
1SCIentIfIC RepoRts |  (2018) 8:6596  | DOI:10.1038/s41598-018-24729-w

www.nature.com/scientificreports

Cytokine storms are primarily 
responsible for the rapid death 
of ducklings infected with duck 
hepatitis A virus type 1
Jinyan Xie1,2, Mingshu Wang1,2,3, Anchun Cheng1,2,3, Xin-Xin Zhao1,2,3, Mafeng Liu1,2,3,  
Dekang Zhu2,3, Shun Chen1,2,3, Renyong Jia1,2,3, Qiao Yang1,2,3, Ying Wu1,2,3, Shaqiu Zhang1,2,3, 
Yunya Liu1,2,3, Yanling Yu1,2,3, Ling Zhang1,2,3, Kunfeng Sun1,2,3 & Xiaoyue Chen2,3

Duck hepatitis A virus type 1 (DHAV-1) is one of the most harmful pathogens in the duck industry. 
The infection of adult ducks with DHAV-1 was previously shown to result in transient cytokine storms 
in their kidneys. To understand how DHAV-1 infection impacts the host liver, we conducted animal 
experiments with the virulent CH DHAV-1 strain and the attenuated CH60 commercial vaccine strain. 
Visual observation and standard hematoxylin and eosin staining were performed to detect pathological 
damage in the liver, and viral copy numbers and cytokine expression in the liver were evaluated by 
quantitative PCR. The CH strain (108.4 copies/mg) had higher viral titers than the CH60 strain (104.9 
copies/mg) in the liver and caused ecchymotic hemorrhaging on the liver surface. Additionally, livers 
from ducklings inoculated with the CH strain were significantly infiltrated by numerous red blood cells, 
accompanied by severe cytokine storms, but similar signs were not observed in the livers of ducklings 
inoculated with the CH60 strain. In conclusion, the severe cytokine storm caused by the CH strain 
apparently induces hemorrhagic lesions in the liver, which might be a key factor in the rapid death of 
ducklings.

Duck hepatitis A virus type 1 (genus Avihepatovirus, family Picornaviridae, DHAV-1) is one of the most com-
mon and lethal pathogens in young ducklings and is responsible for acute hepatitis, characterized by petechial 
and ecchymotic hemorrhages of the liver surface1,2. The liver, a major site for the regulation of immune and 
inflammatory responses, plays a critical role in defending against invasive pathogens3,4. Immune responses in the 
liver appear to have evolved to balance virus eradication and immunopathology5. Major hepatotropic viruses, 
such as hepatitis A virus (HAV), hepatitis B virus (HBV), and hepatitis C virus (HCV), interact with innate 
immunity factors and induce both interferons (IFNs, types I and III) and antiviral IFN-stimulated genes (ISGs), 
and these viruses have developed multiple strategies to escape innate immune responses6–10. Inflammation is a 
double-edged sword that plays a vital role in liver metabolism. Moderate inflammatory responses confer a certain 
degree of protection, help repair damaged tissue, and promote steady-state reconstruction. However, uncon-
trolled inflammatory responses are present in most clinical cases of liver disease and may form a “storm” that 
causes liver damage, fibrosis, cirrhosis and other adverse consequences11–13.

Infection of adult ducks with DHAV-1 was previously shown to result in transient cytokine storms in their kid-
neys14. However, only one study has investigated virus-host interactions in the livers of DHAV-1-infected duck-
lings. Therefore, in this study, we established an experimental model utilizing the virulent CH DHAV-1 strain and 
the attenuated CH60 commercial vaccine strain to investigate DHAV-1 pathogenicity and host immune responses 
in 7-day-old ducklings.
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Results
Gross lesions. At 24 hours post-infection (hpi) with the CH DHAV-1 strain, the ducklings generally showed 
typical clinical signs, such as mental depression, anorexia and drowsiness. Mortality occurred within 24–48 hpi 
(Fig. 1), and the ducklings exhibited typical opisthotonos. However, none of the CH60- inoculated ducklings 
exhibited clinical signs or died.

Post-mortem examination revealed ecchymotic hemorrhage and slight swelling in the livers of CH-infected 
ducklings at 24 hpi (Supplementary Fig. 1B), while these parameters were enhanced at 36 hpi (Fig. 2B). Lesions 
in the liver switched from ecchymotic hemorrhages to punctate hemorrhages at 48 hpi (Fig. 2C), and the hemor-
rhages gradually diminished and eventually disappeared at 60 and 72 hpi (Supplementary Fig. 1C,D). The livers 
of CH60-inoculated ducklings exhibited no typical gross lesions, and no significant differences in control and 
CH60-inoculated livers were observed (Fig. 2D–F and Supplementary Fig. 1E–H).

Histopathological analysis. Significant differences in the microscopic lesions of CH and CH60-inoculated 
duckling livers were observed (Fig. 3). In CH-inoculated ducklings, liver parenchymal cells were heavily infil-
trated by large numbers of red blood cells, and parts of the cell nuclei underwent pyknosis, karyolysis or karyor-
hexis. However, small numbers of lymphocytes were found in the hepatic sinusoid at 24 hpi (Fig. 3B). At 36 hpi, 
hepatocytes were significantly infiltrated by large numbers of red blood cells, accompanied by steatosis, necrosis 
and hepatic lobule disappearance (Fig. 3C). Additionally, numerous lymphocytes infiltrated the hepatic sinusoid, 

Figure 1. Survival proportions of CH and CH60-inoculated ducklings.

Figure 2. Gross liver lesions in CH and CH60-inoculated ducklings. (A,D) Livers of the control group, (B,C) 
CH-inoculated ducklings at 36 and 48 hpi, (E,F) and CH60-inoculated ducklings at 36 and 48 hpi.
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and cell nuclei underwent pyknosis or karyolysis at 48 hpi (Fig. 3D). Moreover, we observed numerous apoptotic 
bodies (Fig. 3 black arrows) and a small number of lymphocytes (Fig. 3 white arrows). We also observed the 
proliferation of bile duct epithelial cells, accompanied by notable steatosis and concentrated cell nuclei (Fig. 3E). 
No obvious pathological damage was observed in CH60-inoculated ducklings; however, we found scattered lym-
phocytes distributed in the hepatic sinusoid (Fig. 3H–M).

Apoptosis in CH and CH60-inoculated duckling livers. Our group previously confirmed the ability of 
the GTPase-like 2A2 protein of DHAV-1 to induce apoptosis in primary cell culture, potentially contributing to 
the DHAV-1 pathogenesis15. However, there have been no reports investigating apoptosis in CH- inoculated or 
CH60-inoculated duckling livers. According to terminal dUTP nick-end labeling (TUNEL) analysis, both the 
CH and CH60 strains induced apoptosis in the liver. We observed large numbers of apoptotic cells at 24, 36, and 
48 hpi in CH-infected duckling livers (Fig. 4B–D), which were associated with microscopic lesions (Fig. 3B–D). 
Additionally, the CH60 strain induced apoptosis that peaked at 36 hpi (Fig. 4I).

Viral RNA loads in the livers of CH and CH60-inoculated ducklings. To ensure the presence of equiv-
alent numbers of inoculated viruses, viral genomic RNA copies of the CH and CH60 strains were determined by 
performing quantitative real-time (qRT)-PCR to detect the viral VP0 gene. The number of genomic RNA copies 
in 1 ml of the CH strain was approximately five-eighths of that in 1 ml of the CH60 strain (data not shown). Thus, 
ducks in the experimental groups were intramuscularly inoculated with 0.40 ml of the CH strain and 0.25 ml of 
the CH60 strain. Total RNA was extracted from liver tissue at 24, 36, 48, 60 and 72 hpi, and copy numbers were 
measured by qRT-PCR. As shown in Fig. 5, viral RNA of the CH strain increased to 2.51 × 108 copies/mg of tissue 
at 36 hpi, was sustained to 48 hpi, and then began to decrease at 60 hpi. Proliferation of the CH60 strain exhibited 
a similar phenomenon to that of the CH strain, and CH60 viral RNA peaked at 48 hpi, which was later than that 
for the CH strain.

Figure 3. Microscopic lesions in the livers of CH and CH60-inoculated ducklings examined using HE staining. 
(A,G) Microscopic lesions in livers of the control group, (B–F), CH-inoculated ducklings from 24 to 72 hpi, 
(H–M) and CH60-inoculated ducklings from 24 to 72 hpi. A, magnification, x200; B–M, magnification, x600.

Figure 4. TUNEL assay in the livers of CH and CH60-inoculated ducklings. (A,G) TUNEL staining in the 
livers of the control group, (B–F) CH-inoculated ducklings from 24 to 72 hpi, (H–M) and CH60-inoculated 
ducklings from 24 to 72 hpi. A, magnification, x400; B–M, magnification, x600.
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Expression of innate immune-related genes in the livers and blood of DHAV-1-infected ducks.  
Innate immunity involves the recognition of invasive pathogenic microorganisms by pattern recognition recep-
tors (PRRs), resulting in the expression of antiviral molecules. PRRs, such as Toll-like receptor 3 (TLR3), TLR7, 
retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5), recognize viral 
RNA. Therefore, we measured the expression levels of these four PRRs in the liver. As shown in Fig. 6, the CH 
strain downregulated TLR3 and TLR7 during the early stage of infection (24 and 36 hpi); this downregulation was 
most obvious at 36 hpi. During the later stage of infection (60 hpi, 72 hpi), TLR3 and TLR7 expression gradually 
increased. Similar observations were made regarding the expression of MDA5 and RIG-I. Downregulation of 
these four PRRs may be related to viral escape mechanisms. The CH strain blocked the expression of host antiviral 
molecules by inhibiting the expression of PRRs to facilitate its own proliferation, as shown by characterizing viral 
replication (Fig. 5). Additionally, the CH60 strain up-regulated TLR7 within 36–72 hpi. Subsequently, we detected 
the expression of IPS-1, a key molecule downstream of MDA5 and RIG-I. IPS-1 was significantly up-regulated at 
36–48 hpi with both CH and CH60 and exhibited some hysteresis compared with MDA5 and RIG-I expression, a 
trend that supported its involvement in host regulatory mechanisms.

IFNs are antiviral molecules that play important roles in clearing invading pathogenic microorganisms16–18. 
We determined the transcriptional levels of IFN-α, IFN-β and IFN-γ, observing up-regulated IFN-α and IFN-β 
expression at 36 hpi followed by a peak at 48 hpi in the livers of CH-inoculated ducklings (Fig. 6). Similar results 
were found in blood samples from CH-inoculated ducklings (Fig. 6). Interestingly, IFN-β expression in the livers 
of CH-inoculated ducklings was 133-fold higher at 48 hpi. Next, pro-inflammatory cytokines (IL-1β, IL-6, and 
TNF-α) and anti-inflammatory cytokines (IL-4, IL-10) were assessed in the liver and blood samples. The expres-
sion levels of IL-1β, IL-6 and IL-10 in the liver were significantly up-regulated after CH infection, peaked at 36 hpi 
and maintained the same levels until 48 hpi. However, IL-10 expression in the blood was downregulated before 
48 hpi. The cytokine storm caused by IFN-α, IFN-β, IL-1β and IL-6 in the livers of CH-inoculated ducklings was 
related to gross lesions (Fig. 2B–C), microscopic pathological damage (Fig. 3B–D) and apoptosis (Fig. 4B–D).  
In CH60-inoculated ducklings, the expression of IFN-α, IFN-β, IFN-γ, IL-1β, IL-6 and IL-10 also changed. 
Remarkably, IFN-γ expression was up-regulated, but IL-10 expression showed no obvious changes, potentially 
indicating the engagement of adaptive immunity. Changes in IL-4 expression were similar to those observed for 
TNF-α. Specifically, both the CH and CH60 strains inhibited IL-4 and TNF-α expression during the early stage 
of infection, and both cytokines were up-regulated after 60 hpi.

Discussion
Previous studies investigating DHAV-1 have focused on only the viral pathogenicity of a single strain and the 
resulting host immune responses. In this study, we established an experimental model of infection with the vir-
ulent CH DHAV-1 strain and the attenuated CH60 commercial vaccine strain to investigate the pathogenicity of 
DHAV-1 and immune responses in 7-day-old ducklings. The CH strain caused nearly 50% mortality in ducklings 
and induced more efficient virus replication in the liver. Massive hemorrhages and necrotic lesions appeared on 
the liver surface with virus replication of the CH strain, which is consistent with previous reports in the litera-
ture2,19,20. Additionally, the presence of microscopic lesions revealed liver parenchyma infiltration by large num-
bers of red blood cells, and this effect was accompanied by hepatocyte necrosis and apoptosis corresponding to 
hemorrhages and necrotic lesions on the liver surface.

The innate immune system is the first line of defense against invading pathogens, which are recognized by 
PRRs. Picornaviruses are recognized by three classical PRRs: TLRs, RIG-I-like receptors (RLRs) and nucleotide 
oligomerization domain (NOD)-like receptors (NLRs)18. TLRs are transmembrane proteins that recognize viral 
components in extracellular and cytoplasmic vacuoles; TLR3 recognizes double-stranded RNA, while TLR7 rec-
ognizes single-stranded RNA21,22. RLRs constitute a family of cytoplasmic proteins that includes RIG-I, MDA5 
and LGP2. RIG-I binds to dsRNA or ssRNA bearing a 5′ triphosphate, and MDA5 recognizes long dsRNA23,24. We 
evaluated the expression of TLR3, TLR7, MDA5, RIG-I and NLRP3 at 24, 36, 48, 60 and 72 hpi. The CH strain sig-
nificantly inhibited these five PRRs. Therefore, we hypothesized that this phenomenon might be associated with 
immunological escape mechanisms of the DHAV-1 CH strain. The escape mechanisms of enterovirus25, which 

Figure 5. Viral VP0 gene expression. Log of viral RNA copies in the livers of CH and CH60-inoculated 
ducklings.
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also belongs to the picornavirus family, have previously been elucidated. For example, the 2 A proteins of entero-
virus 71 and coxsackievirus B3 cleave MDA5, and the 3 C protein inhibits the expression of RIG-I26–28. According 
to Barral PM et al., poliovirus (PV) depends on caspases and proteasomes to reduce the expression of MDA5 after 
infecting cells, and PV may block type I IFN production by cleaving MDA529. As shown by Kotla S et al.30, PV 

Figure 6. Dynamic changes in immune-related genes in the livers and blood of CH and CH60-inoculated 
ducklings. The livers and blood of CH and CH60-inoculated ducklings were collected at 24, 36, 48, 60, and 72 
hpi. Total RNA was extracted, and cDNA was prepared for cytokine detection. Cytokine expression levels were 
measured by the 2−ΔΔCt method with relative quantification. Differences in expression levels of the various 
genes between strains CH and CH60 at each time point (24, 36, 48, 60 and 72 hpi) were analyzed using Student’s 
t test and were considered significant as follows: *P < 0.05; **P < 0.01; ****P < 0.0001.
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blocks the activation of IRF-3 but does not inhibit MDA-5 or MAVS to inhibit IFN-I expression. However, the 
escape mechanisms of DHAV-1 have not been elucidated, and subsequent experiments using siRNA knockdown 
or poly I:C stimulation are required to further confirm the roles of PRRs in DHAV infection and specific escape 
mechanisms31. Expression of the PRRs TLR3, TLR7, RIG-I and NLRP-3 was depressed in the first 48 hours, while 
that of IL-1β, IL-6 and IL-10 was elevated in the first 48 hpi. Interestingly, IPS-1 (also called MAVS) expression 
was elevated in the first 48 hours. In the NOD-like receptor signaling pathway, the RNA virus is first recognized 
by NOD2, and MAVS is then activated, resulting in the elevated expression of IFN-α/β. In addition, the NF-kappa 
B signaling pathway, which activates IL-1β, IL-6, can be activated via MAVS-dependent and independent mecha-
nisms32. Therefore, DHAV-1 may elevate cytokine levels via the NOD-Like receptor signaling pathway.

Apoptosis is a programmed cell death process intended to eliminate cells33,34. Hepatocyte apoptosis is an 
important feature of acute liver injuries and either precedes or exists simultaneously to the onset of necrosis35. 
Therefore, we characterized the apoptosis of CH and CH60-inoculated livers (Fig. 4B–D). The CH strain induced 
massive hepatocyte apoptosis as well as oncotic necrosis (Fig. 3B–F), which are typical of acute liver injury. 
TNF-α, a death receptor ligand, initiates apoptosis. However, TNF-α expression was inhibited by both the CH 
and CH60 strains. Other stimuli that initiate apoptosis include Fas ligand, DNA damage and growth factor with-
drawal36,37]. X. D. Sheng et al.38 evaluated apoptosis-related gene expression in the livers of DHAV-1-infected 
ducklings and observed the significant up-regulation of Bcl-2 transcription, whereas the expression of caspase-3, 
-8 and -9 was not obviously altered. Therefore, the specific mechanisms underlying DHAV-1-induced apoptosis 
require further investigation.

A cytokine storm is an excessive immune response stimulated by viruses, bacteria and external factors. A 
severe cytokine storm produces markedly higher levels of pro-inflammatory cytokines, including IFNs, interleu-
kins, chemokines, and tumor necrosis factors, which are responsible for multi-organ dysfunction, via a specific 
feedback mechanism39–41. Cytokine storms were first discovered in graft-versus-host disease in 199342, and influ-
enza virus, variola virus, and severe acute respiratory syndrome coronavirus (SARS-CoV) were all later found to 
cause severe cytokine storms43–45. However, there have been no reports investigating cytokine storms resulting 
from DHAV-1 infection. In our study, the IFN-α, IFN-β, IL-1β, and IL-6 transcriptional levels were markedly 
up-regulated. Furthermore, the liver surface exhibited extensive punctate hemorrhaging, and the liver paren-
chyma was significantly infiltrated with numerous red blood cells, accompanied by steatosis and necrosis. Similar 
effects were not observed in CH60-inoculated ducklings, but cytokine storms have been identified in the adult 
duck kidney14 and liver46. Therefore, the pathological mechanisms induced by DHAV-1 are likely related to severe 
cytokine storms. IFN-γ is primarily secreted by Th1 cells and mononuclear macrophages, which are associated 
with cellular immunity. However, IL-10 is largely secreted by Th2 cells, which inhibit the proliferation and activa-
tion of Th1 cells, and monocyte macrophages, thus promoting the proliferation and activation of B lymphocytes 
and correlating with humoral immunity47. Notably, IL-10 was up-regulated after CH strain infection, but IFN-γ 
expression did not change significantly. The hyper-induction of IL-10 potentially inhibits IFN-γ expression and, 
in turn, inhibits cellular immunity rather than enhancing humoral immunity. Persistent inflammatory responses 
cause immune system dysfunction and ultimately cause liver damage.

In conclusion, severe cytokine storms caused by the CH strain induced hemorrhagic liver lesions, resulting in 
the rapid death of ducklings.

Materials and Methods
Ethics statement. This study was approved by the Committee of Experiment Operational Guidelines and 
Animal Welfare of Sichuan Agricultural University. Experiments were conducted in accordance with approved 
guidelines.

Viruses and animals. The DHAV-1 CH strain and the DHAV-1 CH60 attenuated vaccine were provided 
by the Institute of Preventive Veterinary Medicine at Sichuan Agricultural University. Ducks were infected with 
the CH strain at a concentration of 107.88 copies/ml and the CH60 strain at a concentration of 108.07 copies/ml as 
determined by qRT-PCR.

One-day-old Cherry Valley ducks were purchased from the poultry farm of Sichuan Agricultural University 
and were raised in isolators. The ducks were confirmed to be free of DHAV-1 or IgG against DHAV-1 by one step 
reverse-transcription PCR48 and indirect ELISA49 detection in serum samples.

Experimental procedure. After one week, the ducks were randomly divided into three groups of 15 and 
raised in separate isolators. The ducks in the first group received 0.40 ml of the DHAV-CH strain (107.88 copies/ml) 
via intramuscular injection, the ducks in the second group received 0.25 ml of the DHAV-CH60 strain (108.07 cop-
ies/ml) via intramuscular injection, and ducks in the last group were injected with 0.25 ml of 0.75% physiological 
normal saline (NS) as a negative control. Three ducklings from each group were killed at 24, 36, 48, 60 and 72 hpi, 
and their livers and blood were collected. Fifty-milligram liver specimens were weighed and immediately placed 
in a solution to protect the RNA and DNA in the samples (code. no 9750, TaKaRa, Japan) until RNA isolation was 
performed. Additionally, portions of the liver were soaked in 4% paraformaldehyde solution for histopathological 
examination.

To identify the mortality rates of CH- and CH60-inoculated ducklings, 30 one-week-old ducks were randomly 
divided into three groups (n = 10) and raised in separate isolators. The ducks in the first group received 0.40 ml 
of the DHAV-CH strain (107.88 copies/ml) via intramuscular injection, the ducks in the second group received 
0.25 ml of the DHAV-CH60 strain (108.07 copies/ml) via intramuscular injection, and the ducks in the last group 
were injected with 0.25 ml of 0.75% physiological normal saline (NS) as a negative control. Signs of disease and 
death were observed within one week.
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HE staining and the TUNEL assay. Livers soaked in 4% paraformaldehyde solution were dehydrated, embed-
ded in paraffin, cut into 4-μm-thick sections and stained with hematoxylin and eosin (HE) using standard procedures.

Four-micron sections were also used to perform the TUNEL using an In-Situ Apoptosis Detection Kit (Boster 
Inc., Wuhan, China) according to the manufacturer’s instructions. Apoptotic cells were observed under a light 
microscope.

RNA isolation and cDNA preparation. Total RNA was isolated from 50 mg of liver and 200 µL of blood 
specimens using RNAiso Plus Reagent (TaKaRa) according to the manufacturer’s instructions. Genomic DNA 
was then removed, and reverse transcription was performed using a PrimeScript™ RT Reagent Kit (Perfect Real 
Time, TaKaRa) according to the manufacturer’s instructions.

Viral RNA load in the liver and cytokine expression in the liver and blood. Viral copies in total RNA 
were measured using methods previously established in our laboratory50,51. Fourteen immune-related genes (TLR3, 
TLR7, NLRP3, MDA5, RIG-I, IPS-1, IL-1β, IL-4, IL-6, IL-10, TNF-α, IFN-α, IFN-β, IFN-γ) and a housekeeping 
gene (β-actin) were detected by qPCR using previously published primer sequences as well as newly designed 
primer sequences for TLR3, NLRP3, MDA5, RIG-I, IPS-1, IL-4, IL-10, TNF-α, and IFN-β using Primer Premier 5 
(Table 1). The expression levels of immune-related genes were determined by qPCR using a SYBR®Premix Ex Taq™ 
II (Tli RNaseH Plus) Kit (Takara) and an Applied CFX96 Real-Time PCR Detection System (Bio-Rad, Hercules, 
CA, USA). Amplification was performed in 10-µl reaction volumes containing 0.5 µl of each primer and 1 µl of 
RNA. The following thermal cycling conditions were applied: initial activation at 95 °C for 30 s, 40 cycles of denatur-
ation at 95 °C for 5 s and annealing and extension at 58.6 °C for 30 s, and a dissociation curve analysis step.

Statistical analysis. All statistical and imaging analyses were performed using GraphPad Prism 6 software. 
The relative mRNA expression of target genes was analyzed using the 2−ΔΔCt method and compared with that in 
the control group injected with 0.25 ml of NS. ΔCt values were determined by subtracting the average Ct values 
of the endogenous control gene β-actin from those of the target genes.
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