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ABSTRACT

DNA methylation in gene or gene body could influence gene transcription. Moreover,
methylation in gene regions along with CpG island regions could modulate the transcription
to undetectable gene expression levels. Therefore, it is necessary to investigate the methyl-
ation levels within the gene, gene body, CpG island regions, and their overlapped regions
and then identify the gene-based differentially methylated regions (GeneDMRs). In this
study, R package GeneDMRs aims to facilitate computing gene-based methylation rate
using next-generation sequencing-based methylome data. The user-friendly GeneDMRs
package is presented to analyze the methylation levels in each gene/promoter/exon/intron/
CpG island/CpG island shore or each overlapped region (e.g., gene-CpG island/promoter-
CpG island/exon-CpG island/intron-CpG island/gene-CpG island shore/promoter-CpG
island shore/exon-CpG island shore/intron-CpG island shore). GeneDMRs can also interpret
complex interplays between methylation levels and gene expression differences or simi-
larities across physiological conditions or disease states. We used the public reduced rep-
resentation bisulfite sequencing data of mouse (GSE62392) for evaluating software and
revealing novel biologically significant results to supplement the previous research. In
addition, the whole-genome bisulfite sequencing data of cattle (GSE106538) given the much
larger size was used for further evaluation.

Keywords: differentially methylated regions; DNA methylation; gene-based regions; geneDMRs;

R package.

1. INTRODUCTION

Generally, gene expression is restricted by DNA methylation. However, the presence of meth-

ylation in gene or gene body could result in promotion of gene transcription. Irizarry et al. (2009)

revealed the correlation between substantial portion of DNA methylation sites and gene expression along the

genome. DNA methylation in promoters usually restricts the genes in a long-term stabilization of repressed
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states, whereas most gene bodies are also extensively methylated in different status; therefore, methylation

of such regions can be the potential therapeutic targets ( Jones, 2012; Yang et al., 2014). CpG islands, regions

of high density of DNA methylation of cytosine and guanine dinucleotides (CpGs), are playing the important

roles in gene regulation and transcriptional repression (Goldberg et al., 2007). Moreover, the shore regions

beyond CpG islands are also involved in modulating gene expression (Doi et al., 2009; Irizarry et al., 2009).

Identifying causal relationships via genotype–phenotype correlations is a substantial challenge, and

many studies across life sciences try to integrate multi-omics data sets in that effort (Suravajhala et al.,

2016). Recently, one of the largest genetic study investigated global gene expression and DNA methylation

patterns in 265 human skeletal muscle biopsies from the FUSION study with >7 million genetic variants.

This integrated approach led to potential causal mechanisms for eight physiological traits: height, waist,

weight, waist–hip ratio, body mass index, fasting serum insulin, fasting plasma glucose, and type 2 diabetes

(Taylor et al., 2019). This underlines the importance of having gene-based methylation rates to integrate

with differential expression or co-expression across physiological and phenotypic or disease states.

Studying DNA methylation patterns in biological samples using next-generation sequencing (NGS)

methods is becoming increasingly common. There are several tools available to detect differentially

methylated cytosine (DMC) [e.g., R package IMA (Wang et al., 2012), MethylKit (Akalin et al., 2012)] or

differentially methylated region (DMR) [e.g., R package COHCAP (Warden et al., 2013), ELMER (Silva

et al., 2018), MethylMix (Gevaert, 2015; Cedoz et al., 2018), Minfi (Aryee et al., 2014), MIRA (Lawson

et al., 2018), RnBeads (Assenov et al., 2014; Müller et al., 2019)]. These packages mainly focus on specific

differentially methylated regions such as genes (DMGs) from cancer data set (Gevaert, 2015; Cedoz et al.,

2018) or only promoters (DMPs) (Assenov et al., 2014; Müller et al., 2019). However, detections of DMRs

based on gene body features associated with CpG islands are scarce, such as DMRs in all exons (DMEs)

and introns (DMIs) or a specific exon and intron.

To the best of our knowledge, there are no tools that detect the DMP/DME/DMI/DMG associated with

CpG islands/CpG island shores. We present here a user-friendly R package GeneDMRs (gene-based differ-

entially methylated regions; https://github.com/xiaowangCN/GeneDMRs) to facilitate computing gene-based

methylation rate using NGS-based methylome data. GeneDMRs analyzes the methylation levels in each gene/

promoter/exon/intron/CpG island/CpG island shore or each overlapped region (e.g., gene/promoter/exon/intron

CpG island and gene/promoter/exon/intron CpG island shore). We evaluated GeneDMRs package using the

publicly available reduced representation bisulfite sequencing (RRBS) data from mouse (GSE62392) and

pig (GSE129385), and whole-genome bisulfite sequencing (WGBS) data from cattle (GSE106538).

2. MATERIALS AND METHODS

2.1. Data structure in DNA methylation

Genome-wide DNA methylation analysis is mainly based on three approaches, that is, enzyme digestion,

affinity enrichment, and bisulfite conversion (Laird, 2010). WGBS aims to find the whole methylome

(Frommer et al., 1992), whereas RRBS primarily focuses on the enrichment of CpG-rich regions by rec-

ognizing the CmCGG site after restriction enzyme MspI digestion (Meissner et al., 2005), but both techni-

ques rely on bisulfite conversion. From WGBS or RRBS data, cytosine site information (e.g., chromosome

and position) and its methylation status can be obtained using available bioinformatics tools. GeneDMRs

package can directly use the resulting methylation coverage file (i.e., .bismark.cov) from Bismark software

(Krueger and Andrews, 2011) or similar file with chromosome, start position, end position, methylation

percentage, number of methylated read, and number of unmethylated read (five or six columns). With such

data set, we provide below the statistical framework to compute gene-based methylation rate.

2.2. Gene-based DMRs and analysis workflow

The gene-based regions could be divided into windows, genes, promoters, exons, introns, CpG islands,

and CpG island shores and their overlapped feature regions including gene-CpG islands, gene-CpG island

shores, promoter-CpG islands, promoter-CpG island shores, exon-CpG islands, exon-CpG island shores,

intron-CpG islands, and intron-CpG island shores (Fig. 1).

The methylation mean of a cytosine site by weighting for one group (a case or control) is calculated by

Equation (1):
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MRiPn
i = 1 TRi

‚ (1)

where MRi and TRi are the methylated and total read numbers at a given cytosine site of individual i, and n

is the total number of individuals in one group.

For a window/gene (promoter, exon, intron)/CpGi/other overlapped region (Fig. 1) of one group, the

methylation mean by weighting is calculated by Equation (2):

Pm
j = 1 MRijPn

i = 1

Pm
j = 1 TRij

‚ (2)

where MRij and TRij are the methylated and total read numbers of the involved cytosine/DMC j at a given

gene/CpGi/other region of individual i, m is the total number of cytosines/DMCs involved in this region,

and n is the total individual number of one group. For the target region, the cytosine/DMC within the region

is chosen for the methylation mean calculation of each group. Here, the DMCs refer to the DMC sites after

Significant_filter(siteall_Qvalue, qvalue = 0.01, methdiff = 0.05). Thus, if the users want to use DMCs for

methylation mean, they should filter out the DMCs at first (Fig. 2). This step was also used in our previous

study for methylation difference calculation to discover hyper- and hypomethylated DMGs (Wang and

Kadarmideen, 2019a).

FIG. 1. The analyzed targets in the GeneDMRs package including widows, genes (promoters, exons, introns), CpG

islands (CpGis, Shores), and the overlapped feature regions [e.g., (A) Promoter-Shore1, (B) Exon1-Shore1, (C) Exon1-

CpGi, (D) Intron1-CpGi, (E) Exon2-CpGi, (F) Exon2-Shore2, (A + B) Gene-Shore1 (C + D + E) Gene-CpGi, (F 1 G)

Gene-Shore2]. GeneDMRs, gene-based differentially methylated regions.

FIG. 2. Overall workflow of GeneDMRs package.
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Logistic regression model was used to fit methylation levels with the different groups following the

method of R package MethylKit (Akalin et al., 2012):

ln
pi

1 - pi

� �
= u + bTi‚ (3)

where pi is the methylation mean of a cytosine calculated by Equation (1) or the methylation mean of

a window/gene (promoter, exon, intron)/CpGi/other overlapped region calculated by Equation (2), u is the

intercept, and Ti is the group indicator.

More categorical variables can also be incorporated in this model as the additional covariates by Logic_

regression(covariates = NULL). Chi-squared (v2) test was used to determine the statistical significance of

methylation differences among different groups and then to achieve the p-values. To account for multiple

hypothesis testing, p-values of the analyzed cytosines or windows/genes (promoters, exons, introns)/CpGis/

other overlapped regions can be adjusted to Q-values by various methods, for example, ‘‘bonferroni,’’

‘‘holm’’ (Holm, 1979), ‘‘hochberg’’ (Hochberg, 1988), ‘‘hommel’’ (Hommel, 1988), ‘‘BH’’ (Hochberg, 1995),

‘‘fdr’’ (Hochberg, 1995), and ‘‘BY’’ (Benjamini and Yekutieli, 2001).

Differentially methylated windows or gene-based DMRs or DMCs (Fig. 2) are mainly filtered by

Q-values and methylation level differences between two groups, for example, Significant_filter(qvalue =
0.01, methdiff = 0.05). The methylation difference can be calculated in Logic_regression(diffgroup =
c(‘‘group1’’, ‘‘group2’’)) by selecting any two groups. The DMGs can be defined as the hyper-/

hypomethylated genes when the methylation differences are positive/negative after case–control compar-

isons (e.g., group2–group1). Therefore, DMRs for specific regions are detected, such as genes (DMGs),

promoters (DMPs), exons (DMEs), introns (DMIs), CpG islands (DMCpGis), CpG island shores

(DMShores), and the overlapped regions such as gene-CpG islands (DMG-CpGis), gene-CpG island shores

(DMG-Shores), promoter-CpG islands (DMP-CpGis), promoter-CpG island shores (DMP-Shores), exon-

CpG islands (DME-CpGis), exon-CpG island shores (DME-Shores), intron-CpG islands (DMI-CpGis), and

intron-CpG island shores (DMI-Shores; Fig. 2). Furthermore, the ordinal positions of exons and introns

were identified for each gene, which can be used in the further analysis, for example, the correlations of

methylation levels between all promoters and all first exons (Wang and Kadarmideen, 2020). The overall

workflow of GeneDMRs package includes file input, quality control (QC), methylation mean calculation,

statistical test, significant filter, and results visualization (Fig. 2).

2.3. Application to real data

The RRBS data for testing the package were download from Gene Expression Omnibus (GEO) with

the accession number GSE62392 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62392). The

downloaded data were originally generated from RRBS of sorted common myeloid progenitor (CMP)

populations that were isolated from three pools of G0 as control group and two pools of G5 as case group of

mice samples (Colla et al., 2015). Mouse data here are used as an example, and GeneDMRs package is

applicable to all species. We applied several pre and postmapping QC to these data as follows. Adapters

and reads less than 20 bases long of RRBS data were trimmed by Trimmomatic software (version 0.36)

(Bolger et al., 2014). The clean reads were mapped to the mice reference genome by Bowtie 2 software

(version 2.3.3.1) (Langmead and Salzberg, 2012). The house mouse (Mus musculus) reference ge-

nome (mm10) used in this study was downloaded from the University of California Santa Cruz (UCSC)

website (http://hgdownload.soe.ucsc.edu/goldenPath/mm10/bigZips/mm10.2bit). The .2bit file was subse-

quently converted to .fasta file by twoBitToFa software (http://hgdownload.cse.ucsc.edu/admin/exe/

linux.x86_64/twoBitToFa). Finally, read coverages of detected methylated or unmethylated cytosine sites

and their methylation percentages were obtained by using Bismark software (version 0.19.0) (Krueger and

Andrews, 2011).

2.4. Input and QC

The resulting methylation coverage files from Bismark software of five mouse RRBS data were directly

used as input in GeneDMRs package. The public mouse (mm10) bed file (i.e., .bed) for Reference Sequence

(refseq) and CpG island (cpgi) database was downloaded from the UCSC web site (http://genome.ucsc.edu/

cgi-bin/hgTables). RefSeq and CpG island bed files were used as input files in GeneDMRs package, which
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then can output four files (inputrefseqfile, inputcpgifile, inputgenebodyfile, and inputcpgifeaturefile) by

altering the feature parameter in the file reading function, for example, Bedfile_read(feature = TRUE/

FALSE). Bedfile_read() function divides each gene of refseq bed file into four gene body features (i.e.,

promoters, exons, introns, and TSSes) and each CpG island of cpgi bed file into two CpG island features

(i.e., CpG islands and CpG island shores) based on R package genomation (Akalin et al., 2015). Moreover,

Bedfile_read() function annotates specific gene to each promoter. If the strand of one promoter is ‘‘+’’/‘‘-,’’

the middle position of this promoter will be the start/end position of the matched specific gene. However,

for the specific genes with more than one National Center for Biotechnology Information (NCBI) ID,

GeneDMRs package will choose the first one. For example, the adenosine A1 receptor gene (Adora1) has

four NCBI IDs (i.e., NM_001291930, NM_001282945, NM_001039510, and NM_001008533) and only

the first ID (NM_001291930) will be chosen.

When a polymerase chain reaction experiment suffers from duplication bias, some clonal reads will

impair accurate determination of methylation (Akalin et al., 2012). In addition, lower read coverages (e.g.,

lower than 10) will cause the biases for methylation percentage calculation (Wang and Kadarmideen,

2019b). Therefore, cytosines with a percentile of read coverage higher than the 99.9th and read cover-

ages lower than 10 were discarded for the qualified reads by Methfile_QC(high_quantile = 99.9, low_

coveragenum = 10).

2.5. Biological enrichment for the DMGs

The enrichments of gene ontology (GO) terms and pathways for DMGs were analyzed and visualized by

Enrich_plot(enrichterm = c(‘‘GO’’, ‘‘pathway’’), category = TRUE/FALSE) based on R package cluster-

Profiler (Yu et al., 2012). If the category = TRUE, the enrichment will display in hypermethylated and

hypomethylated categories. In addition, the differentially expressed genes (DEGs) with Log fold change

(LogFC) information can also be used in Enrich_plot(expressionfile_significant = NULL), then the visu-

alized enrichment will be in four categories that are hyper-/hypomethylated and up-/downregulated genes.

The up-/downregulated DEG can be defined when the LogFC is positive/negative. Here, we use the

previous results for multiple-category enrichments that are downregulated and upregulated genes in G4/G5

compared with G0 CMP (fdr <0.05) of mice samples (https://ars.els-cdn.com/content/image/1-s2.0-

S1535610815001403-mmc2.xlsx) (Colla et al., 2015).

3. RESULTS AND DISCUSSION

3.1. Comparisons of different R packages for methylation analysis

Currently, a series of R packages can analyze methylation data to detect DMCs or DMRs (Table 1). Most

of them are not, however, completely focusing on the regions in genes or within gene bodies or CpG

islands, and hence, GeneDMRs package could be a complementary tool. As shown in Table 1, ELMER

package reconstructs altered gene regulatory network by combining enhancer methylation and gene

expression (Silva et al., 2018). IMA (Wang et al., 2012) and MethylKit (Akalin et al., 2012) aim at genome-

wide cytosine sites analysis for BeadChip and RRBS data, respectively. Generally, COHCAP, methy-

Analysis, MethylationArrayAnalysis, and Minfi are packages for specific purposes, where COHCAP refines

the region boundaries for the consistent methylation patterns through a clustering step (Warden et al.,

2013), methyAnalysis applies CpG island information to visualize in the heat map plot, and Minfi can find

the hypomethylation blocks (Jaffe et al., 2012; Aryee et al., 2014). If considering methylated genes,

MethylMix package mainly focuses on identifying disease specific hypo- and hypermethylated genes, and it

defines the methylation difference of a methylation state with the normal methylation state (Gevaert, 2015;

Cedoz et al., 2018), whereas RnBeads package could consider the gene, gene promoter, CpG island, and

genomic tiling regions (Assenov et al., 2014; Müller et al., 2019). Overall, none of these R packages works

for gene components, but GeneDMRs package is extended to exon and intron regions, and their interactions

with CpG island features.

The performance of the package was tested in a personal computer (CPU: 2.70 GHz, RAM: 8.00 GB)

comparing with MethylKit package (Akalin et al., 2012). For all reference genes (n = 31,702) of mouse

RRBS data with around 0.7 million analyzed CpG sites, GeneDMRs package took around 15 minutes while

gene body interacted with CpG island required the longest time; thus, the performance of the package is

generally related to the number of analyzed targets (Fig. 3). In addition, we applied another two data sets
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given the much larger size using the same parameters as mouse data set for performance test. One was

download from GEO with the accession number GSE129385 (https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE129385) that is also RRBS sequencing data from nine porcine testis samples (Wang

and Kadarmideen, 2019a, 2020). Another one was downloaded from GEO with the accession number

GSE106538 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE106538) that is WGBS sequencing

Table 1. Comparisons of Different R Packages for Methylation Analysis

R package Target Analysis feature Issued time

COHCAP (Warden et al.,

2013)

Site and region of

differential

methylation

Identify differentially methylated CpG islands

and show the consistent methylation patterns

among CpG sites by refinement of region

boundaries through a clustering step

2013

ELMER (Silva et al.,

2018)

DMR Reconstruct altered GRN by combining

enhancer methylation and gene expression

2018

IMA (Wang et al., 2012) Site-level and region-level

methylation

Summarization for individual site as well as

annotated region

2012

methyAnalysis DMR Chromosome location-based DNA methylation

analysis and heat map plot with CpG island

2018

MethylationArrayAnalysis Probe-wise differential

methylation and DMR

Differential variability analysis, estimating cell-

type composition and gene ontology testing

2019

MethylKit (Akalin et al.,

2012)

Base or region of DNA

methylation

Functions for clustering, sample quality

visualization, differential methylation

analysis, and annotation feature

2012

MethylMix (Gevaert,

2015)/MethylMix 2.0

(Cedoz et al., 2018)

DMR of gene Automate the construction of DNA methylation

and gene expression data set from TCGA

2015/2018

Minfi ( Jaffe et al., 2012;

Aryee et al., 2014)

DMP and bump hunting

of DMR

Block finding to identify hypomethylation block 2014

MIRA (Lawson et al.,

2018)

DMR Take advantage of genome-scale DNA

methylation data to assess regulatory activity

2018

RnBeads (Assenov et al.,

2014)/RnBeads 2.0

(Müller et al., 2019)

DMR of gene/promoter/

CpG island

DNA methylation-based prediction of age and

sex; LOLA-based region set enrichment

analysis for biological interpretation

2014/2019

DMP, differentially methylated position; DMR, differentially methylated region; GRN, gene regulatory network; TCGA, The

Cancer Genome Atlas.

FIG. 3. The performance of GeneDMRs package.
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data from four bovine sperm samples (Zhou et al., 2018; Fang et al., 2019). For all reference genes (n = 4475)

and all gene bodies (n = 77,022) of porcine RRBS data with around 1 million analyzed CpG sites, GeneDMRs

package completed the whole DMR detections in around 1 minute and 1 hour, respectively. While using

bovine WGBS data for all reference genes (n = 14,391) analysis with around 7 million sites, it only needed 10

minutes. When increasing the analyzed targets for all gene bodies (n = 279,903), the analyzing time increased

to 3 hours. However, keeping all the raw sites *50 million, 6 hours or longer time were required for all

reference genes or gene bodies.

3.2. DMG-based regions and cytosine sites

Five methylation coverage files from Bismark software were used in GeneDMRs package, and their sta-

tistical summary is listed in Supplementary Table S1. The GeneDMRs package will automatically read the files

with the file name such as ‘‘1_1,’’ ‘‘1_2,’’ ‘‘2_1,’’ and ‘‘2_2’’ for group and replicate numbers. The meth-

ylation patterns of all genes and DMGs in different CpG island regions by Group_cpgfeature_boxplot() and

Genebody_cpgfeature_boxplot() are shown in Supplementary Figure S1. Results suggest that the methylation

levels of DMGs were higher than before, and they are the same of CpG islands lower than shores (Supple-

mentary Fig. S1). All data sets for genes (regiongeneall_Qvalue), genes with CpG island features (region

geneall_cpgfeature_Qvalue), gene bodies with CpG island features (genefeatureall_cpgfeature_Qvalue), and

cytosine sites (genefeatureall_cpgfeature_Qvalue) are listed in Supplementary Files S1–S4, respectively.

FIG. 5. Circular graph of the global methylation levels. From the outermost track to innermost circle, the circles

indicate genome chromosomes (i.e., mouse), DMGs, gene densities, CpG island densities, CpG island shore densities,

and methylation levels. The densities and methylation levels were calculated by 1,000,000 bp windows, that is,

Window_divide(windowbp = 1000000).
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The methylation difference of all cytosine sites involved in the gene was centralized to a mean, so

statistical power seemed be lower than before (Fig. 4 and Supplementary Fig. S2). In addition, GeneDMRs

package can detect various gene body regions (e.g., promoter, exon, and intron), CpG island regions (e.g.,

CpGi and shore regions), and their overlapped regions by Methmean_region(cpgifeaturefile = inputcpg

ifeaturefile/NULL, featureid = ‘‘c(‘‘chr1’’,‘‘chr2’’)/all/alls’’, featurename = c(‘‘promoters’’,‘‘exons’’,‘‘in-

trons’’,‘‘TSSes’’)/c(‘‘CpGisland’’, ‘‘Shores’’)).

According to these results, we found that DNMT3A was a hypomethylated gene (NM_001271753), but

the gene and one intron interacted in both CpG island and shore features were in hypermethylation status

when G5 CMP was compared with G0 CMP (Supplementary Files S1–S3). Therefore, GeneDMRs package

can accurately find significantly and biologically methylated gene body and CpG island regions along the

whole genome and supplement the previous research (Colla et al., 2015).

If we only use the DMCs to recalculate the methylation mean by replacing the cytosine sites, that is,

DMC_methfile_QC(inputmethfile_QC, siteall_significant), the methylation difference will be more obvi-

ous than before (Supplementary Fig. S3). The global DMC-based methylation levels (Fig. 5) can be real-

ized by Circos_plot(inputcytofile, inputmethfile_QC, inputrefseqfile, inputcpgifeaturefile) based R package

RCircos (Zhang et al., 2013).

3.3. Biological enrichment for DMGs

The enrichments for groups, GO terms, and pathways can be analyzed and visualized with/without

categories following R packages clusterProfiler (Yu et al., 2012). For example, the GO terms can be vi-

sualized in no/one/two categories (Fig. 6) by incorporating hyper-/hypomethylated and up-/downregulated

gene information. Thus, based on the DMGs and enrichments for GO term and pathway, GeneDMRs

package can help to detect the specific significant regions, reveal the biological mechanism, and enhance

the previous studies that methylation pattern changes in specific regions were involved in causing diseases

(Colla et al., 2015).

4. SUMMARY

Currently, there is no easy-to-use R package that could compute methylation levels at gene-based level.

GeneDMRs, a user-friendly R package, can facilitate computing gene-based methylation rate using NGS-based

methylome data. This package aims to analyze the methylation levels in gene/promoter/exon/intron/CpG

island/CpG island shore and their overlapped regions. Then, the differentially hyper-/hypomethylated genes

can be visualized for enrichments of GO terms and pathways and reveal the biological mechanism accord-

ingly. Such gene-based methylation analyses contribute to interpreting complex interplay between methylation

levels and gene expression differences or similarities across physiological conditions or disease states.

AVAILABILITY AND IMPLEMENTATION

GeneDMRs is freely available at https://github.com/xiaowangCN/GeneDMRs
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