
ARTICLE

Received 4 May 2015 | Accepted 19 Oct 2015 | Published 8 Dec 2015

An event-based architecture for solving constraint
satisfaction problems
Hesham Mostafa1,*, Lorenz K. Müller1,* & Giacomo Indiveri1

Constraint satisfaction problems are ubiquitous in many domains. They are typically solved

using conventional digital computing architectures that do not reflect the distributed nature of

many of these problems, and are thus ill-suited for solving them. Here we present a parallel

analogue/digital hardware architecture specifically designed to solve such problems. We cast

constraint satisfaction problems as networks of stereotyped nodes that communicate using

digital pulses, or events. Each node contains an oscillator implemented using analogue

circuits. The non-repeating phase relations among the oscillators drive the exploration of the

solution space. We show that this hardware architecture can yield state-of-the-art perfor-

mance on random SAT problems under reasonable assumptions on the implementation. We

present measurements from a prototype electronic chip to demonstrate that a physical

implementation of the proposed architecture is robust to practical non-idealities and to

validate the theory proposed.

DOI: 10.1038/ncomms9941 OPEN

1 Institute for Neuroinformatics, University of Zurich and ETH Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland. * These authors contributed
equally to this work. Correspondence and requests for materials should be addressed to H.M. (email: hesham@ini.uzh.ch).

NATURE COMMUNICATIONS | 6:8941 | DOI: 10.1038/ncomms9941 | www.nature.com/naturecommunications 1

mailto:hesham@ini.uzh.ch
http://www.nature.com/naturecommunications

C
onstraint satisfaction problems (CSPs) are a fundamental
class of problems in computer science with wide
applicability in areas such as channel coding1, circuit

optimization2 and scheduling3. Algorithms for solving CSPs are
typically run on classical von Neumann computing platforms that
were not explicitly designed for these types of problems. This
paper addresses the question: how can we implement a more
efficient computing substrate whose architecture and dynamics
better reflect the distributed nature of CSPs?

Many dynamical systems that have been proposed for solving
CSPs violate the ‘physical implementability’ condition4–6.
Non-physicality arises from the use of variables that can grow
without bounds as the system is searching for solutions. On the
other hand, there is a long, well-established tradition of studying
physically realizable dynamical systems, for example, in the form
of artificial neural networks, to solve CSPs or ‘best-match
problems’7,8. Early attempts in this field used attractor networks,
such as Hopfield networks9, to solve NP hard (non-deterministic
polynomial-time hard) problems such as the travelling salesman
problem10,11. These attractor networks, however, would often get
stuck at locally optimal solutions. To overcome this problem,
stochastic mechanisms were proposed12,13, which require explicit
sources of noise to force the network to continuously explore the
solution space. While noise is an inextricable part of any physical
system, dynamically controlling its power to balance ‘exploratory’
versus ‘greedy’ search, or to move the network from an
exploratory phase to a greedy one according to an annealing
schedule, is not a trivial operation and puts an additional overhead
on the physical implementation.

Here we present a mixed analogue/digital hardware
architecture whose dynamics execute an efficient search for CSP
solutions without the need for external sources of noise. For this
reason, the architecture can be easily and efficiently implemented
using complementary metal-oxide semiconductor very-large-
scale integration (VLSI) electronic circuits. In the proposed
architecture, each variable in a CSP is represented by a node
consisting of an analogue oscillator and a state-holding
asynchronous digital circuit. To achieve robust and scalable
computation, the nodes communicate using digital pulses, or
events. This combination of analogue and digital circuits running
in a hybrid continuous/event-driven mode avoids many of the
problems that affect pure analogue VLSI systems such as
susceptibility to noise, degradation of analogue signals during
storage and communication, and signal restoration/refresh issues.
Since the oscillators are realized using analogue circuit, when
fabricated, they exhibit incommensurable natural frequencies,
that is, frequencies that are not rational multiples of each other.
Our architecture relies on the non-repeating phase relations
among these incommensurable analogue oscillators to drive
the search for optimal solutions, rather than making use of
external sources of noise or relying on random fluctuations.
We show that the architecture naturally reproduces the dynamics
of stochastic local search (SLS) algorithms. These algorithms
are typically incomplete, that is, they cannot prove that a
solution does not exist for unsatisfiable problems. Our main
contributions are a physical architecture with novel dynamics for
solving CSPs, together with massively parallel reformulations
of well-established CSP algorithms so that they can be
efficiently instantiated on the proposed architecture. We present
results from an implementation of this architecture on a
prototype VLSI chip. Our results expose a surprising relation
between the dynamics of coupled multi-stable oscillators and
the search for CSP solutions and highlight a novel mode of
distributed, parallel, mixed analogue/digital computation that
can form the basis of various hardware/physical systems for
solving CSPs.

Results
Description of the architecture. The proposed event-based
architecture for solving CSPs employs a network of nodes that
communicate via digital events. A node is shown schematically in
Fig. 1a. Each node has N externally accessible input ports, one
internal input port, M output ports and one dummy output port.
The analogue oscillator in the node generates a continuous
stream of digital events that are sent to the node’s internal port:
‘in.0’. The digital logic in the node has an internal state s, which
can take one of Q possible values. On the arrival of an event on
any of the input ports, the node’s digital logic evaluates the index
of the output port to which it should send the event based on the
index of the triggered input port and on the current state of the
digital logic; it updates its internal state; and it transmits the event
via the output port selected (Fig. 1b). Selection of the ‘dummy’
output port ‘out.0’ is equivalent to suppressing the event. The
digital logic is fully described by the event routing function g and
the state update function f, which are both deterministic.
Given their analogue nature, the natural frequencies of the
oscillators in the different nodes are not rational multiples of each
other. Due to fabrication-induced mismatch, different oscillators
realized on a VLSI chip will have incommensurable natural fre-
quencies. It is important that coupling between these physical
oscillators be kept at a minimum so as to minimize the chance of
phase locking.

For solving CSPs, a subset of the nodes in the network will
represent the actual problem variables, while others will represent
helper variables that encode other problem-relevant quantities
(for example, whether a constraint is satisfied or not). The value
of a variable/node at a point in time is the index of the output
port on which the node emitted its last event. Thus, a variable/
node with M output ports can have M possible values. The output
port of one node can connect to the input ports of one or more
nodes and one input port can receive events from multiple output
ports. One output port cannot be connected to multiple input
ports on the same node. In the following sections, we describe
how to connect nodes/variables together and how to define the
nodes/variables behaviour (the f and g functions) so as to solve a
number of hard CSPs. The procedure to map a CSP to this
distributed architecture depends on the type of the CSP but in
general, the mapping is done so that the distributed and parallel
dynamics of the network of nodes tries to put the problem
variables/nodes in a state where their outputs satisfy all the
constraints.

Figures 1c and 1d show the definition and illustrate the
behaviour of an example node that has two input ports, two
output ports and two possible internal states (N¼M¼Q¼ 2).
The state of the example node/variable is the index of the last
external event it received and the node/variable advertises its state
by generating an event on one of the output ports when it receives
an event on the internal port ‘in.0’ as shown in Fig. 1c (we refer to
this as ‘updating’). Assume this example node is the target node
receiving events from multiple sources nodes. Since it is only the
last received event that determines the value advertised by an
updating node, the phase relations between the analogue
oscillators in the network determine which of the source nodes
generates the decisive event that determines the event generated
by the target node. This would be the source node that updated
just before the target node updates. The phase relations are
continuously changing in an aperiodic manner since the
oscillation frequencies are incommensurable. The shifting phase
relations thus continuously change which source node manages
to influence the output events of the target node.

For the node described in Fig. 1c, assume N1 nodes with
frequencies f 1

1 ; f 1
2 ; . . . ; f 1

N1
are sending events to its ‘in.1’ port and

N2 nodes with frequencies f 2
1 ; f 2

2 ; . . . ; f 2
N2

are sending events to its

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9941

2 NATURE COMMUNICATIONS | 6:8941 | DOI: 10.1038/ncomms9941 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications

‘in.2’ port, the fraction of 1 events generated by the target node
converges to

PN1
i¼1 f 1

i =ð
PN1

i¼1 f 1
i þ

PN2
j¼1 f 2

j Þ if observed for a long
enough time. Assuming the differences in oscillator frequencies of
the source nodes are small, the latter expression can be written as

N1
N1 þN2

. Thus, the more nodes that try to force a target node to a
particular value, the more likely the target node is to output that
value, yet there is always a chance that even a single source node
that is in conflict with the majority will update just before the
target node updates, thereby causing the target node to go against
the majority influence. As we will show in the next sections, this
behaviour can be exploited to allow the network to escape from
local minima where flipping a single variable/node may increase
the number of violated constraints. However, a node will never
take a value that is in conflict with all incoming influences which
is why the globally optimal state is stable. We show that this
mostly greedy, but sometimes exploratory, behaviour can be
exploited to efficiently solve a variety of hard CSPs.

In contrast to simulated annealing, there is no temperature
parameter that balances the greedy versus the exploratory
aspect of the network behaviour. The exploration of the solution
space is not noise driven but, rather, it is driven by the
continuously changing, non-repeating order of event generation.
This has the advantage that no cooling schedule is needed
and there is no artificial separation between an exploratory
(high temperature) phase and a greedy (low temperature) phase.
This enables the problem to be dynamically changed and new
constraints added without having to restart any cooling schedule.
Due to the incommensurable oscillation frequencies, the network
trajectory is aperiodic, so the system does not get stuck in
loops. One disadvantage, however, of using deterministic
incommensurable oscillators to drive the search is that we
cannot derive probabilistic convergence results as in simulated
annealing.

Boolean satisfiability problems. Let X¼ {x1,y,xN} be a set of
Boolean variables. A literal is either a variable or its negation. The
solution to a Boolean satisfiability or K-SAT problem is the
variable assignment that satisfies the logical expression involving
the variables of X:

c1 ^ c2 ^ � � � ^ cm ¼ True; ð1Þ
where the clause ci is the disjunction of K literals. K-SAT for KZ3
is NP complete14.

A highly efficient algorithm for solving random SAT problems
is the probSAT algorithm15, winner of the parallel random track
of the 2014 satcompetition16. probSAT iteratively modifies a
variable assignment by choosing a random unfulfilled clause cu

and changing the assignment of (‘flipping’) a random variable xf

in cu, thereby fulfilling cu. The choice xf is governed by a heuristic
function f(m,b), where m (the ‘make’ heuristic) is the number of
clauses that are newly fulfilled when xf is flipped and b (the ‘break’
heuristic) is the number of clauses that are newly unfulfilled when
xf is flipped. The heuristic function is renormalized into a
probability over the available choices and xf is chosen according
to these probabilities. The heuristic function f(m,b) can take
several different forms. In our benchmarks, we use the
particularly effective ‘exponential’ form:

f ðm; bÞ ¼ xm

yb
; ð2Þ

where x and y are parameters. If no solution is found after nmax

flips, all variables are set to new random values, that is, the
algorithm is restarted.

We consider K-SAT for KA{3,4,5}. We map the probSAT
algorithm with only the ‘break’ heuristic to our architecture using
two types of nodes: nodes representing variables and nodes
representing constraints/clauses. Each variable node has two

Analogue oscillator

Digital
Logic (Q states)

Node

Event: on receiving an event on in·i
in·0
in·1

in·1
in·2

in·N

out·0
out·1

out·1
out·2

out·M
r

s

g (i, s)

g (i, s)

f (i, s)

f (i, s)

generate event on out·r

s

i

if i = 0

otherwise

= =
s

0 otherwise

if i = 0

Time

a

b

c

d

Figure 1 | Building blocks of the proposed architecture (a) General form of the computational unit in our architecture. This computational unit, or node,

is composed of asynchronous state-holding digital logic, and an analogue oscillator that generates a stream of events. The digital logic is event driven

and changes its internal state in response to events on its input ports ‘in.0’ to ‘in.N’. The node can generate an event on one of the output ports in response

to input events. (b) Formal description of a node. On an input event on port ‘in.i’, the digital logic evaluates the index of the output port r, updates its

state s and generates an event on output port ‘out.r’ in that order according to the functions f and g. Events from the internal oscillator always arrive on the

‘in.0’ port. An output event on the ‘out.0’ port is discarded, that is, the node does not generate an output event if r¼0. (c) Definition of the f and g functions

for an example binary node with two internal states, two input ports and two output ports (N¼M¼Q¼ 2). (d) Simulation of the example node showing its

input and output event streams. The node generate an output event for each event from the periodic internal oscillator. The output events reflect the

identity of the last input event the node received.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9941 ARTICLE

NATURE COMMUNICATIONS | 6:8941 | DOI: 10.1038/ncomms9941 | www.nature.com/naturecommunications 3

http://www.nature.com/naturecommunications

states. It updates and advertises its state (by generating an event
on one of its two output ports) whenever it receives an event from
a clause node. In addition, it advertises its state whenever it
receives an event from the internal oscillator.

Figure 2 shows a sample 3-SAT network. When the clause
node receives a break event (event arriving on one of its break
input ports, one corresponding to each variable), it increments
the corresponding break counter. On events from the internal
oscillator, a clause node evaluates what state the connected
variables have last advertised. If there is no variable in a fulfilling
state, the clause node sends an event to flip the variable with the
smallest associated ‘break’ count and sends a ‘break’ event to
every clause node in which this variable appears with the opposite
polarity to indicate that the flipped variable is the only variable
keeping the constraint fulfilled. If there is exactly one fulfilling
variable, the clause node only sends a ‘break’ event for that
variable; every rth ‘break’ event is skipped and not sent where r is
a fixed parameter. If there is more than one fulfilling variable, the
clause node does not send out any events. The break counters are
reset after each event from the internal oscillator.

An unfulfilled clause node thus always chooses to flip the
variable with minimal break count (with ties resolved according
to a fixed variable ordering). The skipping of some break events
implements a ‘softening’ of this hard minimum function. This flip
heuristic is deterministic and simpler than the heuristic employed
by standard probSAT.

We also implement a functional replacement of the random
reinitialization: if after nmax variable updates, no solution has
been found, all literals receive a ‘flip’ message. This is not a
random reinitialization, but it is a method of forcing the
algorithm into a distant part of the solution space.

We compare the performance of the network to that of the
standard (sequential) probSAT algorithm15. Our aim here is to
show that the modifications we introduced to tailor probSAT to
our architecture have not degraded its performance. We evaluate
the network performance in several different cases: The ‘ideal’
case where events are transmitted instantly and never lost; and a
‘non-ideal’ case where events have a delay uniformly distributed
between 0 and 10% of the node oscillation period and a 10%
chance to get lost completely. The non-ideal case simulates the
imperfections of an actual physical implementation where event
delivery is neither instantaneous nor guaranteed. We also
consider the case in which nodes update at a pseudo-random
order, which is equivalent to having the oscillator in each
node generate a Poisson instead of a periodic event train. This
pseudo-random update ordering more closely matches the
pseudo-random selection of unsatisfied clauses in the standard
probSAT algorithm.

As benchmarks, we use uniform-randomly generated 3-, 4- and
5-SAT instances of various sizes and (in the case of 4- and 5-SAT)
with various clause densities a (the ratio of clauses to variables).
Different values of a have been shown to correspond to different
geometrical organizations of the solution space17; we have chosen
the values of a so that they lie in the different hard regimes.

We cannot give a comparison with state-of-the-art benchmarks
because our software simulator is only able to simulate 10 cycles
for each node per second if used to simulate networks
implementing large modern benchmarks. On the basis of the
solution times of standard probSAT, 106–109 cycles are needed to
solve a single modern benchmark problem (that is, 1–1,000 days
to simulate the corresponding network). As an alternative, we
evaluate the performance on various problem sizes to ensure that
the network performance scales equally well as standard
probSAT.

Figure 3 shows the median number of variable flips required to
reach the solution; this measure shows the effectiveness of a SLS
algorithm in an implementation independent way. The various
implementations of probSAT show very similar scaling behaviour
in all cases; it is therefore reasonable to assume that for large
problems the network performs as well as the standard algorithm
in terms of number of flips to solution. To match the 1–10
Mega-Flips per second that a standard current CPU achieves
when running probSAT, each node in our network version would
need an analogue oscillator of frequency around 2 MHz (in the
network, approximately five flips happen each cycle due to
parallelism).

A potential bottleneck in our proposed hardware architecture
is the event routing fabric. We can calculate the approximate
routing rate necessary to match the standard implementation of
probSAT by dividing the number of events to solution (Fig. 3) by
the median runtime of standard probSAT, which was 10 ms for
the hardest 4-SAT problems. This yields a required combined
event routing rate of around 100 billion events per second. Note
that a single event generated by a node is typically dispatched to
multiple nodes. An event generated by a node is thus typically
split into multiple events, each targeting a single node. Each of
these ‘split’ events is separately counted when calculating the
required event rate. A 100 billion events per second rate can be
achieved if the highly local nature of node communication (which
reflects the local nature of the constraint graph) is exploited by a
parallel event routing scheme, and if the event routing scheme
supports multi-casting that allows a single source event to be
efficiently routed to multiple destinations.

Using this approach, we can make similar statements with
respect to other SAT solvers: at what oscillation rate and event
routing rate need our architecture be implemented to match the
solution times of other solvers on sample problems (in this case,

C1 internal states:

C2 internal states:

Current states of Lx, Ly, Lz

Current states of Lx, Ly, Lz

Desired states of Lx, Ly, Lz

Desired states of Lx, Ly, Lz

Break counters Bx, By, Bz

Break counters Bx, By, Bz

Bx:+ Bx:+

By:+ By:+

Bz:+

Bx:+

By:+

Bz:+

Bx:+

By:+

Bz:+

Bz:+

Lx:0 Lx:1 Ly:0 Ly:1 Lz:0 Lz:1 Lx:F Ly:F Lz:F

Lx:0 Lx:1 Ly:0 Ly:1 Lz:0 Lz:1 Lx:F Ly:F Lz:F

0 1 0 1 0 1 0 1

V1 V2 V3 V4

Figure 2 | Sample network implementing probSAT. Network

corresponding to the example SAT problem C14C2 where

C1¼ (V13V23:V3) and C2¼ (V23V33V4). For the constraints C1 and

C2, the squares at the edge of the box indicate input ports (blue) and

output ports (red). Events are routed along the arrows. Each unfulfilled

constraint node periodically choose a variable in its domain to flip. The

chosen variable is the one with the lowest break count, that is, the variable

that will cause the smallest number of other clauses/constraints to be

unfulfilled when flipped. A constraint node updates its break counters based

on the events it receives from other constraint nodes that have one or more

variables with opposite polarity in common.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9941

4 NATURE COMMUNICATIONS | 6:8941 | DOI: 10.1038/ncomms9941 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications

however, the comparison does not say anything about solution
times on bigger problems, because there is no structural similarity
between the solvers). For two other well-known solvers, minisat18

and survey propagation19, we study the solution times of the
hardest 4-SAT problems (for smaller problems the overhead
starting the solvers would skew results unfairly in our favour); in
the case of survey propagation, we only took into account the
times to correctly converged solutions. Unsurprisingly, probSAT
is somewhat faster; to match minisat on these problems, we
require an average oscillator frequency of 0.2 kHz and an event
routing rate of 0.1 billion events per second, and to match survey
propagation, an oscillator frequency of 0.4 MHz and a 20 billion
events per second event routing rate is needed.

Surprisingly, the non-ideal network performs better than the
ideal one. Losing/delaying events might increase network
efficiency by making it more exploratory as clauses now have
imperfect information about the state of the variable nodes. The
comparison between the pseudo-random update ordering and the
ordering induced by the incommensurable oscillators shows that
a pseudo-random ordering is slightly more efficient.

The architecture we present in this paper is well suited for
implementing SLS algorithms such as probSAT as it can exploit
the non-repeating phase relations among the incommensurable
oscillators as a source of non-repeating noise that drives the
search. Local search algorithms are typically incomplete, that is,
they cannot prove that a solution does not exist for unsatisfiable
formulae. In Supplementary Fig.1 and Supplementary Note1, we
describe how a complete SAT algorithm can be mapped to the
proposed architecture. We use an algorithm that is custom
tailored to the architecture and that combines an SLS-like search
inspired by probSAT with a systematic pruning of the SAT

solution tree. The network of nodes implementing the complete
algorithm is guaranteed to either find a solution or to generate an
event indicating that the problem is unsatisfiable. One disadvan-
tage of this complete algorithm is that it requires certain events to
be globally routed to all nodes, thus degrading the efficiency of
any parallel event routing scheme that seeks to exploit the local
nature of internode communication. These global events are a
reflection of the typically centralized and sequential nature of
complete algorithms.

The network of nodes implementing the complete algorithm is
not as efficient as the network implementing the probSAT algorithm
when solving satisfiable K-SAT instances. This is illustrated in
Fig. 4a where the complete algorithm takes significantly more cycles
to find a solution. Although not as efficient as the probSAT network,
the network implementing the complete algorithm can detect that a
problem is unsatisfiable as shown in Fig. 4b.

Graph colouring problems. A k-colouring for an undirected
graph G with vertices V(G) and a set of edges E(G) is a map
f:V(G)-{1, 2, y, k}. In the graph colouring problem, the goal is
to find a proper k-colouring f0 of G where f0(x)af0(y) for all
{x,y}AE(G).

To solve a k-colouring problem, we map each vertex in the
graph to a network node with k input ports and k output ports as
shown in Fig. 5. Whenever the internal oscillator in a node/vertex
generates an event, the node advertises its colour by generating an
event on one of the k output ports. Events from a node/vertex are
routed to all its neighbours in the graph. Each node maintains k
counters that count how many of its neighbours have a particular
colour. These counters are incremented when a node receives

106 1010

109

108

107

106

105

1010

109

108

107

106

105

104

105

104

103

103 103

102

102 102
101

105

104

103

103

102

102
101

101 103102101

101 101

Problem size (No. of variables)

Problem size (No. of variables) Problem size (No. of variables)

Problem size (No. of variables)

M
ed

ia
n

fli
ps

 to
 s

ol
ut

io
n

M
ed

ia
n

fli
ps

 to
 s

ol
ut

io
n

M
ed

ia
n

ev
en

ts
 to

 s
ol

ut
io

n
M

ed
ia

n
ev

en
ts

 to
 s

ol
ut

io
n

Standard
Osc. id.

Osc. nonid.
Random id.

Random nonid.

Standard

Osc. id.

Osc. nonid.
Random id.

Random nonid.

Osc. id.

Osc. nonid.
Random id.

Random nonid.

Osc. id.

Osc. nonid.
Random id.

Random nonid.

�3 ∈ [4·3, 4.4] �3 ∈ [4·3, 4.4]
�4 ∈ [9·6, 9.7]

�4 ∈ [9·4, 9.45]

�5 = 21

�5 = 20
�4 ∈ [9·4, 9.45]
�5 = 20

�4 ∈ [9·6, 9.7]

�5 = 21

a b

c d

Figure 3 | Performance of the network implementation of probSAT. (a)–(d) Median flips and median events to solution on 3-, 4-, and 5-SAT problems for

different solution strategies: for standard probSAT (standard), networks with instantaneous and guaranteed event delivery (id.), networks with event loss and

delays (nonid.), networks where node event generation is periodic (osc.) and networks where node event generation is Poissonian (random). Error bars show

first and third quartiles (that is, half of the data lies within the error bars). Black solid lines show 3-SAT (nvarA[50,100,200]), blue-dashed lines show 4-SAT

(nvarA[15,30,60,120]) and red-dash-dotted lines show 5-SAT (nvarA[15,30,60]). To avoid overlap, some data points are slightly shifted along the x axis. The

clause densities, a3,a4,a5 used for 3-, 4-, and 5-SAT, respectively, are shown on the plots. For 4- and 5-SAT, two different caluse density values were tested,

corresponding to different geometrical arrangements of the solution spaces (no multiple regimes exist for 3-SAT)17. Each data point was obtained by solving 100

instances. Note the logarithmic scales on both axes. Standard probSAT and our network implementation scale similarly well with the problem size.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9941 ARTICLE

NATURE COMMUNICATIONS | 6:8941 | DOI: 10.1038/ncomms9941 | www.nature.com/naturecommunications 5

http://www.nature.com/naturecommunications

events from its neighbours. At an internal oscillator event, if the
counter corresponding to the current node colour is non-zero
(one of the neighbours has the same colour), the node chooses a
different colour. If the internal Boolean variable, ‘heuristic’, is
true, the node chooses the colour with the fewest conflicts
(smallest neighbour count). If ‘heuristic’ is false, the node chooses
the next colour in a fixed arbitrary ordering of colours. The node
then resets the k counters, flips the ‘heuristic’ binary variable and
generates an event to advertise its colour. A min conflict heuristic
thus alternates with a heuristic-free scheme to update a
conflicting node each cycle.

We assessed the performance of this algorithm on several
k-colouring problems of intermediate difficulty (Table 1) taken
from ref. 20 in which a different massively parallel colouring
algorithm (gravitational swarm intelligence) was assessed. As in
the previous section on Boolean satisfiability, we cannot attempt
state-of-the-art-sized problems since the software simulation of a
large network takes an infeasibly long time. In terms of average
numbers of oscillation cycles to solution, the network compares
favourably with gravitational swarm intelligence20.

Prototype VLSI implementation. The prototype VLSI chip that
implements a version of the architecture described in this paper is
composed of a two-dimensional array of binary nodes that
communicate using events. The problem of transmission and
routing of asynchronous events has been thoroughly investigated
in the neuromorphic engineering literature21,22. An elegant
solution uses the address-event representation (AER) protocol.
When a node generates an event on one of its output ports, it

executes a handshake protocol with the ‘output AER interface’.
The ‘output AER interface’ encodes the address of the output port
on which the event was generated and transmits the address
off-chip using an output bus that has log2(Kout) lines. Kout is the
number of possible event sources (the output ports of all the
nodes). The array has Kin possible event targets (the input ports of
the nodes), if an event is to be sent to one of these targets, the
target address is sent to the ‘input AER interface’ on a bus that
has log2(Kin) lines. The ‘input AER interface’ decodes the address
and sends an event to the target element by simultaneously
activating the correct row and column in the array.

The two-dimensional array on the chip comprises 64*32 binary
nodes/variables, that is, nodes/variables with two output ports as
shown in Fig. 6a. The chip can be configured so that two, three or
four adjacent variables are merged together to realize four-,
six- or eight-valued variables, respectively. An n-valued variable
(nA{2,4,6,8}) has n output ports and n possible internal states and
has 2n� 1 input ports. Physically, a variable has n digital input
lines on which it receives an n-bit binary word encoding the index
of the input port receiving the event. The details of the chip nodes
are given in the methods section. An off-chip event router
implemented on a field programmable gate array communicates
with the output and input AER interfaces to route events from
nodes/variables output ports to input ports according to a
programmable routing table as shown in Fig. 6b.

The analogue oscillator in each node is realized using an
analogue integrate and fire neuron23 receiving constant current
injection. In the methods section, we describe the frequency
distribution of the on-chip nodes and analyse internode phase
coherence. The node oscillators have different frequencies but
there is minor coupling between them which, however, does not
amount to phase locking. The exploration of different phase
relations, which is crucial to the search scheme employed by the
architecture, thus remains intact.

Using the node logic on the prototype chip, we implemented a
3-SAT algorithm, which is based on the algorithm from ref. 24. At
the end of a cycle, an unfulfilled clause sends an event to flip the
last variable in its domain to generate an event. Due to the
continuously changing phase relations, an unfulfilled clause
effectively chooses almost at random a variable to flip similar to
the algorithm in ref. 24. Details of implementing this algorithm on
the hardware prototype are given in the methods section. Figure 7a
shows a histogram of the average number of oscillation cycles
needed to find the solution of an example 3-SAT problem.

b

30
0,

00
0

25
0,

00
0

106

105

104

103

102

102

101

101
100

M
ed

ia
n

cy
cl

es
 to

 s
ol

ut
io

n

Problem size (No. of variables)

C
ou

nt

80

70

60

50

40

30

20

10

0

50
,0

00

10
0,

00
0

15
0,

00
0

20
0,

00
0

Average number of cycles

Osc. ideal complete
Osc. ideal probSAT

a

Figure 4 | Performance of the network implementing the complete SAT algorithm. (a) Median of the average number of oscillation cycles to solution

(averaged over the nodes in the network) for the ideal oscillatory network implementing probSAT and for the ideal oscillatory network implementing the

complete algorithm when solving random 4-SAT instances with a4A[9.4,9.45]. Error bars show first and third quartiles. The network implementing the

complete algorithm is slower than the one implementing probSAT when searching for solutions to satisfiable instances. (b) Histogram of the average

number of cycles (averaged over the nodes in the network) taken by the network implementing the complete algorithm to signal that a 3-SAT instance is

unsatisfiable. Network was run once per instance on 1,000 random 3-SAT instances with 100 variables and 430 clauses each.

i:C3 o:C3

o:C2

o:C1

o:C3

o:C2

o:C1

i:C2

i:C1

i:C3

i:C2

i:C1

V1 internal
states:
Colour
Neighbours C1
Neighbours C2
Neighbours C3
Heuristic

V2 internal
states:
Colour
Neighbours C1
Neighbours C2
Neighbours C3
Heuristic

Figure 5 | Network solving graph colouring. Network corresponding to the

three-colouring of the graph V¼ {V1,V2}, E¼ {(V1,V2)}. The squares at the

edge of the box indicate input ports (blue) and output ports (red). Events are

routed along the arrows. When two connected nodes represent the same

colour, one of them will change its colour on its next internal oscillator event.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9941

6 NATURE COMMUNICATIONS | 6:8941 | DOI: 10.1038/ncomms9941 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications

The hardware prototype can solve graph colouring problems
with up to eight colours. A k-colour node/vertex advertises its
colour by generating an event on one of its k output ports at the
end of its internal cycle (when its internal oscillator generates an
event). This event is routed to all its neighbouring nodes/vertices
in the graph, which causes these nodes to take a colour that is
different from the advertised colour. Details of the graph
colouring algorithm implemented on the prototype chip are
given in the methods section. One difficult graph for this
architecture is the ‘5� 5 queen’ graph whose solution is
equivalent to finding the non-interfering positions of 5 queens
on a 5� 5 chess board. The average number of cycles needed to
find a solution is shown in Fig. 7b.

Discussion
CSPs have often been examined through the lens of statistical
physics25,26. Within the framework of statistical physics, a CSP is
formulated as a distributed system that seeks to minimize the
number of frustrated interactions (violated constraints) between
its elements. Direct analogies can be established between the
ground energy states of physical systems (where frustrated
interactions are at a minimum) and solutions to CSPs27. The
architecture we describe in this paper is fundamentally different

from the systems analysed in the framework of statistical physics,
yet it captures some of the general features of such systems: the
architecture makes use of a large number of locally interacting
elements that mutually constrain each other so that the system as
a whole tries to go to states where the number of frustrated
interactions is at a minimum.

The most distinguishing feature of our system is the
mechanism used to explore the solution space. In lieu of random
fluctuations, the continuously changing phase relations between
incommensurable oscillators are a source of non-repeating
fluctuations that can be easily exploited in our event-based
architecture to realize efficient search algorithms. Pseudo-random
number generators (PRNGs) could have been used to drive the
search. Even assuming we could implement an efficient PRNG
with a per-node complexity equivalent to an analogue oscillator,
PRNGs would require a clock. In each clock cycle, the PRNG
scheme could choose one variable/constraint to update at
random. This sequential scheme will fail to exploit the distributed
and highly local nature of many CSPs (a constraint involves only
few variables and a variable is part of only few constraints). This
distributed and local nature is precisely what we are trying
to exploit with the independent nodes running in parallel and
trying to attain consistency in their local neighbourhoods in the
constraint graph. The PRNG scheme could update multiple,

Table 1 | Performance of the graph colouring network.

Graph No. of vertices No. of edges Density K Number of
iterations (GSI)

Average number of
cycles (network)

Myciel7 191 2,360 0.13 8 302 145
Myciel6 95 755 0.17 7 92 31
Myciel5 47 236 0.21 6 97 19
Myciel4 23 71 0.28 5 25 3
Myciel3 11 20 0.36 4 21 2
David 87 986 0.21 11 208 95
Anna 138 812 0.21 11 300 8
Huck 74 662 0.22 11 84 8
Jean 80 508 0.16 10 165 16
Queen 5� 5 25 160 0.53 5 302 NA
1_fullins_3 30 100 0.23 4 37 11
1_fullins_4 93 593 0.14 5 76 366
1_fullins_5 282 3,247 0.08 6 222 1,593
2_fullins_3 52 201 0.15 5 67 47
2_fullins_4 212 1,621 0.07 6 176 120
Miles_250 128 387 0.04 8 317 2,021

GSI, gravitational swarm intelligence; NA, not available.
Number of cycles to convergence on common k-colouring benchmarks20 of our network and a massively parallel algorithm20. Each number in the network column is an average of four runs with redrawn
oscillator frequencies; one run for the queens graph did not converge in 105 cycles (the other runs averaged 530 steps to convergence). Bold entries indicate better performance.

Output AER interface

Input AER interface

2D node
array

AER
Router

Input address

Output address

Chip boundary
AER

interfaces
Node
array

Bias
generator

a b

Figure 6 | Prototype chip and test system. (a) Layout of the minimum size (2*3 mm) prototype chip fabricated using a 180-nm complementary

metal-oxide semiconductor process that implements the architecture described in this paper. The 64*32 node array in the middle is surrounded on

three sides by the digital asynchronous AER interfaces. An externally programmable bias generation block generates the analogue biases needed by the

analogue oscillators. (b) The test system. An off-chip event router implemented on a field programmable gate array communicates with the chip AER

interfaces to route events from output ports to input ports.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9941 ARTICLE

NATURE COMMUNICATIONS | 6:8941 | DOI: 10.1038/ncomms9941 | www.nature.com/naturecommunications 7

http://www.nature.com/naturecommunications

randomly chosen, variables/constraints per clock cycle. Such
batch updates would go against the idea of probSAT, and SLS
algorithms in general, which make local moves that change only
one variable at a time and propagate its new value before
updating the next variable. Since nodes in a distributed
architecture need to communicate, by having them communicate
in an event-based manner at times governed by simple local
analogue oscillators, we obtain (almost for free) non-repeating
fluctuations that could be easily exploited to drive a stochastic-
like search.

While the architecture is general enough to allow the
instantiation of various algorithms for solving CSPs, it is best
suited to implementing algorithms of the local search variety in
which each variable is iteratively updated based only on local
information, that is, based on the state of the constraints in which
it is involved.

The digital event-based nature of node communication is key
to the architecture’s scalability and configurability. These digital
pulses can be transmitted and routed using a digital fabric that
links together a large number of nodes. In the prototype chip,
event routing is done off-chip in a serial manner on a field
programmable gate array board28. This introduces a serial
bottleneck in the otherwise massively parallel operation
of the architecture. This serial bottleneck must be eliminated to
reap the advantages of the massively parallel operation
of the distributed architecture. A distributed event routing
architecture that exploits the local nature of event
communication (which reflects the local nature of the
constraint graphs of many relevant problems) to route events in
parallel in multiple local domain is necessary. Configurable and
parallel AER routing fabrics have been proposed for use in large-
scale neuromorphic systems29,30 and could be directly adapted
for use in an implementation of the described architecture. As
shown when solving SAT problems, the architecture is robust to
event delays and lost events that relaxes the requirements on the
event routing fabric.

In simulation, we showed for the case of random SAT
problems that the proposed architecture can run at a surprisingly
slow mean oscillation frequency (around 2 MHz) and still attain
a time to solution that is comparable to a CPU running at
three orders of magnitude higher clock rate. The simple logic
operations in the constraint and literal nodes can certainly run at
such slow frequencies. These results indicate that the proposed
architecture is a more efficient approach to solving SAT problems
than conventional CPUs.

Algorithms for solving CSPs are often conceived with the
digital von Neumann model of computation in mind. The results
presented in this paper highlight an alternative approach that
starts with no prior assumptions about the computational model,
and seeks to exploit the physical characteristics of the underlying
substrate in order to find a solution tailored to the computational
problem at hand. In our case, we exploited the natural
incommensurability of physical analogue oscillators to derive a
distributed novel algorithm for solving CSPs. The resulting
physical algorithms naturally admit an efficient implementation
on the physical substrate that underlies their derivation. The
computing architectures developed using this bottom-up
approach, such as the VLSI device we present in this paper, have
the potential to achieve considerable performance gains in their
target problems compared with conventional purely digital
approaches31.

Methods
Description of the chip node. When an n-valued chip node (nA{2,4,6,8}) receives
an event on one of its 2n� 1 input ports, say port i, The 1s in the binary
representation of i denote the allowable internal states that the variable can take.
The node has n possible internal states and an event on one of the 2n� 1 input
ports can thus decide which non-empty subset of these states are allowed. If
multiple states are allowed, the variable stays at its current state if the current state
is one of the allowed states, otherwise it goes to the lowest index allowed state.
Let i(p) be the pth bit of i where indexing starts at 1, the state update function
f is thus:

fHW i; sð Þ ¼
s if i sð Þ ¼ 1 or i ¼ 0

p if i sð Þ ¼ 0 and i pð Þ ¼ 1 and i jð Þ ¼ 0ð Þ for j ¼ 1; 2; . . . ; p� 1

� ð3Þ

The node/variable generates an event only when it receives an event from the
internal oscillator on port 0. The event is generated on the port corresponding to
the currents state. The event routing function g is:

gHW i; sð Þ ¼ s if i ¼ 0
0 otherwise

�
: ð4Þ

Frequency distribution of chip nodes and internode coherence. Figure 8a
shows the frequency distribution of the 2,048 on-chip nodes. Due to transistor
mismatch, the different neuron circuits have different natural oscillation fre-
quencies for the same current injection. Since the oscillation frequencies are real
numbers drawn from a probability distribution arising from the variability inherent
in the fabrication process, it is impossible for an oscillator to have a natural
frequency that is a rational multiple of another’s. Coupling between the oscillators,
however, could cause two oscillators with nearby frequencies to lock and effectively
have the same frequency. To uncover possible synchronization phenomena among
the oscillators, we use the mean phase coherence (MPC) measure, which for two

140

120

100

80

60

40

20

0
0 0

10
,0

00

10
,0

00

20
,0

00

30
,0

00

40
,0

00

50
,0

00

20
,0

00

30
,0

00

40
,0

00

50
,0

00

60
,0

00

70
,0

00

80
,0

00

Average number of cycles Average number of cycles

C
ou

nt

C
ou

nt

180

160

140

120

100

80

60

40

20

0

a b

Figure 7 | Performance of the prototype chip. (b) Histogram of the number of oscillation cycles (averaged over all nodes) needed by the chip to

find the solution of a 3-SAT problem with 50 variables and 218 clauses over 1,000 trials. (b) Histogram of the number of oscillation cycles (averaged over all

nodes) needed by the chip to find the optimal colouring of the 5� 5 queen graph over 1,000 trials.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9941

8 NATURE COMMUNICATIONS | 6:8941 | DOI: 10.1038/ncomms9941 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications

waveforms with instantaneous phases f1(t) and f2(t) is defined as:

MPC f1 tð Þ;f2 tð Þð Þ ¼ 1
T

Z
T

ej f1 tð Þ�f2 tð Þð Þdt

������
������ ð5Þ

We turned on all 2,048 oscillators and assumed the phase changes linearly from 0
to 2p between successive events from an oscillator. We calculated the MPC for each
pair of oscillators and the distribution of MPC values is shown in Fig. 8b (red line).
In equation (5), we used a time discretization of 0.1 ms and an integration time of
18 s. We randomly generated 2,048 double-precision frequencies from a Gaussian
distribution having the same mean and variance as the frequency distribution on
the chip and generated an artificial constant-frequency waveform for each of these
artificial frequencies. Using the same time discretization and total integration time
in equation (5), we evaluated the distribution of MPC values for all possible pairs of
the artificial constant-frequency waveforms. Ideally, all these MPC values would be
zero, but as shown in Fig. 8b, due to discretization and finite integration time, these
uncoupled artificial waveforms have non-zero MPC values. The oscillators on the
chip are more synchronized compared with the ideal case (uncoupled oscillators)
as evidenced by the heavier tail of their MPC distribution. Oscillator coupling is a
potentially serious problem as it compromises the exploration of all possible phase
relations, which is key to the exploration of the solution space. Most pairs of
on-chip oscillators, however, exhibit very low MPC values that are on par with the
MPC values for uncoupled oscillators. Maximum MPC value was 0.34 so no phase
locking was observed.

Mapping 3-SAT problems to the hardware prototype. Each problem variable is
represented by one binary node and each 3-SAT constraint/clause is represented by

a four-valued node. An event from the 1 port or the 2 port of a binary variable/
node denotes that the variable value is 0 or 1, respectively. The constraint/clause
node is in state 4 if the constraint is fulfilled, otherwise its state (1 or 2 or 3)
denotes which literal in the constraint last emitted an event. Consider a 3-SAT
constraint C1¼ (L13L23:L3). Events from port 2 of variables/nodes L1 and
L2 and events from port 1 of L3 should put the C1 node at state 4 (constraint
fulfilled). A complementary event, that is, an event that does not cause the
constraint to be fulfilled (for example, an event from port 2 of L3) should do
nothing if the constraint is fulfilled as we assume one, or both, of the other two
variables fulfil the constraint. However, if the constraint is not fulfilled, a com-
plementary event from the kth variable in the constraint should put the constraint
node in state k.

When the constraint node advertises its state by an event, events from ports 1, 2
or 3 should set the first, second or third variable, respectively, to a constraint-
fulfilling state. In the scheme described so far, when a constraint node is fulfilled
(in state 4), events from the variables will never move it away from the fulfilled
state. To address this, whenever the constraint node generates an event on port 4,
this event is routed back to the constraint node and moves it to an arbitrary
unfulfilled state (we arbitrarily choose state 3). Thus, within each oscillation cycle
of the constraint node, the node has to receive a constraint-fulfilling event from one
of its variables to go to state 4 and not to generate an event at the end of the
oscillation cycle that forces one of these variables to fulfil the constraint. The
constraint nodes were picked from among the nodes with the lowest oscillation
frequencies. The globally optimal solution is thus stable as the variable(s) fulfilling a
constraint will always be able to generate at least one event that puts the constraint
node in a fulfilled state during each cycle of the constraint node.

The above scheme is implemented by routing events according to Fig. 9a.
Events from variable nodes cannot dislodge a constraint node from the fulfilled

160

140

120

100

80

60

40

20

0
140 160 180 200 220 240 260 280 300

Frequency (Hz)

Mean=209.84
s.d.=22.00

C
ou

nt

250

200

150

100

50

0
0.00 0.02 0.04 0.06 0.08 0.10

Mean phase coherence

Uncoupled oscillators with random frequencies
Chip

P
ro

ba
bi

lit
y

a b

Figure 8 | Frequency distribution of chip nodes and internode coherence. (a) Frequency distribution of the 2,048 on-chip analogue oscillators for the bias

conditions used in the experiments in this paper. (b) Normalized distribution of MPC values for all pairs of physical oscillators on the chip (red), and for all

pairs of 2,048 artificially generated constant-frequency waveforms (blue).

1 2 3 4 C1

1 2 21 1 2 1 2

L1 L2 L3 L4

C2 1 2 3 4

1 2 3 4

4 3 2 1

Main

Helper

4-valued graph node

1-exclude
input

1-exclude
output

2-exclude
output

2-exclude
input

3-exclude
input

3-exclude
output

4-exclude
output

4-exclude
input

a b

Figure 9 | Implementing 3-SAT problems and graph colouring problems on the prototype chip. (a) Network implementing the 3-SAT problem C14C2

where C1¼ (L13L23:L3) and C2¼ (L23L33L4). Numbered squares indicate the output ports and, indirectly, the input ports of a variable and arrows

indicate how events are routed. For example, events from port 1 of L1 go to input port 9(‘1001’ in binary) of C1 that instructs C1 to go to state 4 or state 1.

Events from port 2 of L1 go to port 8 of C1 that instructs C1 to go to state 4. (b) Implementation of a four-colour graph vertex using two four-valued chip

nodes that are coupled so that an event from port 1, 2, 3 or 4 of one chip node puts the other node in state 4, 3, 2 or 1, respectively. This vertex receives

events from other vertices that go to the exclude input ports of the two chip nodes (red-dashed lines). For example, an event arriving on the one-exclude

input port goes to port 14(binary ‘1110’) on the ‘main’ chip node and port 7(binary ‘0111’) on the ‘helper’ chip node.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9941 ARTICLE

NATURE COMMUNICATIONS | 6:8941 | DOI: 10.1038/ncomms9941 | www.nature.com/naturecommunications 9

http://www.nature.com/naturecommunications

state or state 4. Note that state 4 of a constraint node is the lowest priority state
according to the state update function in equation (2) so an input event to a
constraint node that encodes that state 4 and state k (kA{1,2,3}) are allowed will
always put the constraint node in state k, if it was not already at state 4. If a variable
appears with the same sign in multiple constraints (negated or non-negated in all of
them), an event generated by one of these constraint nodes that forces this
common variable to go to a fulfilling state will automatically fulfil the other
constraints as well so we route such events to the other constraints so as to move
them to the fulfilled state as shown in Fig. 9a and prevent them from unnecessarily
flipping other variables. This scheme for solving 3-SAT is less powerful than the
probSAT-based approach described before. At the end of the cycle of an unfulfilled
constraint node, the constraint node simply flips the last variable in its domain to
generate an event. Due to the continuously shifting phase relations, the choice of
which variable to flip is done almost at random with no regard for how many other
constraints would be violated due to this flip.

Mapping graph colouring problems to the hardware prototype. To solve a
graph colouring problem on the prototype chip, we can use a simple scheme where
a graph vertex is represented by a chip node and events from port p of a node
(which indicates that the node is in state/colour p) go to input port 2n� 1� 2p� 1

(all 1s binary string except at position p; p index starts from 1) of all adjacent
nodes/vertices in the graph. We call these input ports the p-exclude input ports as
receiving an event on them instructs the node to go to any state except p, thereby
enforcing the constraint. However, this scheme will not work since a node always
goes to an allowed state that has the lowest index when responding to an exclude
event (equation (3)). All the nodes would thus quickly get stuck in the 1 and 2
states as the one-exclude and two-exclude events that the nodes send to each other
will not be able to move any node out of these 2 states. We use the more elaborate
scheme shown in Fig. 9b where two four-valued chip nodes are used to implement
one four-valued graph vertex. The value of this graph vertex is index of the last
event emitted by the ‘main’ chip node.

Pairwise inequality constraints are implemented by routing events from the
i-exclude output port of one vertex to the i-exclude input port of the other vertex.
Assume a vertex has value 1, that is, the state of the main (helper) chip nodes
are 1 (4). The state/colour of this vertex will only change if it receives an event
on the one-exclude port. In that case, the ‘main’ and ‘helper’ chip nodes go to states
2 and 1, respectively, since these are the lowest index allowed states in the two
chip nodes. The two chip nodes now have inconsistent states and whichever of
them generates an event first forces the other node to switch its state; for example,
if the ‘helper’ node generates an event first, it forces the ‘main’ node to take state 4.
A one-exclude input event effectively has a 50% chance of moving this graph node
to state 2 and a 50% chance to move it to state 4 due to the irregular phase
relations.

The scheme can be extended to six- and eight-valued vertices using three
six-valued and four eight-valued chip nodes, respectively, to represent a single
graph vertex and it is straightforward to show that using this scheme, the network
representing the colouring graph always uses all available colours. Three-, five- and
seven-colouring problems can be implemented by adjusting the even colour
schemes so that events are routed to input ports that exclude both the colour/index
of the source output port, as well as the highest index/colour that will then be
unused.

References
1. MacKay, D. J. C. Information Theory, Inference and Learning Algorithms

(Cambridge Univ. Press, 2003).
2. Kirkpatrick, S., Gelatt, D. & Vecchi, M. P. Optimization by simulated

annealing. Science 220, 671–680 (1983).
3. Garey, M. R., Johnson, D. S. & Sethi, R. The complexity of flowshop and

jobshop scheduling. Math. Oper. Res. 1, 117–129 (1976).
4. Zhang, S. & Constantinides., A. G. Lagrange programming neural networks.

IEEE Trans. Circuits Syst. II Analog Digit. Signal. 39, 441–452 (1992).
5. Nagamatu, M. & Yanaru, T. On the stability of lagrange programming neural

networks for satisfiability problems of prepositional calculus. Neurocomputing
13, 119–133 (1996).

6. Ercsey-Ravasz, M. & Toroczkai, Z. Optimization hardness as transient chaos in
an analog approach to constraint satisfaction. Nat. Phys. 7, 966–970 (2011).

7. Minsky, M. L. & Papert., S. A. Perceptrons: An Introduction to Computational
Geometry (MIT Press, 1969).

8. Rumelhart, D. E. & McClelland, J. L. Parallel Distributed Processing:
Explorations in the Microstructure of Cognition (MIT Press, 1986).

9. Hopfield, J. J. Neural networks and physical systems with emergent collective
computational abilities. Proc. Natl Acad. Sci. USA 79, 2554–2558 (1982).

10. Hopfield, J. J. & Tank, D. W. neural computation of decisions in optimization
problems. Biol. Cybern. 52, 141–152 (1985).

11. Hopfield, J. J. & Tank, D. W. Computing with neural circuits- a model. Science
233, 625–633 (1986).

12. Habenschuss, S., Jonke, Z. & Maass, W. Stochastic computations in cortical
microcircuit models. PLoS Comput. Biol. 9, e1003311 (2013).

13. Maass, W. Noise as a resource for computation and learning in networks of
spiking neurons. Proc. IEEE 102, 860–880 (2014).

14. Sipser., M. Introduction to the Theory of Computation (International Thomson
Publishing, 1996).

15. Balint, A. & Schöning, U. in Theory and Applications of Satisfiability
Testing–SAT 2012 16–29 (Springer, 2012).

16. Belov, A., Diepol, D., Heule, M. & Järvisalo, M. Sat Competition 2014. Available
at http://www.satcompetition.org/2014/ (2014).

17. Montanari, A., Ricci-Tersenghi, F. & Semerjian, G. Clusters of solutions and
replica symmetry breaking in random k-satisfiability. J. Stat. Mech. Theory Exp.
2008, P04004 (2008).

18. Sorensson, N. & Een, N. Minisat v1. 13-a sat solver with conflict-clause
minimization. SAT 2005, 53 (2005).

19. Braunstein, A., Mézard, M. & Zecchina, R. Survey propagation: An algorithm
for satisfiability. Random Struct. Algorithms 27, 201–226 (2005).

20. Ruiz, I. R. & Romay, M. G. in Nature Inspired Cooperative Strategies for
Optimization (NICSO 2011) 159–168 (Springer, 2011).

21. Deiss, S. R., Douglas, R. J. & Whatley., A. M. in Pulsed Neural Networks. (eds
Maass, W. & Bishop, C. M.) Ch. 6 157–178 (MIT Press, 1998).

22. Boahen, K. A. Point-to-point connectivity between neuromorphic chips using
address-events. IEEE Trans. Circuits Syst. II Analog Digit. Signal 47, 416–434
(2000).

23. Chicca, E., Stefanini, F., Bartolozzi, C. & Indiveri, G. Neuromorphic electronic
circuits for building autonomous cognitive systems. Proc. IEEE 102, 1367–1388
(Sep 2014).

24. Papadimitriou, C. H. in Proceedings 32nd Annual Symposium on Foundations
of Computer Science 163–169 (IEEE, 1991).

25. Mézard, M., Parisi, G. & Zecchina, R. Analytic and algorithmic solution of
random satisfiability problems. Science 297, 812–815 (2002).

26. Krzakala, F. & Kurchan, J. Landscape analysis of constraint satisfaction
problems. Phys. Rev. E 76, 021122 (2007).

27. Barahona, F. On the computational complexity of ising spin glass models.
J. Phys. A Math. Gen. 15, 3241 (1982).

28. Fasnacht, D. B. & Indiveri, G. in Conference on Information Sciences and
Systems, CISS 2011 1–6 (Johns Hopkins University, 2011).

29. Joshi, S., Deiss, S., Arnold, M., Yu, T. & Cauwenberghs, G. in Cellular Nanoscale
Networks and Their Applications (CNNA), 2010 12th International Workshop
on 1–6 (IEEE, 2010).

30. Merolla, P., Arthur, J., Alvarez, R., Bussat, J.-M. & Boahen, K. A multicast tree
router for multichip neuromorphic systems. IEEE Trans. Circuits Syst. I Regul.
Pap. 61, 820–833 (2014).

31. Indiveri, G. & Liu, S. C. Memory and information processing in neuromorphic
systems. Proc. IEEE 103, 1379–1397 (2015).

Acknowledgements
This work was supported by the European CHIST-ERA program, via the ‘Plasticity in
NEUral Memristive Architectures’ (PNEUMA) project and by the European Research
council, via the ‘Neuromorphic Processors’ (neuroP) project, under ERC grant number
257219.

Author contributions
The hardware architecture was developed by H.M. with minor contributions from L.K.M.
and G.I.; the probSAT network by L.K.M.; the hybridization with DPLL by H.M.;
the k-colouring solver equally by H.M. and L.K.M.; the hardware prototype by H.M.
Behavioural simulators were written and simulations were run by L.K.M. and H.M.
Experimental chip measurements were obtained by H.M. The paper was written by H.M.,
L.K.M. and G.I.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Mostafa, H. et al. An event-based architecture for solving
constraint satisfaction problems. Nat. Commun. 6:8941 doi: 10.1038/ncomms9941
(2015).

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9941

10 NATURE COMMUNICATIONS | 6:8941 | DOI: 10.1038/ncomms9941 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	title_link
	Results
	Description of the architecture
	Boolean satisfiability problems

	Figure™1Building blocks of the proposed architecture(a) General form of the computational unit in our architecture. This computational unit, or node, is™composed of asynchronous state-holding digital logic, and an analogue oscillator that generates a stre
	Figure™2Sample network implementing probSAT.Network corresponding to the example SAT problem C1andC2 where C1=(V1orV2ornotV3) and C2=(V2orV3orV4). For the constraints C1 and C2, the squares at the edge of the box indicate input ports (blue) and output por
	Graph colouring problems

	Figure™3Performance of the network implementation of probSAT.(a)-(d) Median flips and median events to solution on 3-, 4-, and 5-SAT problems for different solution strategies: for standard probSAT (standard), networks with instantaneous and guaranteed ev
	Prototype VLSI implementation

	Figure™4Performance of the network implementing the complete SAT algorithm.(a) Median of the average number of oscillation cycles to solution (averaged over the nodes in the network) for the ideal oscillatory network implementing probSAT and for the ideal
	Figure™5Network solving graph colouring.Network corresponding to the three-colouring of the graph V=V1,V2, E=(V1,V2). The squares at the edge of the box indicate input ports (blue) and output ports (red). Events are routed along the arrows. When two conne
	Discussion
	Table 1
	Figure™6Prototype chip and test system.(a) Layout of the minimum size (2ast3thinspmm) prototype chip fabricated using a 180-nm complementary metal-oxide semiconductor process that implements the architecture described in this paper. The 64ast32 node array
	Methods
	Description of the chip node
	Frequency distribution of chip nodes and internode coherence

	Figure™7Performance of the prototype chip.(b) Histogram of the number of oscillation cycles (averaged over all nodes) needed by the chip to find the solution of a 3-SAT problem with 50 variables and 218 clauses over 1,000 trials. (b) Histogram of the numb
	Mapping 3-SAT problems to the hardware prototype

	Figure™8Frequency distribution of chip nodes and internode coherence.(a) Frequency distribution of the 2,048 on-chip analogue oscillators for the bias conditions used in the experiments in this paper. (b) Normalized distribution of MPC values for all pair
	Figure™9Implementing 3-SAT problems and graph colouring problems on the prototype chip.(a) Network implementing the 3-SAT problem C1andC2 where C1=(L1orL2ornotL3) and C2=(L2orL3orL4). Numbered squares indicate the output ports and, indirectly, the input p
	Mapping graph colouring problems to the hardware prototype

	MacKayD. J. C.Information Theory, Inference and Learning AlgorithmsCambridge Univ. Press2003KirkpatrickS.GelattD.VecchiM. P.Optimization by simulated annealingScience2206716801983GareyM. R.JohnsonD. S.SethiR.The complexity of flowshop and jobshop scheduli
	This work was supported by the European CHIST-ERA program, via the ’Plasticity in NEUral Memristive ArchitecturesCloseCurlyQuote (PNEUMA) project and by the European Research council, via the ’Neuromorphic ProcessorsCloseCurlyQuote (neuroP) project, under
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information

