in more than one hypothesis-driven phenotype. A data-driven 
approach applied to the same subjects may allow a more useful classification compared to the hypothesis-driven 
one.

Aim:  To compare previously defined hypothesis-driven with newly derived data-driven asthma phenotypes, identi-
fied by latent class analysis (LCA), in adults with current asthma from NHANES 2007–2012.

Methods:  Adults (≥ 18 years) with current asthma from the NHANES were included (n = 1059). LCA included vari-
ables commonly used to subdivide asthma. LCA models were derived independently according to age groups: < 40 
and ≥ 40 years old.

Results:  Two data-driven phenotypes were identified among adults with current asthma, for both age groups. The 
proportions of the hypothesis-driven phenotypes were similar among the two data-driven phenotypes (p > 0.05). 
Class A < 40 years (n = 285; 75%) and Class A ≥ 40 years (n = 462; 73%), respectively, were characterized by a predomi-
nance of highly symptomatic asthma subjects with poor lung function, compared to Class B < 40 years (n = 94; 25%) 
and Class B ≥ 40 years (n = 170; 27%). Inflammatory biomarkers, smoking status, presence of obesity and hay fever did 
not markedly differ between the phenotypes.

Conclusion:  Both data- and hypothesis-driven approaches using clinical and physiological variables commonly 
used to characterize asthma are suboptimal to identify asthma phenotypes among adults from the general popula-
tion. Further studies based on more comprehensive disease features are required to identify asthma phenotypes in 
population-based studies.
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Introduction
Airways diseases, such as asthma and chronic obstructive 
pulmonary disease (COPD), comprise a heterogeneous 
set of subtypes with different underlying pathophysi-
ological mechanisms [1–3]. Both hypothesis-driven and 
data-driven methods can be used to classify patients into 
sub-groups of airways diseases [4–6].

The hypothesis-driven approach classifies airways 
diseases based on pre-defined criteria following immu-
nopathology concepts and asthma literature, while in 
data-driven methods no prior disease classification is 
required [7, 8]. Data-driven approaches have provided 
insights into “novel” phenotypes of complex disease 
pathogenesis, suggesting disease stratification depending 
on the individual pathophysiologic characteristics [8–11].

Most studies on asthma phenotyping using data-driven 
methods emphasize patients with moderate to severe 
asthma and/or clinically-based settings [12–15]. There-
fore, the generalization to the general asthma population 
may be limited.

Different types of data-driven methods have been 
widely used in airway diseases, such as hierarchical [12], 
partitioning [14], and latent class analysis (LCA) [10]. 
Notably, LCA appeared to account better for the hetero-
geneity of airways symptoms, compared to other com-
monly used data-driven approaches (e.g. partitioning 
around medoids) [16]. Moreover, the application of the 
latent class assignments developed from a national data 
source has previously demonstrated higher degrees of 
generalizability [17].

Recently, we reported a significant overlap between five 
distinct hypothesis-driven asthma phenotypes in adults 
from the general population included in the US National 
Health and Nutrition Examination Survey (NHANES) 
[18]. We have emphasized that a combination of clinical 
information and biomarkers, using a more comprehen-
sive data analysis approach, such as data-driven methods, 
could provide a better taxonomy of non-severe asthma.

In this study, we aimed to compare previously defined 
hypothesis-driven asthma phenotypes [18] with data-
driven asthma phenotypes derived by applying LCA 
to a sample of adults representative of the US general 
population.

Methods
Study setting and participants
We have included subjects that participated in the 
NHANES study, a nationally representative survey of 
the civilian, non-institutionalized US population per-
formed with the aim of gathering data regarding health 
and nutritional status. Protocols were approved by the 
National Center for Health Statistics Research Ethics 
Review Board and all participants gave written informed 

consent. Detailed information can be found in the 
NHANES documentation (www.cdc.gov/nchs/nhane​
s.htm).

Data from three NHANES surveys was used 
(n = 30,442). We included adults (≥ 18  years old) with 
current asthma (n = 1059), defined by a positive answer 
to the questions [18]: “Has a doctor ever told you that you 
have asthma?” together with “Do you still have asthma?”, 
and either “wheezing/whistling in the chest in the past 
12 months” or “asthma attack in the past 12 months.”

Variables
Anthropometric and demographic characteristics, 
such as age, gender, body mass index (BMI), and smok-
ing status were analysed, as well as blood eosinophils 
(B-Eos) count, fraction of exhaled nitric oxide (FeNO) 
and spirometric parameters. FeNO and spirometry were 
performed following ATS/ERS recommendations [19, 
20]. Basal predicted values of forced expiratory volume 
during the first second (FEV1) and forced vital capacity 
(FVC) were calculated [21, 22] and abnormal values were 
defined as being below the lower limit of normal (LLN) 
[23].

Hypothesis‑driven asthma phenotypes
The analysis based on the report of smoking status, pres-
ence of obesity and inflammatory markers enabled the 
definition of five asthma phenotypes [18]: B-Eos-high 
asthma phenotype, if B-Eos ≥ 300/mm3; FeNO-high 
asthma, if FeNO ≥ 35  ppb; B-Eos&FeNO-low asthma, 
if B-Eos < 150/mm3 and FeNO < 20  ppb; asthma with 
obesity (AwObesity), if BMI ≥ 30  kg/m2; and asthma 
with concurrent COPD (AwCOPD), if subjects had 
self-reported chronic bronchitis/emphysema with age 
of diagnosis ≥ 40 years and being either a current or an 
ex-smoker (ever smoked). Subjects were considered as 
“non-classified” if they did not meet the criteria for any of 
the defined asthma phenotypes. Additionally, to account 
for individuals with probable co-existence of asthma and 
COPD and minimize age as a confounding variable, we 
conducted the analysis considering two age groups: < 40 
and ≥ 40 years old [18].

Data‑driven asthma phenotypes
LCA was used to identify asthma phenotypes in an unsu-
pervised manner (data-driven approach). Two models 
for “current asthma” were developed (Additional file  1: 
Table  S1): Model 1 was based on the 4 variables previ-
ously used to define the hypothesis-driven asthma 
phenotypes (BMI ≥ 30  kg/m2, ever-smoking status, 
FeNO ≥ 35  ppb, B-Eos ≥ 300/mm3) [18]; and in Model 
2, we have added to the former 4 variables, sex, early 
asthma onset (< 16 years old), wheezing-related questions 
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(presence/absence of at least one wheezing attack, 
wheezing with exercise, sleep disturbance by wheezing, 
limit activity by wheezing, absenteeism by wheezing), 
asthma-related emergency department (ED) visit in the 
previous 12  months, FEV1/FVC < LLN, FEV1 < LLN, and 
self-reported hay fever.

Additionally, to explore the results in different “asthma 
populations”, we’ve developed two other models using 
similar variables. For the “ever asthma” subgroup (model 
3) we included subjects with a positive answer to “Has a 
doctor ever told you that you have asthma?” (n = 2611); 
and for the “difficult asthma” (model 4) we included 
subjects with poor asthma-related outcomes, defined 
as current asthma plus, at least, one of the following: 
asthma-related ED visit, FEV1 < LLN, or oral corticoster-
oids use in the past 30 days (n = 673) (Additional file 1: 
Table S1).

Latent class models were derived independently for 
each age group, using the same variables, and a second-
ary analysis without stratifying by age was done on the 
three asthma subgroups. The most appropriate number 
of clusters was determined by examining commonly used 
criteria [24]. Further methodological details are found in 
the Additional file 1.

Statistical analysis
All analyses considered the complex multistage sampling 
and 6-year sampling weights provided by the NHANES 
documentation [25]. LCA was performed with MPlus 
(version 6.12), that considered the complex survey design 
of NHANES when performing LCA-modelling. All other 
analysis was performed in Stata/IC 15.1 (Stata Corp, Col-
lege Station, TX, USA). A p-value < 0.05 was considered 
statistically significant.

Results
We included 1059 adults with current asthma. The 
weighted proportions of the previously defined hypoth-
esis-driven asthma phenotypes, according to age groups 
(< 40 and ≥ 40 years old) were, respectively: 42% and 53% 
with AwObesity; 34% and 37% with B-Eos-high asthma; 
26% and 21% for B-Eos&FeNO-low; 18% and 19% with 
FeNO-high asthma; and 19% AwCOPD, in the older 
group [18]. In addition, 17% and 12% of the individuals 
in the < 40 and ≥ 40 years old groups, respectively, were 
categorized as “non-classified”.

In Model 1, LCA was not able to differentiate any 
asthma subgroup among subjects with current asthma 
(Additional file 1: Table S1). On the other hand, by add-
ing more asthma-related variables (Model 2), LCA iden-
tified a two-class model as the best solution for both 
age groups (Table 1, Additional file 1: Table S1). Classes 
A < 40  years (n = 290; 75%) and A ≥ 40  years (n = 494; 

73%) had marked predominance of highly symptomatic 
asthma subjects, with poorer lung function, compared 
to classes B < 40  years (n = 96; 25%) and B ≥ 40  years 
(n = 179; 27%), respectively (Table 1). Regarding inflam-
matory markers, the proportion of patients with high 
levels of B-Eos and FeNO was not significantly different 
between classes, both in the younger group (p = 0.99 and 
p = 0.82, respectively) and in the older group (p = 0.57 
and p = 0.53).

Figure 1 shows that the distribution of the hypothesis-
driven phenotypes is similar (p > 0.05) in both classes 
identified by LCA regardless age group.

Additionally, LCA identified 2 classes on the models for 
“ever-asthma” and “current asthma” without stratifying 
by age, but not for the difficult-asthma sub analysis where 
no subgroup was identified (Additional file 1: Table S1).

Discussion
This was the first study comparing previously defined 
hypothesis-driven asthma phenotypes with data-driven 
ones in a sample representative of the US general popu-
lation. The proportions of the hypothesis-driven phe-
notypes were similar between the two data-driven 
phenotypes obtained by LCA using clinical and physio-
logical variables commonly used to characterize asthma.

Previous studies using data-driven approaches contrib-
uted to the definition of clusters/phenotypes based on 
similarities in clinical and inflammatory biomarkers [9, 
12–14]. However, these approaches have been scarcely 
applied to adults with asthma from population-based 
studies. The studies from Siroux et al. [26] and Mäkikyrö 
et al. [27] provided further evidence for identifying sub-
groups of asthma based on clinical markers and ques-
tionnaire data commonly available in primary health care 
or large epidemiological studies and found a larger range 
of asthma phenotypes.

Our study showed that performing LCA with the 
variables used to define some of the most common 
hypothesis-driven asthma phenotypes, could not iden-
tify subgroups within adults with current asthma from 
the general population. By including additional clinical 
and physiological variables commonly used to classify 
asthma, LCA identified two data-driven phenotypes in 
the same subjects. Overall, these phenotypes only dif-
fered in symptom frequency and lung function param-
eters. Inflammatory biomarkers, presence of obesity, 
smoking status, age of asthma onset and self-reported 
hay fever were not different between classes.

Moreover, using a less stringent asthma definition (ever 
asthma) and in subjects with poor clinical outcomes (dif-
ficult asthma), these variables were also suboptimal to 
differentiate asthma subgroups.
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In contrast to studies with severe asthma patients, 
our results suggest that, for the general asthma popula-
tion, the clinical and physiological variables available to 
classify asthma and commonly used predefined cut-offs 
seem to be insufficient to identify specific phenotypes. 
The inclusion in data-driven models of additional easily 
measurable biomarkers that have already been shown to 
be helpful in discriminating asthma phenotypes in this 
population (e.g. serum IgE and/or periostin) [28, 29], 
combined with comprehensive clinical, physiologic, and/
or disease features, might result in the identification of 
more precise phenotypes. Also, the identification of new, 
more accurate biomarkers could also improve phenotyp-
ing [30]. Furthermore, the use of fixed cut-offs values, 
although common and more intuitive for daily clinical 
practice, may potentially miss more complex, and yet 
unidentified phenotypes. The use of absolute values (as 
seen in other studies [13, 31, 32]), or appropriate refer-
ence equations for predicted values [33, 34] could be 
more adequate.

Similarly, research efforts are being made to integrate 
clinical characteristics with available biomarkers to iden-
tify data-driven asthma phenotypes in children [35, 36]. 
However, the obtained phenotypes vary on key features 
that are more pronounced during childhood, including 

natural history of wheeze over time [37], suggesting that 
further work is required to compare data- and hypothe-
sis-driven approaches to identify asthma phenotypes in 
children.

Limitations inherent to a survey study design must be 
acknowledged and the self-reported variables may lead 
to misclassifications and information biases; to account 
for these biases, we used previously validated definitions 
[38, 39]. Also, despite including the most commonly used 
variables for respiratory disease assessment available in 
the NHANES study, when using the less stringent asthma 
definition, the differentiation of asthma subgroups was 
not improved in this population. However, to reduce the 
risk of poor LCA-class differentiation, we did not include 
any of the variables used in the asthma groups defini-
tion into the LCA models. Finally, LCA modelling should 
comprehend all the domains relevant to the understand-
ing of the disease to classify observations into discrete 
and mutually exclusive classes [40], suggesting that the 
use of predefined cut-offs and the lack of data regard-
ing, for example, objective assessment of atopy, nasal and 
ocular symptoms (which have proved to be useful in the 
stratification of allergic respiratory diseases [10, 41]), may 
have limited the ability to differentiate specific asthma 
phenotypes using unsupervised analysis.

Table 1  Proportions of each variable according to the LCA-classes identified in Model 2 (subjects with current asthma, 
n = 1059)

FEV1 forced expiratory volume in the first second, FVC forced vital capacity, LLN lower limit of normality, ED emergency department, FeNO fractional exhaled nitric 
oxide, B-Eos blood eosinophils count, BMI body mass index

Variables are ordered by the highest mean difference between the 2 classes of each age group and each coloured box represents the prevalence of the variables 
within the class, ranging from 0% (light yellow) to 100% (red)
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In conclusion, this brief communication extends our 
previous work on the need for a broader data analysis 
combining different asthma-related domains for differ-
entiating phenotypes in the general asthma population 
[18]. The clinical and physiological variables commonly 
used to subdivide asthma seem to be insufficient to dif-
ferentiate specific asthma phenotypes among adults from 
the general population, irrespective of using data-driven 
or hypothesis-driven approaches. Further studies based 
on more comprehensive disease features are required to 
identify asthma phenotypes with the potential to be use-
ful for clinicians and for population-based research.

Additional file

Additional file 1. Supplementary methods.

Abbreviations
ATS/ERS: American Thoracic Society/European Respiratory Society; AwCOPD: 
asthma with concurrent COPD; AwObesity: asthma with obesity; B-Eos: blood 
eosinophils; BMI: body mass index; COPD: chronic obstructive pulmonary dis-
ease; ED: emergency department; FeNO: fraction of exhaled nitric oxide; FEV1: 
forced expiratory volume during the first second; FVC: forced vital capacity; 
LCA: latent class analysis; LLN: lower limit of normal; NHANES: National Health 
and Nutrition Examination Survey; US: United States.

Authors’ contributions
RA, AMP, JAF, contributed to study conception and design, analysis and inter-
pretation of data, writing and revising the article. TJ, AM, CJ and KA contrib-
uted to data interpretation, writing and revising the article. All authors read 
and approved the final manuscript.

Author details
1 CINTESIS – Center for Health Technology and Services Research, Faculty 
of Medicine, University of Porto, Edifício Nascente, Piso 2, Rua Dr. Plácido 
da Costa, s/n, 4200‑450 Porto, Portugal. 2 Department of Cardiovascular 
and Respiratory Sciences, Porto Health School, Porto, Portugal. 3 Department 
of Allergy, Instituto & Hospital CUF, Porto, Portugal. 4 Department of Medical 
Sciences, Clinical Physiology, Uppsala University, Uppsala, Sweden. 5 Depart-
ment of Medical Sciences, Respiratory Medicine and Allergology, Uppsala 
University, Uppsala, Sweden. 6 Department of Women’s and Children’s 
Health, Paediatric Research, Uppsala University, Uppsala, Sweden. 7 MEDCIDS 

Class B 40 years

NS

NS

n=290 n=96

n=179n=494
Fig. 1  Distribution of the hypothesis-driven asthma phenotypes according to the data-driven classes identified in Model 2. Both Class A < 40 and 
Class A ≥ 40 are the phenotypes with more asthma-related symptoms and low lung function. No significant differences (p > 0.05) were observed 
between the proportions of the hypothesis-driven within the data-driven phenotypes. NS non-significant

https://doi.org/10.1186/s13601-019-0258-7


Page 6 of 7Amaral et al. Clin Transl Allergy            (2019) 9:17 

‑ Department of Community Medicine, Information, and Health Sciences, 
Faculty of Medicine, University of Porto, Porto, Portugal. 

Acknowledgements
This article was supported by FEDER through the operation POCI-01-0145-
FEDER-007746 funded by the Programa Operacional Competitividade e 
Internacionalização – COMPETE2020 and by National Funds through FCT - 
Fundação para a Ciência e a Tecnologia within CINTESIS, R&D Unit (reference 
UID/IC/4255/2013).

Competing interests
The authors declare that they have no competing interests.

Availability of data
Data and respective datasets are displayed at the NHANES website: https​://
www.cdc.gov/nchs/nhane​s/Index​.htm.

Consent of publication
Not applicable.

Ethics approval and consent to participate
The NHANES survey operates under the approval of the National Center for 
Health Statistics Research Ethics Review Board (Protocols #2005-06, and #2011-
17), available in www.cdc.gov/nchs/nhane​s/irba9​8.htm. All the NHANES data 
meet the conditions described in Research Using Publicly Available Datasets 
(Secondary Analysis) - Policy #39 - for use without application to Institutional 
Review Board. All study participants provided written informed consent.

Funding
RA is supported by a Ph.D. grant (grant no. PD/BD/113659/2015), financed 
by the Fundação para a Ciência e Tecnologia, I.P., PhD program (reference no. 
PD/0003/2013: Doctoral Program in Clinical and Health Services Research).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 4 January 2019   Accepted: 1 March 2019

References
	1.	 Pavord ID, Beasley R, Agusti A, Anderson GP, Bel E, Brusselle G, et al. After 

asthma: redefining airways diseases. Lancet. 2018;391(10118):350–400.
	2.	 Pavord ID, Shaw DE, Gibson PG, Taylor DR. Inflammometry to assess 

airway diseases. Lancet. 2008;372(9643):1017–9.
	3.	 Wurst KE, Kelly-Reif K, Bushnell GA, Pascoe S, Barnes N. Understanding 

asthma-chronic obstructive pulmonary disease overlap syndrome. Respir 
Med. 2016;110:1–11.

	4.	 Wenzel S. Asthma: defining of the persistent adult phenotypes. Lancet. 
2006;368:804–13.

	5.	 Bousquet J, Anto JM, Sterk PJ, Adcock IM, Chung KF, Roca J, et al. Systems 
medicine and integrated care to combat chronic noncommunicable 
diseases. Genome Med. 2011;3(7):43.

	6.	 Prosperi MCF, Sahiner UM, Belgrave D, Sackesen C, Buchan IE, Simpson 
A, et al. Challenges in identifying asthma subgroups using unsu-
pervised statistical learning techniques. Am J Respir Crit Care Med. 
2013;188(11):1303–12.

	7.	 Han J, Kamber M, Pei J. Data mining: concepts and techniques. 3rd ed. 
Waltham: Morgan Kaufmann Publishers; 2012.

	8.	 Yii ACA, Tay T-R, Choo XN, Koh MSY, Tee AKH, Wang D-Y. Precision 
medicine in united airways disease: a “treatable traits” approach. Allergy. 
2018;73(10):1964–78.

	9.	 Haldar P, Pavord ID, Shaw DE, Berry MA, Thomas M, Brightling CE, et al. 
Cluster analysis and clinical asthma phenotypes. Am J Respir Crit Care 
Med. 2008;178(3):218–24.

	10.	 Amaral R, Bousquet J, Pereira AM, Araújo LM, Sá-Sousa A, Jacinto T, et al. 
Disentangling the heterogeneity of allergic respiratory diseases by 

latent class analysis reveals novel phenotypes. Allergy. 2018. https​://doi.
org/10.1111/all.13670​.

	11.	 Anto JM, Bousquet J, Akdis M, Auffray C, Keil T, Momas I, et al. Mecha-
nisms of the Development of Allergy (MeDALL): introducing novel con-
cepts in allergy phenotypes. J Allergy Clin Immunol. 2017;139(2):388–99.

	12.	 Moore WC, Meyers DA, Wenzel SE, Teague WG, Li H, Li X, et al. Identifica-
tion of asthma phenotypes using cluster analysis in the Severe Asthma 
Research Program. Am J Respir Crit Care Med. 2010;181(4):315–23.

	13.	 Wu W, Bleecker E, Moore W, Busse WW, Castro M, Chung KF, et al. Unsu-
pervised phenotyping of Severe Asthma Research Program participants 
using expanded lung data. J Allergy Clin Immunol. 2014;133(5):1280–8.

	14.	 Lefaudeux D, De Meulder B, Loza MJ, Peffer N, Rowe A, Baribaud F, et al. 
U-BIOPRED clinical adult asthma clusters linked to a subset of sputum 
omics. J Allergy Clin Immunol. 2017;139(6):1797–807.

	15.	 Amelink M, de Nijs SB, de Groot JC, van Tilburg PMB, van Spiegel PI, 
Krouwels FH, et al. Three phenotypes of adult-onset asthma. Allergy. 
2013;68(5):674–80.

	16.	 Amaral R, Jacinto T, Pereira A, Almeida R, Fonseca J. A comparison of 
unsupervised methods based on dichotomous data to identify clusters of 
airways symptoms: latent class analysis and partitioning around medoids 
methods. Eur Respir J. 2018;. https​://doi.org/10.1183/13993​003.congr​
ess-2018.PA442​9.

	17.	 Evenson KR, Wen F, Howard AG, Herring AH. Applying latent class assign-
ments for accelerometry data to external populations: data from the 
National Health and Nutrition Examination Survey 2003–2006. Data Br. 
2016;9:926–30.

	18.	 Amaral R, Fonseca JA, Jacinto T, Pereira AM, Malinovschi A, Janson C, et al. 
Having concomitant asthma phenotypes is common and independently 
relates to poor lung function in NHANES 2007–2012. Clin Transl Allergy. 
2018;8(1):13.

	19.	 Silkoff PE. ATS/ERS recommendations for standardized procedures 
for the online and offline measurement of exhaled lower respiratory 
nitric oxide and nasal nitric oxide, 2005. Am J Respir Crit Care Med. 
2005;171(8):912–30.

	20.	 Miller MR. Standardisation of spirometry. Eur Respir J. 2005;26(2):319–38.
	21.	 Hankinson JL, Odencrantz JR, Fedan KB. Spirometric reference values 

from a sample of the general U.S. population. Am J Respir Crit Care Med. 
1999;159(1):179–87.

	22.	 Hankinson JL, Kawut SM, Shahar E, Smith LJ, Stukovsky KH, Barr RG. Per-
formance of American thoracic society-recommended spirometry refer-
ence values in a multiethnic sample of adults. Chest. 2010;137(1):138–45.

	23.	 Stanojevic S, Wade A, Stocks J, Hankinson J, Coates AL, Pan H, et al. Refer-
ence ranges for spirometry across all ages. Am J Respir Crit Care Med. 
2008;177(3):253–60.

	24.	 Muthén LK, Muthén BO. Mplus user’s guide. 7th ed. Los Angeles: Muthén 
& Muthén; 2012.

	25.	 Specifying weightning parameters. https​://www.cdc.gov/nchs/tutor​ials/
nhane​s/Surve​yDesi​gn/Weigh​ting/intro​.htm. Accessed 9 Dec 2018.

	26.	 Siroux V, Basagaña X, Boudier A, Pin I, Garcia-Aymerich J, Vesin A, et al. 
Identifying adult asthma phenotypes using a clustering approach. Eur 
Respir J. 2011;38(2):310–7.

	27.	 Mäkikyrö EMS, Jaakkola MS, Jaakkola JJK. Subtypes of asthma based 
on asthma control and severity: a latent class analysis. Respir Res. 
2017;18(1):24.

	28.	 Patelis A, Gunnbjörnsdottir M, Malinovschi A, Matsson P, Önell A, Hög-
man M, et al. Population-based study of multiplexed IgE sensitization in 
relation to asthma, exhaled nitric oxide, and bronchial responsiveness. J 
Allergy Clin Immunol. 2012;130(2):397–402.e2.

	29.	 James A, Janson C, Malinovschi A, Holweg C, Alving K, Ono J, et al. Serum 
periostin relates to type-2 inflammation and lung function in asthma: 
data from the large population-based cohort Swedish GA(2)LEN. Allergy. 
2017;72(11):1753–60.

	30.	 Carr TF, Kraft M. Use of biomarkers to identify phenotypes and endotypes 
of severe asthma. Ann Allergy Asthma Immunol. 2018;121(4):414–20.

	31.	 Hsiao H-P, Lin M-C, Wu C-C, Wang C-C, Wang T-N. Sex-specific asthma 
phenotypes, inflammatory patterns, and asthma control in a cluster 
analysis. J Allergy Clin Immunol Pract. 2019;7(2):556–567.e15.

	32.	 Sendín-Hernández MP, Ávila-Zarza C, Sanz C, García-Sánchez A, Marcos-
Vadillo E, Muñoz-Bellido FJ, et al. Cluster analysis identifies 3 phenotypes 
within allergic asthma. J Allergy Clin Immunol Pract. 2018;6(3):955–961.
e1.

https://www.cdc.gov/nchs/nhanes/Index.htm
https://www.cdc.gov/nchs/nhanes/Index.htm
http://www.cdc.gov/nchs/nhanes/irba98.htm
https://doi.org/10.1111/all.13670
https://doi.org/10.1111/all.13670
https://doi.org/10.1183/13993003.congress-2018.PA4429
https://doi.org/10.1183/13993003.congress-2018.PA4429
https://www.cdc.gov/nchs/tutorials/nhanes/SurveyDesign/Weighting/intro.htm
https://www.cdc.gov/nchs/tutorials/nhanes/SurveyDesign/Weighting/intro.htm


Page 7 of 7Amaral et al. Clin Transl Allergy            (2019) 9:17 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ?  Choose BMC and benefit from: 

	33.	 Quanjer P, Stanojevic S. Multi-ethnic reference values for spirometry for 
the 3–95-yr age range: the global lung function 2012 equations. Eur 
Respir J. 2012;40:1324–43.

	34.	 Jacinto T, Amaral R, Malinovschi A, Janson C, Fonseca J, Alving K. Exhaled 
NO reference limits in a large population-based sample using the 
Lambda-Mu-Sigma method. J Appl Physiol. 2018;125(5):1620–6.

	35.	 Depner M, Fuchs O, Genuneit J, Karvonen AM, Hyvärinen A, Kaulek V, et al. 
Clinical and epidemiologic phenotypes of childhood asthma. Am J Respir 
Crit Care Med. 2014;189(2):129–38.

	36.	 Collins SA, Pike KC, Inskip HM, Godfrey KM, Roberts G, Holloway JW, et al. 
Validation of novel wheeze phenotypes using longitudinal airway func-
tion and atopic sensitization data in the first 6 years of life: evidence from 
the Southampton Women’s survey. Pediatr Pulmonol. 2013;48(7):683–92.

	37.	 Henderson J, Granell R, Heron J, Sherriff A, Simpson A, Woodcock A, 
et al. Associations of wheezing phenotypes in the first 6 years of life 

with atopy, lung function and airway responsiveness in mid-childhood. 
Thorax. 2008;63(11):974–80.

	38.	 Sá-Sousa A, Jacinto T, Azevedo LF, Morais-Almeida M, Robalo-Cordeiro 
C, Bugalho-Almeida A, et al. Operational definitions of asthma in recent 
epidemiological studies are inconsistent. Clin Transl Allergy. 2014;4:24.

	39.	 Halldin CN, Doney BC, Hnizdo E. Changes in prevalence of chronic 
obstructive pulmonary disease and asthma in the US population and 
associated risk factors. Chron Respir Dis. 2015;12(1):47–60.

	40.	 Wang J, Wang X. Structural equation modeling: applications using Mplus. 
West Sussex: Wiley; 2012.

	41.	 Bousquet J, Devillier P, Anto JM, Bewick M, Haahtela T, Arnavielhe S, et al. 
Daily allergic multimorbidity in rhinitis using mobile technology: a novel 
concept of the MASK study. Allergy. 2018;73(8):1622–31.


	Comparison of hypothesis- and data-driven asthma phenotypes in NHANES 2007–2012: the importance of comprehensive data availability
	Abstract 
	Background: 
	Aim: 
	Methods: 
	Results: 
	Conclusion: 

	Introduction
	Methods
	Study setting and participants
	Variables
	Hypothesis-driven asthma phenotypes
	Data-driven asthma phenotypes
	Statistical analysis

	Results
	Discussion
	Authors’ contributions
	References




