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ABSTRACT

Large amounts of data are being generated annually
on the connection between the sequence, structure
and function of proteins using site-directed muta-
genesis, protein design and directed evolution tech-
niques. These data provide the fundamental building
blocks for our understanding of protein function,
molecular biology and living organisms in general.
However, much experimental data are never de-
posited in databases and is thus ‘lost’ in journal
publications or in PhD theses. At the same time
theoretical scientists are in need of large amounts
of experimental data for benchmarking and
calibrating novel predictive algorithms, and theoret-
ical progress is therefore often hampered by the
lack of suitable data to validate or disprove a theor-
etical assumption. We present PEAT (Protein
Engineering Analysis Tool), an application that inte-
grates data deposition, storage and analysis for re-
searchers carrying out protein engineering projects
or biophysical characterization of proteins. PEAT
contains modules for DNA sequence manipulation,
primer design, fitting of biophysical characterization
data (enzyme kinetics, circular dichroism spectros-
copy, NMR titration data, etc.), and facilitates
sharing of experimental data and analyses for a
typical university-based research group. PEAT is
freely available to academic researchers at http://
enzyme.ucd.ie/PEAT.

INTRODUCTION

The average protein is a polymer consisting of at least
100 amino acid residues, which fold into a dynamic 3D

structure stabilized by thousands of atomic interactions.
The amino acid sequence of many proteins has been
optimized to produce a specific 3D structure able to
perform highly specialized functions that are needed for
the survival of the host organism. A significant fraction of
biological and biotechnological research efforts are aimed
at dissecting, optimizing or modulating the functions of
proteins by changing their amino acid sequence using
protein engineering techniques such as site-directed muta-
genesis (1), directed evolution techniques (2) and
computer-aided protein design (3).

Protein engineering techniques have found a large
number of uses ranging from routine tasks such as the
identification functional residues and investigations of
the roles of individual amino acid residues, to more spec-
tacular applications such as determining the folding
nucleus of proteins (4), optimizing enzymatic performance
(5), designing novel proteins and re-designing proteins to
give them novel or altered functional properties (6,7).
Much of this success stems from the development of ex-
cellent computer algorithms for the analysis and optimiza-
tion of protein 3D structures, and especially in the areas of
protein stability (8), protein folding (9,10) and protein
interactions (11-13) have algorithms reached a high level
of sophistication and agreement with experiments. In
these areas, progress has been boosted by the availability
of large, high-quality experimental datasets of from data-
bases such as the PDB (14), ProTherm (15), BindingDB
(16), BIND (17), BRENDA (18) and PPD (19).
Development of algorithms for predicting other features
such as catalytic turnover rates, protein solubility, protein
pH-stability profiles, protein NMR titration curves and
protein dynamics has been hampered by the lack of
large experimental datasets in a digital form for bench-
marking structural bioinformatics algorithms. Indeed,
even the existing databases mentioned above are relatively
scarcely populated considering the amount of data
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generated on proteins and protein characteristics. There
are, for example, almost no digitized datasets available
on the effects of point mutations on enzymatic activity
despite more than 25 years of enzyme engineering and
countless numbers of published research papers.

There is no lack of biological database solutions for
storing experimental data as shown by the table of
contents in the annual database issue of Nucleic Acids
Research, and large amounts of data are produced and
published every year by the ever-expanding community
of biological research groups working on proteins and
enzyme engineering. The scarcity of digitized experimental
data on mutant enzymes, is thus neither due to lack of
databases or lack of data, but instead due to a low
benefit/cost ratio associated with database deposition.
There is no requirement to deposit data before publishing
research papers as it is the case for protein structures,
submission instructions and protocols are often hard to
find or non-existent, and there are no immediate benefits
to the research group other than the questionable pleasure
of being able to find one’s data on the internet.

Although, recent years have seen large improvements in
the data capture efficiency for genomics projects and
system biology efforts, the main data generating entity
in modern biological research remains the single-PI
research laboratory. In many laboratories, data capture
and database deposition is seen as a largely unrewarding
process, and information on the effects of point mutations
on protein function are often kept in spreadsheets, in la-
boratory notebooks or simply recorded in publications.
The graduation of PhD students and the departure of
post-doctoral workers and technicians often results in
the loss of data, with the consequence that experiments
sometimes have to be repeated and knowledge
regenerated. Although a Lab Information Management
System (LIMS) (20-26) could solve many of these
problems, the cost, administration overhead and lack of
short-term benefits often prevent PIs from implementing a
LIMS solution. In addition most LIMS are rigidly
designed to be used in assay laboratories and provide
few, if any, analysis tools.

Typically primers are designed and sequences verified
using DNA manipulation programs, gel pictures are
obtained using digital cameras, kinetic and stability data
are obtained using software connected to spectrophotom-
eters and calorimeters, and finally a nonlinear fitting
program is used to analyze kinetic and stability data.
Information is thus available in digital form in all stages
of a typical protein engineering project, and data capture
should therefore be readily achievable. Our object is to
integrate the data deposition steps with the analysis
tools in one application.

Integrating data analysis and data capture

There has been progress in recent years toward open
standards and protocols for interchange of biological
data, such as the use of the XML format (http://www
.w3.org/TR/xml) for easy data interchange. Such
standard formats are being used by, for example, the
Collaborative Computing Project for NMR (CCPN) (27)
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and the Structural Genomics Knowledgebase (SGKB)
(28). These projects are designed to provide standard
schema or data models for sharing across groups. At the
same time, software tools that do significant analysis
almost always need to reform the data into internal data
structures. This internal format should be as convenient
for analysis as possible as long as import/export tools are
able to get the data in and out of the software for others to
utilize.

In terms of end user tools, the BioBuilder project (29),
has demonstrated the use of purely open source tools to
build a web application platform for creating custom bio-
logical databases. Web-based LIMS, such as ‘HalX’ (22)
have obvious advantages, as they require no installation
and are easy to maintain. These web-based solutions,
however, usually consist primarily of data submission
forms with varying degrees of complexity and totally
lack the flexibility of a desktop application. Sesame (30)
moves beyond a simple LIMS and is designed for moving
data around inside large proteomics projects. We have
taken an approach with the emphasis on storage and
analysis in a single end user application, specifically
aimed at protein engineering and biophysical characteriza-
tion of proteins.

Our solution for protein characterization and protein/
enzyme engineering projects is to offer researchers an ap-
plication that contains functions for import, secure storing
and analyzing of experimental data, with an object
database back-end. The object database means we do
not have to worry about translation in and out of
external database schema. We instead provide export
tools to convert data to remove standard formats when
required.

By integrating data analysis with data capture, we hope
to incentivize researchers to store their data electronically
and thus facilitate database deposition. We have con-
structed Protein Engineering Analysis Tool (PEAT) to
be used at almost every stage of a typical protein engin-
eering experiment. PEAT thus contains functions for
designing point mutations, constructing PCR primers,
keeping track of freeze stocks, capturing primary experi-
mental data and analyzing the effects of point mutations
in the context of the protein 3D structure. PEAT further-
more enables multi-user data sharing, a change history
providing simple transaction rollback and provides a
rudimentary web-interface for publishing of data online.

MATERIALS AND METHODS
Software architecture

PEAT is written in the python (http://www.python.org)
programming language. The graphical user interface
(GUI) for the client application uses the Tk/Tcl toolkit.
Database functionality is provided by the Zope Object
Database (ZODB) (http://docs.zope.org/zodb/zodbguide/
index.html) which is a mature object database (31) origin-
ally designed to be used with the Zope web framework.
The application client can be used to open single-user local
databases or with multi-user functionality using remote
storages. In the stand-alone regime all data is stored
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locally in a project file and can be modified and saved
without a network connection. PEAT is available on
Linux, Mac OS X and Windows operating systems.
Several open source python libraries are utilized inside
PEAT: ‘numpy’ for numerical processing, ‘ZODB3’ for
the database and ‘matplotlib’ for plotting.

Data format and storage

Much of the internal data management within PEAT is
based around the Python dictionary data structure (32).
Python dictionaries are basically collections of objects
indexed by arbitrary keys. The ZODB persists the data
structures directly to disk (what is called a ‘storage’ in
the ZODB terminology) either locally or remotely. The
storages are ‘pluggable’; i.e. the database should behave
the same way no matter what type of storage is used.
PEAT can currently utilize three types of storage:

e FileStorage: Saves the database to a local file on disk.

e ClientStorage (ZEO): Basic network storage that sends
data to a TCP/IP server.

e RelStorage (default): Enables the backing store to be a
relational database system (RDBMS) such as MySQL.

The two latter remote stores allow multi-user access.
RelStorage (http://pypi.python.org/pypi/RelStorage) was
chosen as the default remote backend for PEAT since it
allows for better authentication and security features than
ZEO.

Binary files (such as images, pdf, zip or other media
files) can be stored in the database by the use of ‘blobs’.
The files are not added to the database directly, but stored
in the file system. PEAT includes a column type ‘file’ spe-
cifically designed for this. It is also possible to add files
from inside the Labbook. For remote Databases using the
ZEO backend any files you add will be available to other
users connecting to the DB. The RelStorage implementa-
tion is currently more limited in that the files need to be on
a shared file system, or users will not be able to see each
others files.

Multiuser data sharing

A primary challenge in multi-user data sharing is avoiding
conflicts between concurrent users of the same data. When
there is more than one person working on a project, at
some point two people will simultaneously alter the same
record/field without being aware of the other users change.
In the database world, this is known as ‘concurrency
handling’ and is usually implemented by a form of trans-
action locking. Only one user at a time can update that
field in the database record for example. The other
solution is to allow users to simultancously access the
field, and provide warnings where conflicts arise. This is
sometimes called ‘optimistic concurrency control’.

The ZODB uses the latter approach, i.e. it’s mode of
operation is ‘non-locking’. That means that if two users
are accessing the same record item at the same time,
nothing prohibits both of them from editing that item.
Whilst saving their changes, users will be notified if con-
flicts have arisen because someone else has changed the
same record/field item in the same protein since their last
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update. If there is a conflict, users are required to
manually intercede and resolve the conflict in the
context of the particular data. PEAT provides the user
with the choice of reverting their changes and then accept-
ing or overwriting the conflicting changes to the records/
fields in question.

Conflicts are minimized if users save and refresh their
view often. Users can optionally provide comments
annotating their change. If users wish to check if other
workers have made changes related to a particular
record, they can check the ‘change log’. This gives
comments, name of user and time/date details. This
method generally works quite well, assuming a reasonable
degree of organization between and within groups
collaborating on the same data concurrently.

At any time a user can undo any changes since their last
save. In addition previously committed transactions may
be rolled back. However this undo feature should not be
relied upon too heavily since subsequent changes to the
same records may prevent undo-ing past a certain
revision.

Access control/authentication

The RelStorage implementation utilizes the MySQL au-
thentication mechanisms. Therefore users can be added
and given access to individual databases, with read/write
or read-only privileges. The system allows for encrypted
transmission of data with SSL additional security, which
MySQL supports.

Database size and memory usage

There is no hard upper limit on database size in prin-
ciple—except the size of the filesystem and RAM (for
keeping the object index). Single filestorages of 20 GB
and more with ZODB are common practice. Loading a
large number of records, such as during a search, will use
more memory. The more memory available the better, but
the application keeps a limit on the number of objects in
memory to prevent swapping. This can be managed on a
per database basis by adjusting the object cache to a value
appropriate to your memory and database structure. For
example, a database might have small record sizes, but a
very large number of records, in this case you can set the
object cache high (~1000). We have tested PEAT with
databases of >40 000 records without problems.

Since the ZODB retains a history of previous transac-
tions, a large amount of redundant information may end
up being stored. To avoid this, the databases can be peri-
odically ‘packed’ to remove this redundant information
from before a certain time. The transaction history
before this time is lost.

Server Setup

RelStorage is a python library that utilizes MySQL as the
data store, giving the security and reliability of a mature
RDBMS. Therefore setup of your own server is essentially
no different to setting up a MySQL server. We recom-
mend using ‘phpMyAdmin’ for web-based administration
of the server, making it easy to add databases, users and so
on. Setup is described in more detail in our help page at
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http://enzyme.ucd.ie/main/index.php/PEAT_Server_
Setup. Readers interested in trying PEAT, but who do not
wish to host their own dataset, can contact the authors
and we will gladly host the project for you.

Availability and requirements

Project name: PEAT.
Project home page:
.php/PEAT_DB.
Operating system(s): Unix, Windows, OS X.
Programming language: Python.

License: free for academic use, commercial license for
industrial users.

http://enzyme.ucd.ie/main/index

RESULTS

PEAT is a workbench application designed to aid re-
searchers in analyzing their data quicker and in facilitating
efficient record-keeping to speed up productivity. In the
following we describe three typical everyday activities en-
countered in almost any protein engineering laboratory,
and describe how PEAT will contribute to effectivizing the
process. We continue to provide a more detailed descrip-
tion of PEAT and its components, and finally we provide
a brief outlook on the task of data management in modern
biology.

Rationalizing protein engineering results

Protein engineering and protein optimization projects
are guided by monitoring the mutation-induced change
in several protein biophysical characteristics such as
enzymatic activity, thermal stability, binding affinities
and the pH dependence of these properties. Observing
the changes in such characteristics for several mutant
proteins allows the scientist to obtain an intuitive under-
standing of how a certain protein/enzyme works, and
further mutations are constructed based on this intuitive
understanding until a mutant protein with the desired
characteristics are obtained. Such a process relies on
quick access to different types of primary experimental
data in an easy interpretable way, and every protein
engineer familiar with a situation where sheets of paper
with enzyme kinetics data, circular dichroism (CD) scans
and differential scanning calorimetry (DSC) melting
curves are scattered across a table while the project team
tries to make sense of the experimental data using a multi-
colored 3D protein structure on a computer screen. In
essence protein engineering is all about understanding
the connection between changes in sequence, changes in
structure and changes in biophysical characteristics and
the better and faster we are at analyzing the experimental
data and concluding on the inner workings of the target
protein, the better we will be at engineering novel proteins
with altered characteristics.

Figure 1 shows how PEAT handles the data analysis in
a protein engineering project elegantly; a specially
designed module is used to perform visual comparisons
across mutants. A click on a mutant protein highlights
the mutated residues and displays the modeled structure
(comparative modeling is performed on the fly) in Yasara
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(http://www.yasara.org), while the desired mutant protein
biophysical characteristics are shown with the character-
istics of the wild type. Calculated changes in AGgyq,
AGyping and select pKa values can be shown provided in
a table next to the experimental characteristics provided
that PEAT_SA (M. Johnston et al., in preparation) has
been installed and set up. A plugin for PEAT_SA is
designed to submit and retrieve jobs from the server and
integrate the results into PEAT. More detailed informa-
tion on this plugin and its usage is available on the PEAT
website.

Fitting experimental data

Recording experimental data with a high fidelity is a task
that often takes months for inexperienced researchers to
master. Choosing the correct equation for fitting the data
and assessing the error inherent in the fitted parameters
can take years, and is a skill that escapes many due to the
complicated statistical tests associated with the fitting pro-
cedure. PEAT assists in this task by including a large
number of equations for fitting protein biophysical char-
acteristics, by providing an automatic f-test-based selec-
tion of the correct fitting model, and by linking derived
data (e.g. enzymatic reaction rates in a Michaelis—Menten
plot) to the primary experimental data (product concen-
tration versus time) and by propagating experimental
errors throughout the fitting process.

Error assessment on individual data sets can be per-
formed by the click of a button, and is implemented by
randomly varying individual data points within a specified
range and refitting the equation. The resulting average
values of the fitted parameters are reported along with
their standard deviations.

Managing research projects

Research projects in modern laboratories typically involve
many mutant proteins, several data-generating experimen-
tal techniques, students and postdocs plus one or more
collaborators, often off-site or abroad. Keeping track of
progress in such a project is challenging because of the
need to share information with all project members, to
enforce deadlines and to make project decisions based
on all available information. PEAT makes it possible for
all project members to deposit their primary experimental
data in an online project database. Information such as
expression status, DNA sequences, gel pictures, relevant
publications, kinetic assays etc. can be uploaded and
shared with the project team thus allowing the lead PI
to efficiently monitor the progress of the project. A
further advantage is that experimental data can be fitted
directly in the PEAT module Ekin, thus allowing both
data and the physical interpretation of these to be
communicated efficiently. The deposition of data in the
online project furthermore ensures that data is preserved
when team members graduate or leave.

PEAT components

The three usage scenarios above demonstrate the general
purpose value of PEAT. In the following we provide a
more in-depth description of the individual modules of
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Figure 1. PEAT may be used to visualize changes in structure alongside changes in various biophysical characteristics. The figure shows the structure
of HEWL and its D52N mutant (mutated residue marked in red). Plots of three experimental properties are displayed alongside: 15N and 1HN
NMR titration curves for the ASP48 residue and kinetics data. In each case curves for wild type and mutant are overlayed. Plots can be changed
interactively to show all other available datasets; if the structure is displayed, data labels are interpreted as residue numbers and marked for easy

identification.

PEAT along with a description of the more technical
aspects of the program.

User Interface and functionality

The main screen in PEAT displays a spreadsheet view
where each row represents a single protein, while the in-
formation on measured biophysical characteristics are
kept in individual columns, the protein sequence and
3D-structural information is also accessible from this
table (Figure 2). Experimental data can added to the
spreadsheet by direct import, import from within a
sub-module or manual text entry into the cells. The pre-
defined data types currently supported by PEAT are: Ekin
format experimental data, arbitrary binary files (images,
word documents, PDF files etc.), hyperlinks, simple tables
(using the Labbook application), and a field type for
number/text values. For the predefined experimental
data types PEAT provides the ‘Ekin’ module that allows
the user to fit primary experimental data (titration curves,
kinetics data, CD denaturation curves) to a theoretical
model and extract physico-chemical quantities (K., K,
pKa values, etc.) of interest. Once the column for the par-
ticular experimental data type has been created the data
can be entered for each protein. Clicking on a cell given in

a given column provides the functions specific to its data
type.

The various PEAT modules are oriented at addressing
specific tasks encountered during a typical protein engin-
eering project. ‘DNAtool’ is used for primer design and
for confirming DNA sequencing results. The ‘Labbook’ is
geared to handling tabulated data and other simple
record-keeping tasks. The fitting of raw data from bio-
physical characterization experiments is carried out with
‘Ekin’. Figure 3 gives an overview of the PEAT
components.

Functional modules

PEAT consists of a main database window and four
sub-modules: DNAtool, Labbook, Ekin and a module
for performing graphical comparisons across records. In
addition functionality can be added in the form of plugins.
The main database window functions mainly as an
advanced spreadsheet that allows for storage and access
to the sub-modules. The main functionality in PEAT thus
lies in the sub-modules that we describe subsequently.

DNAtool. ‘DNAtool” displays the nucleotide sequence
alongside with the protein’s amino acid sequence and
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Figure 3. How the various components relate to each other in PEAT.
The ‘backend’ database/server components inside the dashed box are
not directly seen by the end-user and can in principle be replaced by
another data storage/sharing solution without substantially affecting
the other components. Plugins can be flexibly developed with know-
ledge of python. Developing a set of export tools would in principle be
necessary for data sharing with standard databases.

allows for manipulation of the DNA sequence by applying
primers to the nucleic acid sequence. DNA sequences can
be import from files in the PIR, FASTA, GenBank and
BSML formats.

Both normal and mutagenic PCR primers can be
designed automatically in ‘DNATool’, and the binding

site on the DNA strand is calculated on-the-fly, and pre-
sented with primer T,,, hairpin and primer—dimer scores.

Designing mutagenic PCR primers with DN Atool. The ap-
plication allows the quick and easy design of mutations in
any nucleotide sequence. Mutagenic primers are optimized
for number of mismatches, melting temperature, hairpin
score and primer-dimer score. Optional silent mutations
can be generated that insert or remove unique restriction
sites. All primers generated are stored in a project-specific
primer database that can be recalled for subsequent
viewing. Any primer can be aligned with a DNA
sequence by a simple click and all primers can be
manipulated by hand, to optimize length, melting tem-
perature, or restriction site changes.

DNAtool furthermore allows for fast analysis of se-
quences of mutant clones. A newly sequenced mutant
gene can be uploaded and aligned with the wild-type
sequence and the mutagenic primer simultaneously as
illustrated in Figure 4.

The nucleotide sequence can be searched for specific
motifs, and all restriction digest sites can be displayed in
a table, which can be sorted alphabetically by restriction
enzyme name, or by number of cuts that appear in the
sequence.

Labbook. The ‘Labbook’ is a general tool for storing
information that typically is stored in spreadsheets. In
a protein engineering context such information typically
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consists of the location of freeze stocks, expression batch
yields and status, purification procedures, gel pictures,
laboratory stocks of chemicals, ordering status, etc.
Labbook records can be filtered, sorted and searched.
Data can be imported into Labbook from text files or
entered manually. As in the main PEAT table, external
binary files (such as images) can be imported and
annotated inside a Labbook table. The Labbook allows
multiple sheets to be created in every instance of the
application, and individual cells in the Labbook can be
Labbook tables themselves.

Ekin. In PEAT, experimental data is recorded by the
‘Ekin” module (Figure 5), which contains the following

predefined data modes: general, protein stability,
Michaelis—Menten kinetics, pKa system, pH activity
profile, pH stability profile, and NMR titration.

Although any type experimental data can be loaded into
Ekin, the predefined modes are tailored to a specific type of
experiment to allow specific functionality and model
selections to be presented to the user. In all cases the
Levenberg—Marquart algorithm (33) is used for non-linear
curve fitting. New fitting models can currently only be
added by changes to the code, but we intend to provide a
user-end framework for designing new models in the near
future

All experimental data must be associated with a speci-
fication of the experimental conditions in order to be
useful. PEAT implements limited checks for the presence
of experimental conditions before allowing the data to be
saved to the database. Each of the predefined data types
contains experimental ‘meta data’ and reference informa-
tion specific to it (such as temperature, concentration, pH,
task status, user and time stamp).

| 560 670

5' GTCAGCGCGGGAAACGGCATGAACGCCTGGGTCGCCS !
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Ekin contains the following pre-defined modes:

Protein stability. Imported protein stability measurements
of thermal denaturation are routinely recorded by CD
spectroscopy, DSC or measurements of residual enzymatic
activity. Ekin provides appropriate fitting models for the
standard equations for deriving the required parameters
(i.e. melting temperature, 7T,,). Also present is a more
specialized plugin for performing van’t Hoff analysis
and extraction of enthalpy (A H,;,) values using a selection
of methods from the literature (34-36).

Full wavelength CD scans can furthermore be viewed
(ellipticity versus wavelength) although we currently do
not provide tools for assessing the a-helical or B-sheet
content of proteins.

Michaelis—Menten Kkinetics. Reaction kinetics measure-
ments recording the reaction rate versus concentration
can be fitted to the Michaelis—Menten model to determine
K., and V.. Competitive and uncompetitive inhibition
models are also available.

NMR titration. Single residue pKa values of titratable
groups or binding constants can be determined from
NMR recorded chemical shifts of carbon or nitrogen
atoms in the titratable group. NMR data can be
supplied to PEAT in form of a .csv text file containing
the chemical shifts or imported from data saved in the
format of the NMR peak assignment program
SPARKY (http://www.cgl.ucsf.edu/home/sparky/). An
additional plugin for analysis on pH Titration curves is
available and will be integrated into PEAT. This will add
the ability to export the data for use in external databases,
such as BioMagResBank (BMRB) (37).
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Figure 4. Sequencing with DNAtool. The wild-type DNA sequence is shown in green, with the corresponding amino acid sequence in black
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Figure 5. Comparison of multiple NMR titration datasets in Ekin. On the left side are data entry and fitting panels. On the right multiple selected
datasets can be compared/overlayed. Fitting curves are interactively updated in the plot window.

pH activity profiles. The pH dependence of enzymatic
activity can be recorded in Ekin and fitted to Bell
shaped curves for 2 and 3 ionizable groups. From the fit
to experimental data estimates of pKa and K., and their
statistical uncertainties are computed.

Searching and sharing PEAT data

Collaboration on a single project requires multi-user data
sharing, so that many users can interact with the database
simultaneously. Our solution utilizes the python Zope
Object Database (ZODB). An administrator simply sets
up a ZODB database and gives access privileges to indi-
viduals (see Materials and methods section for technical
details).

Data deposited in PEAT can be shared with collabor-
ators and comparisons can be performed on-the-fly. The
dataset can be searched by doing filtering on all simple
data fields (number or text), very much like a standard
database query, with filters joined by logical operators.
More complex data types, such as ekin, require specialized
handlers which we are developing (see http://enzyme.ucd
.ie/main/index.php/PEAT_Advanced_Search). The search
is currently performed on the client side and will be slower
for large databases over remote connections. In the near
future we will supply a web script that can do server side

searches and return results to a remote client much more
quickly.

Applications of PEAT in daily work

A typical scenario for which PEAT is well suited is in
directed evolution (DE) experiments (38). DE works by
generating large sets of diverse mutants from a parent
sequence and those with improved characteristics (e.g.
higher stability or activity) are identified using a screening
or selection step. Improved mutants are used as parent
sequences for the next round and so on. PEAT is ideally
suited for storing mutant sequences, the results of multiple
assays used for screening and keeping track of community
information in the Labbook.

Figure 6 illustrates a simplified workflow for a typical
protein engineering project.

Case studies

We have used PEAT in our own work with several
projects, and these are described briefly here. Some add-
itional functionality in these projects was carried out with
specifically written plugins. This requires knowledge of
python and the PEAT API, but illustrates the flexibility
of the concept to ‘add value’ specific to a project. Further
information and a tutorial on developing plugins is
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Figure 6. A typical workflow illustrating how one might complement experimental work with PEAT. A protein is sequenced and mutagenic primers
are designed in DNATool. The mutant clones are created and sequenced and sequences are checked in DNATool. Progress information on each
clone is kept in the Labbook and is updated as a clone proceeds through various stages towards expression. The data collected from the various
biophysical measurements and kinetic assays is imported into Ekin and fit to yield the desired parameters. Data for multiple mutants can then be
compared within the application. Multiple users in parallel doing different assays on the same protein/mutants or handling different mutants would

all share the same database.

available at http://enzyme.ucd.ie/main/index.php/PEAT _
Plugins

NMR titration database. We have used PEAT to con-
struct Titration_DB (39), a dataset providing statistics
on primary experimental NMR pH titration data. The
primary module utilized was ‘Ekin’ for data fitting and
plotting. Raw data was imported into Ekin, globally fit
using an algorithm to estimate the best fitting models
(single or multiple pKa values), and stored incrementally
as the work progressed. Also stored is the PDB structure
for each protein and experimental conditions if available
from the literature sources. This dataset is available via a
web interface (written with the PEAT libraries) which can
be searched and resultant curves dynamically generated.

Read-only access to this dataset is also available from
the PEAT client by using these connection settings:

hostname: http://peat.ucd.ie; 8080; project:

titration_db, password: 123

port:

Handling of large datasets with the PEAT API. This
project is an attempt to streamline data capture and
analysis of large amounts of data. The dataset consists
of multiple sets of kinetics and temperature assays for
approximately 170 enzyme mutants, dumped from the
spectrophotometer plate reader device into text files. For
each clone we store and fit: time-course absorbance data
(~90 time points) x eight substrate concentration
values x eight pH points x three replicates, temperature
data for five temperatures x 170 x three replicates. There
are a total of ~58 000 individual x—y datasets stored in this
database.

One objective of this particular study was to create a
processing pipeline to improve the previous method which
use spreadsheet macros. A specially written command line
plugin imports the raw data, extracts velocities, creates a
Michaelis—Menten curve and extracts K., values. These
steps being repeated for multiple pH values. The results
are all saved to the database for viewing and further
analysis in the client application. A full presentation of
the scientific conclusions of the above study is outside
the scope of the present article, but will be relayed in

subsequent communications (D. Farrell et al., in

preparation).

Sample projects. We have several freely accessible sample
databases available on our server. Up-to-date informa-
tion is kept here: http://enzyme.ucd.ie/main/index.php/
Sample Projects. Users are invited to access these
projects and try PEAT out.

The ‘hewlsample’ project is one example. This contains
two records from our own dataset on Hen Egg White
Lysozyme—the wild-type protein and a single mutant.
For both records we store amide nitrogen and proton
pH NMR titration curves for all residues, a number of
pH activity measurements, kinetics data, the sequences
in DNAtool with some primers and the wt PDB structure.
Also stored is a sample labbook.

Details for access are:

hostname: http://peat.ucd.ie; port: 8080; project:

hewlsample, user: guest, password: 123.

DISCUSSION

PEAT is a workbench for protein studies: a set of tools
integrated into one application with a solid object
database backend. The object database largely removes
the problem of keeping track of external database
schema and makes it easy to develop custom analysis
plugins flexibly. Though there is basic functionality for
laboratory management, PEAT is not simply a LIMS.
Our most important goal is to satisfy the needs of a
protein engineering laboratory, to prevent data loss and
to ease the analysis of multiple disparate types of data. We
have designed PEAT to provide the following advantages:

(1) Integrating data capture with analysis—using the
same software for data deposition as for analysis/
processing provides experimentalists with a motiv-
ation to systematically deposit their data. It is also
relatively easy to develop new plugins for PEAT.

(if) Coherent formats—consistency within and between
groups in recording results in one format (e.g. all
users depositing kinetics results into Ekin).
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(iii) Storage of experimental conditions—PEAT forces
researchers to deposit experimental conditions
along with primary data.

(iv) Multi-user data sharing allows fast and flexible data
sharing within or between research laboratories.

(v) Object database that allows fast development of
plugin modules without reference to database
schema.

PEAT is still under active development and has proved
stable enough to be used with several of our own projects,
and has ensured that data from graduated PhD students
are still readily available for re-analysis.

Further areas for improvement include the inclusion of
additional plugins to broaden the scope of available
features, the development of bulk data-fitting algorithms
for dealing with very large sets of biophysical character-
ization data and the addition of a variety of data export-
ing tools to facilitate deposition into standard databases
such as BMRB.

In summary, we hope that the multiple protein
biophysics-oriented features of PEAT combined with the
readily available features for data sharing will encourage
researchers to analyze and deposit their protein character-
ization data in online databases, and thus spur the
creation of high-quality datasets on the connection
between protein sequence, structure and function. Only
by amassing large amounts of high-quality experimental
data can we hope to fully understand complex character-
istics such as protein electrostatics, dynamics and
catalysis.
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