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Staphylococcus aureus continues to pose a major threat to public health and is responsible for

20,000 deaths each year in the US [1]. The problem is exacerbated by methicillin-resistant S.

aureus (MRSA) which, according to the World Health Organisation’s 2014 Antimicrobial

Resistance Global Report on Surveillance is associated with a>60% increase in mortality com-

pared to antibiotic susceptible S. aureus. Membrane transport systems can control both viru-

lence and antibiotic resistance and represent novel targets for therapeutic agents. Here we

discuss how efforts to overcome antimicrobial drug resistance could include novel agents tar-

geting important metabolic processes dependent on membrane transporters, which have the

potential to augment existing antibiotics.

Why investigate amino acid and peptide transporters as potential

therapeutic targets?

Amino acids are essential for sustaining cell integrity and metabolic homeostasis. In addition

to protein synthesis, amino acids are also precursors for biosynthesis of nucleotides, lipids and

cell wall components. S. aureus can synthesize many of these amino acids but will often prefer-

entially transport them into the cell from the external environment [2].

Limited glucose availability (for example in an abscess) represents an environment in

which catabolism of peptides or amino acids is important for S. aureus growth [3]. Bioinfor-

matic analysis reveals several pathways that enable S. aureus to catabolize multiple amino

acids, which in turn can generate key central metabolic intermediates such as pyruvate, oxalo-

acetate and 2-oxoglutarate. Reflecting this importance of amino acids in metabolism, S. aureus
has multiple oligopeptide permeases, free amino acid transporters and proteases to degrade

host proteins.

An analysis of 64 S. aureus strains revealed that amino acid metabolism genes are dispro-

portionately associated with the pangenome [4] indicating that targeting transporters associ-

ated with core amino acid metabolism is likely to have broader therapeutic potential against

diverse S. aureus isolates. The diversity and redundancy of amino acid, peptide, osmolyte and

nucleoside uptake systems also presents a significant challenge. There are at least 292 genes in

the USA300_FPR3757 genome predicted to encode membrane transporters, of which 120

appear to be associated with amino acid, osmolyte or nucleoside transport.

Bioinformatic tools are generally helpful in identifying and predicting the functions of puta-

tive transporters, but experimental work is required to verify the substrates transported by per-

meases and their physiological roles. Historically, studies on bacterial membrane transport
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systems focused on their contribution to growth and physiology in vitro. However, new data

on nutrient availability and metabolism in niche-specific models of S. aureus infection suggests

that amino acid transporters may also contribute to virulence and antibiotic resistance [5–19].

In this context, renewed effort to understand how, why and when amino acids are taken up by

S. aureus cells under controlled laboratory conditions, and in vivo, may identify specific mem-

brane transporters as novel and potentially druggable therapeutic targets. Such studies need to

focus on the role of these transport systems in metabolism, as well as their contribution to viru-

lence, and resistance to existing antimicrobial drugs. Analogues of substrates for membrane

transporters implicated in virulence and/or drug resistance may provide a starting point for

novel antimicrobial agents, which are less likely to impose a selective pressure for the emer-

gence of resistance. Future clinical trials would be needed to investigate the relevance of this

therapeutic approach in humans or animals.

What effect does the environment have on amino acid transport, and what

does this mean for virulence and resistance?

S. aureus can alter the total intracellular amino acid concentration and relative abundance of

individual amino acids in response to external osmotic and pH stress [2]. Mild ethanol stress

was shown to be associated with impaired acetate catabolism and ammonia accumulation and

directed the specific uptake of individual amino acids from the culture medium [20]. This

selective transport of amino acids may be driven by specific requirements for stress-responsive

protein synthesis, and/or stress-driven redirection of metabolic activity [21]. Nutrient limita-

tion and oxygen availability also impact amino acid uptake and catabolism, including during

planktonic and biofilm growth [22,23].

Intracellular amino acid concentrations influence physiology and virulence levels by con-

trolling the activity of the stringent response (ppGpp) and c-di-AMP nucleotide signaling sys-

tems, and the global transcriptional regulator CodY. Amino acid starvation-mediated

activation of the stringent response and increased c-di-AMP levels have pleiotropic effects

including expression of high-level β-lactam resistance [24–26]. When GTP and branched-

chain amino acid (BCAA) levels are reduced under nutrient-limiting conditions, genes nor-

mally repressed by CodY are activated and collectively play a role in adaption to starvation.

CodY also regulates several virulence factors [5,7], highlighting a link between environmental

conditions, metabolism, and virulence.

Do all amino acid transporters have the same effects on growth, virulence

and resistance?

Transport of several amino acids has been shown to be important for S. aureus in vivo survival,

virulence and drug resistance. Interplay between these transporters in different growth media

or host niches reveals both the complexity of amino acid transport mechanisms, as well as pos-

sible therapeutic opportunities to manipulate their activity in order to affect changes in viru-

lence and/or antibiotic resistance.

BcaP and BrnQ. S. aureus transports BCAAs using BcaP and BrnQ1-2-3 [5,7,8]. In vitro,

BrnQ1 is the primary transporter of leucine and valine, whereas BcaP plays a more significant

role in vivo. Interestingly, a brnQ2 mutant was hypervirulent in a systemic infection model,

potentially due to impaired isoleucine transport causing de-repression of CodY-controlled vir-

ulence genes, highlighting the importance of experimentally verifying the suitability of mem-

brane transporters as drug targets.

PheP. Mutation of predicted phenylalanine permease gene pheP impacted growth [19]

and attenuated virulence [18]. The lysine analogue S-(β-aminoethyl)-L-cysteine (thiosine) can
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inhibit lysine transport by the E. coli PheP homologue, LysP, suggesting that inhibition of

PheP with a phenylalanine analogue may attenuate S. aureus virulence.

PutP. Mutation of high-affinity proline transporter PutP, which is up-regulated by nutri-

ent depletion [14], attenuates virulence in a rabbit endocarditis model [13] even though OpuD

remains functional as a low-affinity proline transporter [15], suggesting that drug-mediated

inhibition of PutP-mediated proline transport may have therapeutic potential.

GltT. The major aspartate transporter GltT is important for S. aureus survival in a mouse

model of osteomyelitis. Although GltT does not transport glutamate [16], high concentrations

of glutamate in bone tissue block GltT activity including GltT-mediated aspartate transport,

making de novo aspartate biosynthesis essential for S. aureus survival and persistence in this

niche [16]. A gltT mutant exhibited increased sensitivity to heat shock, acetic acid and genta-

micin stress [17].

GlnPQ and AlsT. Mutation of the predicted glutamine transporter GlnPQ increased

TCA cycle activity, decreased polysaccharide intercellular adhesin biosynthesis, and signifi-

cantly reduced virulence in a rabbit endocarditis model [12]. Recently it was demonstrated

that GlnPQ does not transport glutamine and that AlsT is instead the main glutamine trans-

porter [9]. Moreover, AlsT-mediated glutamine uptake decreased c-di-AMP levels, which is

known to effect cell envelope homeostasis, virulence and β-lactam resistance [9,25].

CycA. Impaired transport of alanine in a cycA mutant increased MRSA susceptibility to

oxacillin and D-cycloserine (DCS), an alanine analogue antibiotic that interferes with peptido-

glycan (PG) biosynthesis [10]. Mutation of cycA mutant or exposure to DCS had similar effects

on PG structure [10], revealing interplay between alanine transport and susceptibility to β-lac-

tam antibiotics. β-lactam/DCS combinations acted synergistically against MRSA in a mouse

bacteremia model [10], suggesting that drug-mediated interference with CycA might amelio-

rate β-lactam resistance in MRSA.

TycP and TycABC. The low-affinity transporter TcyABC and the high-affinity permease

TcyP, which transport the sulfur-containing amino acids cysteine and cystine, were recently

implicated in virulence using a mouse model of systemic infection [11]. However, a double

TcyP-TcyABC mutant still established infection, indicating that an alternative sulfur trans-

porter(s) may facilitate glutathione transport, potentially complicating putative strategies to

target sulfur transport using cysteine/cystine analogues.

How can amino acid and peptide transport activity be exploited to develop

new therapeutic approaches for S. aureus infections?

Amino acid transporters are among the most abundant membrane proteins in S. aureus, with

niche- and environment-specific roles in maintaining cell integrity and metabolic homeostasis

in infected host tissue. Further advances in our understanding of the mechanisms underpin-

ning the contribution of amino acid permeases to virulence and antibiotic resistance may iden-

tify new drug targets for which the natural substrates can be identified. The therapeutic

potential of amino acid and peptide analogues has been explored for diseases ranging from

diabetes to cancer. For example the glycine analogues, glyphosate and aminomethylphospho-

nic acid successfully inhibited growth in eight human cancer cell lines, but not two immortal-

ized human normal prostatic epithelial cell lines [27].

An attractive feature of this strategy is the possibility of using amino acid analogues or new

drugs derived from amino acid analogues as lead compounds in studies to evaluate the physio-

logical impact of interfering with amino acid transport systems on the metabolism, growth

and virulence of S. aureus. The activity of amino acid analogue antibiotics such as D-cycloser-

ine and β-chloro-D-alanine against S. aureus demonstrates the effectiveness of drugs based on
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amino acid analogues [10,28]. Combining new drugs targeting amino acid transporters may

also enable re-purposing of other antibiotics as part of efforts to overcome resistance in S.

aureus and MRSA. Nevertheless, translation of this anti-transporter approach into clinical

practice will encounter several obstacles. Multiple substrates for some transporters may com-

plicate this approach. In addition, drugs identified in vitro may have limited activity in vivo or

unwanted activity against host cell membrane transporters and the beneficial microbiota.

Strategies to mitigate potential off-target side effects in a clinical setting will be needed to real-

ize the therapeutic potential of this approach.
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