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Tumors can escape immune destruction through the development of antigen loss variants
and loss of antigen processing/presentation pathways, thereby rendering them invisible
to T cells. Alternatively, mechanisms of peripheral T-cell tolerance that would normally be
important for protection from the development of autoimmunity may also be co-opted to (i)
generate an immuno-inhibitory tumor environment, (ii) promote development of regulatory
cell populations, or (iii) cell-intrinsically inactivate tumor-specific T cells. Emerging evidence
suggests that T-cell function is impaired in hematological malignancies, which may
manifest from cognate interactions between T cells and the tumor. The immunological
synapse forms the cognate T-cell and antigen-presenting cell interaction and is the site
where key signalling events, including those delivered by co-inhibitory receptors, that
determine the fate of T cells occur. Here, we review evidence that events at the immune
synapse between T cells and malignant B cells and alterations in immune synapse
function may contribute to loss of T-cell function in B-cell malignancies.
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B-Cell Lymphoma and T-Cell Responses

Lymphomas are a range of lymphoid tissue malignancies arising principally from B cells, but
a minority (<10%) are derived from T cells (1). Broadly, two categories of B-cell lymphoma
are recognized. Hodgkin’s lymphoma (HL), characterized by multinucleated Reed–Sternberg cells
in affected sites, and non-Hodgkin’s lymphoma (NHL), which are highly diverse malignancies
constituting up to 90%of lymphoma cases in developed countries. It was estimated that in theUnited
States, lymphoma would represent approximately 5% of newly diagnosed cancers and account
for approximately 18,990 deaths in 2014 (2, 3). In B-cell chronic lymphocytic leukemia (B-CLL),
which is the most common chronic leukemia, malignant B cells accumulate in blood and bone
marrow.While classified as different diseases, similar treatment challenges exist for B-cell lymphoma
and B-CLL.

Modulation of T-Cell Responses by B-Cell Malignancies

A key risk factor for development of B-cell lymphoma is immunodeficiency or immune suppression
(4). Patients with HIV-1 and AIDS and children with primary immunodeficiency diseases have
elevated rates of B-lymphoma, and an aggressive form of EBV+ve lymphoma, post-transplant
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lymphoproliferative disease (PTLD), is common in immunosup-
pressed transplant recipients (5–7). These observations strongly
suggest that effective T-cell responses are required for prevention
and control of B-cell malignancies. Emergence of antigen loss
variants and disruption of antigen processing/presentation path-
ways can contribute to immune escape of B-lymphomas (8–11).
In addition, metabolically hostile and immune-suppressive tumor
microenvironments (12–15), and/or expansion or induction of
immunosuppressive cells, such as regulatory T cells (16), myeloid-
derived suppressor cells, and immunosuppressive macrophages
(17), may also play a role. However, compelling evidence sug-
gests that B-cell malignancies induce T-cell intrinsic alterations
resulting in loss of T-cell function. In EBV+ve lymphoma, T-cell
responses to EBV proteins serve as surrogates for tumor-specific
responses and are likely indicators of the response of T-cells to
non-viral lymphoma antigens. CD8+ T-cell responses to latency-
phase proteins expressed by EBV+ve lymphomas, such as EBNA-1,
are reduced in patients with endemic Burkitt’s lymphoma (BL),
whereas responses to lytic or latency phase proteins not expressed
by the tumors are preserved (18). Similarly, expression of T-cell
“exhaustion” markers in Hodgkin lymphoma (HL) is associated
with loss of function inEBV-specific CD8+ Tcells (19). In patients
with EBV+ve nasopharyngeal carcinoma, the absolute frequency
of LMP1-, LMP2-, and EBNA-1-specific CD8+ T cells is reduced
in blood (20, 21), and these T cells appear to be functionally inac-
tivated at the tumor site (22). These all suggest strong inhibition
of T-cell responses specific for B lymphoma antigens. Tumor-
induced T-cell exhaustion is well-characterized in many solid
tumors [reviewed in Ref. (23, 24)], leading to similar patterns of
tumor-specific T-cell dysfunction. Taking melanoma as an exam-
ple, tumor infiltrating T cells appear to be rendered unresponsive
locally in the tumor bed (25), and this can be associated with poor
responses to adoptive immunotherapy (26), substantial expression
of co-inhibitory molecules by tumor-specific T cells (27, 28), and
transcriptional profiles consistent with exhaustion (29). Overall,
these observations are consistent with tumor-associated T-cell
dysfunction and tumor-specific tolerance.

B Cells as Tolerogenic Antigen-Presenting
Cells

Effector and memory differentiation of T cells results when co-
stimulatory receptors (CD28, CD27, 41BB etc) are ligated by the
high levels of ligands on activated antigen-presenting cells (APC)
during cognate activation. But, in the absence of activation by
pathogen- or danger-associated signals, APC provide insufficient
signals for full T-cell activation and the outcome is peripheral T-
cell tolerance. While DC are well recognized as potently tolero-
genic cells in the steady-state (30, 31), reports extending back to
the 1990s imply B cells are also tolerogenic (32–34). Some reports
describe a direct role for B cells in peripheral deletion of naive
CD8+ T cells, possibly by CD95-mediated effects (35). Others
demonstrate contributions from both deletion and inactivation
for naïve CD8+ T cells (36) and abortive proliferation appears to
be a key requirement for tolerance induction (33, 36). More recent
evidence suggests B cells may also inactivate memory CD4+ T
cells (37).Moreover, we have shown that B cells expressing cognate

antigens rapidly inactivate memory CD8+ T cells and CTL (38).
Although “regulation” [e.g., through induction of regulatory T
cells (39–41)] may be induced by B cells under certain condi-
tions, T-cell intrinsic deletion and induction of unresponsiveness
(anergy) are prominent when T cells interact with tolerogenic
B cells. A subpopulation of IL-10-producing regulatory B cells
(Breg) has also been described [reviewed in Ref. (42)]. These
observations all suggest that B-cell lymphomas are potentially
highly tolerogenic.

Preclinical B-lymphoma models in mice typically employ A20
lymphoma cells or transgenic Eµ-driven oncogenes such as c-Myc,
and may express model neo-antigens like OVA in order to permit
analysis of the impact on T cells (43). Although innate immune
mechanisms impact on B-lymphoma in pre-clinical models, it
is clear that inactivation of CD4+ and CD8+ T cells specific
for tumor-expressed antigens also occurs (44–49). In models
described to date, tolerance mechanisms are similar to those
described for “tolerogenic B cells” with deletion and induction of
unresponsiveness playing key roles (43–49). Whether the tumor
cells themselves are tolerogenic or whether other APC presenting
tumor-derived antigens are the proximal APChas been addressed.
Whereas, host BM-derived APC appear to be required for CD4+
T cell tolerance in lymphoma models (44–46); it appears CD8+ T
cells directly interact with antigen-expressing tumor cells (47–49).
In fact, for CD8+ T cells, lymphoma cells appear to be the proxi-
mal APC for tolerance induction (49). Remarkably, OVA-specific
CTL adoptively transferred into mice bearing OVA-expressing
Eµ-myc lymphoma cells are rapidly deleted or rendered unre-
sponsive (47, 49). This is remarkably similar to our own findings
when CTL are transferred into mice where OVA is expressed
within non-malignant B cells (38), which might suggest that this
is an intrinsic outcome following the interaction between B cells
and CTL.

Immunological Synapse Structure and
Function

A critical component of the interaction between T-cells and APC
is formation of the immunological synapse (IS), defined as the
contact area between a T cell and an APC presenting a peptide
ligand. Various aspects of IS structure and function have been
reviewed in detail (50–53), but a brief introduction will be pro-
vided here. Upon TCR ligation by pMHC, nanoclusters contain-
ing TCR begin to assemble around the initial site of APC/T-cell
contact and these increase in size to form microclusters (MC) of
TCR and associated molecules such as co-stimulatory receptors
(e.g., CD28), tyrosine kinases (Lck and ZAP70), serine kinases
[protein kinase C (PKC-θ)], and adaptor molecules (LAT, SLP76)
(54). TCR MC begin to move toward the center of the ring of con-
tact between the APC and T cell (Figure 1) where they aggregate
to form a central supramolecular activation cluster (cSMAC) (55).

The cSMAC is surrounded by a ring of lymphocyte func-
tion associated antigen-1/intercellular adhesion molecule (LFA-
1/ICAM) making up the peripheral SMAC (pSMAC) (55, 61,
62). After initial antigen recognition, the IS is stabilized by TCR-
induced increases in LFA-1 affinity (63, 64). The pSMAC also
contains LFA-1-associated proteins that regulate LFA-1 adhesion
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FIGURE 1 | Differences are apparent between immunological
synapses formed by B cells and dendritic cells (DC). (A) B cells, B cell
tumors, and lipid bilayers form classical “bulls-eye” immunological synapses.
TCR-containing microclusters form in the dSMAC, contain Lck and ZAP70,
protein kinase C (PKC-θ), LAT, SLP76 etc., and migrate centripetally through
the LFA-1-rich pSMAC to the cSMAC. The cSMAC is segregated into a
central CD3hi region where CD3 accumulates and TCR is internalized to
resulting in termination of TCR signaling and an outer CD3lo region where the

signaling molecules accumulate either in conjugation [annular CD28/PKC-θ
conjugates and PKC-θ/filaminA (FLNa) clusters] or separately. (B) DC
typically form “multifocal” synapses where TCR-containing clusters are
segregated from CD28/PKC-θ containing clusters and no clear “ring” of
LFA-1 is formed. TCR signaling stabilizes the multifocal structure, particularly
the CD28/PKC-θ containing clusters. A prominent polarization of the DC
cytoskeleton is often present at the periphery. Based on Ref. (51, 53, 55–57)
(A); (58–60) (B).

(55, 65) and LFA-1 here serves a crucial role in T-cell function
by integrating internal cytoskeletal dynamics with the external
environment (64, 66). This is mediated through, among other
pathways, the actions of talin, an actin adapter protein, and RAPL,
a Rap1 effector (55, 65) thatmodulate LFA-1 adhesion. In addition
to its adhesive function, LFA-1 may be important by promot-
ing pMHC/TCR localization to, and CD45 exclusion from, the
cSMAC (67).

The pSMAC is surrounded by a more distal ring (dSMAC)
containing membrane proteins with large ectodomains such as
CD43 and CD45 (50, 68). The dSMAC appears to be the site of
initial pMHC/TCR MC formation and, once formed, MC move
centripetally through the pSMAC, facilitated by the concurrent
centripetal movement of LFA-1/ICAM (69), to accumulate in
the cSMAC (54, 70). Ca++ mobilization studies indicate TCR
signaling commences with TCR MC formation in the dSMAC,
and as MC move toward the cSMAC associations with ZAP70,
Lck, LAT, and SLP76 are lost suggesting that by the timeMC arrive
at the cSMAC signaling capacity is lost (70). Additionally, MC in
the cSMAC co-localize with markers of protein degradation and
ubiquitinylation including Cbl-b (54, 71), a known inhibitor of
TCR signaling. The cSMAC is also the site of TCR internalization
for degradation (54, 72). Consistent with these observations, there
is growing recognition that the cSMAC is a site for signal ter-
mination rather than stabilization of TCR signaling as originally

thought [reviewed in Ref. (73)]. TCR signaling is initiated by the
CD4 or CD8 co-receptors binding to theMHCmolecules present-
ing cognate peptide, which activates the co-receptor-associated
tyrosine kinase Lck. This in turn phosphorylates ITAM motifs
within CD3-ζ. The tandem SH2-domains of ZAP-70 become
engaged by the bi-phosphorylated ITAMs of CD3-ζ, and this
then arranges ZAP-70 in a way that leads to phosphorylation
of the transmembrane protein linker of activated T cells (LAT).
Phosphorylated LAT, in turn, serves as a docking site to which a
number of signaling proteins bind including SLP-76, which leads
to signaling by the Ras-Erk pathway, and Ca++ flux [reviewed in
Ref. (74)] and, ultimately, transcription of a range of gene products
including those of immediate/early genes c-Fos, c-myc, c-jun, NF-
AT, and NF-κB that ultimately lead to expression of IL-2, IL-2R,
and other molecules that allow T cells to proliferate, differentiate,
and exert effector function (75, 76).

An important point when considering the IS is that our under-
standing has been largely defined using in vitro models, some
employing “artificial” APC, and hence, differences may exist
between these and in vivo settings. For example, substantial dif-
ferences in IS structure exist between different T-cell/APC com-
binations [reviewed in Ref. (53)]. Whereas classic “bulls-eye” IS
are formed for T cell/B cell contacts (55, 77) and have been
considered the “archetypal” IS, multifocal IS are characteristic of
the interactions of DC with naive and activated CD4+ and CD8+
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T cells, for example Ref. (58–60). Additionally, T-cell/DC conju-
gates develop in the absence of antigen (78) whereas T-cell/B-cell
interactions do not (79). Interestingly, the antigen requirement for
cytoskeletal rearrangement differs between T cells and DC. Naive
CD4+ cytoskeletal polarization occurs during DC/T interactions
in the absence of antigen, DC cytoskeletal polarization, and the
formation of fully developed “multifocal” IS requires the presence
of cognate pMHC (58, 80), suggesting that rearrangements in DC
may be driven by the T cell.

B-Lymphoma Induced Alterations in IS
Formation

The “bulls-eye” IS formed between T cells and B cells (77) or B cell
tumors (55) potentially favors damping of TCR signaling (73), but
it is possible that altered IS formation by malignant B cells could
contribute to perturbations of T-cell function. Indeed, altered IS
formation between T cells and superantigen-pulsed malignant or
healthy B cells has been observed in follicular lymphoma (FL),
diffuse large B-cell lymphoma (DLBCL) (81), and in B-CLL (82,
83) as well as a mouse model of B-CLL (84). From these studies,
it appears that several critical steps during and subsequent to IS
formation are altered.

Events Occurring Within the cSMAC and
Signaling Zone

Phosphorylation of ZAP-70 is crucial for signaling downstream of
TCR. In the absence of ZAP-70 activity, formation of TCR/CD3ζ
clusters and exclusion of CD43 from the cSMAC proceeds, but
TCR-induced microtubule organizing center (MTOC) polariza-
tion and overall actin cytoskeletal changes and recruitment of
signaling molecules such as PKC-θ and LAT to the T-cell/APC
interface are impaired (85, 86). Interestingly, alterations in IS
formation by CD4+ or CD8+ T cells from FL, DLBCL, and B-
CLL (81–84) resemble those that occur in the absence of ZAP-70
activity (85, 86). For example, T cell/B cell conjugate formation
rate is reduced and F-actin polymerization at the IS substantially
impaired in CD4+ and CD8+ T cells isolated from tumor sites
or the blood of leukemic-phase FL patients compared to healthy
T cells or circulating T cells from non-leukemic phase FL (81).
Disruptions in actin-based motility and cytoskeleton polarization
have also been observed in acute myeloid leukemia (AML) (87).

Immunological synapse defects appear to be induced by tumor
cells themselves, as impaired IS formation is induced in healthy
allogeneic T lymphocytes by direct contact with FL, DLBCL, or
B-CLL cells tumor cells (81, 82). Exposure to malignant B cells
resulted in reduced recruitment of LFA-1 (particularly the high-
affinity form), Lck, tyrosine-phosphorylated protein, Itk, filamin-
A, and Rab27A to T-cell/APC contact sites (82), and these changes
were apparent on re-culture with healthy B cells. Associated with
this, functional alterations extended to reduced IL-2 production
and CTL activity in T cells exposed to FL, DLBCL, or B-CLL
cells (81, 82). Cell–cell contact was required and prevention of
cell adhesion during the primary exposure to malignant B cells
eliminated the effect (81, 82). These data suggest that interaction
with malignant B cells could induce long-lived changes in T cells

and, consistent with this, altered gene expression patterns have
been detected in CD4+ and CD8+ T cells recovered from B-
CLL patients and in tumor-infiltrating lymphocytes in FL (83, 88).
Interestingly, the immunomodulatory drug lenalidomide, which
shows effectiveness in B-lymphoma alone (89–91) or combined
with Rituximab (92–94), could reinstate F-actin polymerization
and signaling at the IS (81, 82).

Co-Inhibitory Molecules Within the IS

CTLA4 and PD-1 are co-inhibitory receptors that negatively reg-
ulate T-cell activation and act within the IS (Figure S1 in Sup-
plementary Material). Their actions at the IS level may differ
depending on the state of T-cell differentiation and the extent and
site of ligand expression (95). If ligated during the initial activation
of naive T cells by professional APC, co-inhibitory receptors can
impart long-lived inhibitory effects on T-cell function (96, 97).
While the effects of CTLA4 ligationmay bemost profound during
the initial development of a T-cell response when priming is
occurring in lymphoid tissues, PD-1 in addition to effects during
priming, powerfullymodulates effector responses in an apparently
reversible manner (98). CTLA4 is normally stored in secretory
granules but traffics to the cSMAC upon TCR activation (99)
and accumulation at the cSMAC is required for its inhibitory
function (100). CTLA4 has a higher affinity for CD80 and CD86
than CD28 and competes with CD28 resulting in termination
of PKC-θ-mediated NF-κB signaling (100, 101), mainly through
the prevention of the recruitment of the downstream scaffolding
signaling protein, CARMA-1 to the cSMAC, which is critical
for the NF-κB signaling pathway activation (102). Unlike CD28,
CTLA-4 trafficking to the IS is directly related to the strength
of TCR signaling, with higher levels occurring when TCR signal
strength is greatest (99). CTLA4 has been reported to be strongly
expressed by T cells in HL (103), and may contribute to damping
of T-cell function. In line with this, administration of CTLA4-
blocking antibodies such as Ipilimumab appears to have antitumor
activity in DLBCL and FL patients (104) and following HSCT for
HL and mantle cell lymphoma (105). Although testing of anti-
CTLA4 appears limited, it is currently being tested in combi-
nation with anti-PD-1. Interestingly, polymorphisms of CTLA4
have been associated with increased susceptibility toNHL in some
populations (106).

PD-1 is expressed by antigen-stimulated T cells and, in chronic
viral infection, contributes to T-cell “exhaustion” (98, 107), where
blockade can reinvigorate T-cell function, allowing expansion and
production of effector cytokines (108, 109). Other co-inhibitory
molecules appear to work in a similar way and PD-1 can act in
conjunction with other co-inhibitory receptors (23). Expression
of co-inhibitory receptor ligands such as PD-L1 by tumors is
associated with poor prognosis (110–113). For example, PD-L1 is
over-expressed in DLBCL and may contribute to poor outcomes
(114, 115). In mantle cell lymphoma, PD-L1 expression inhibits
T-cell proliferation and T-cell lytic activity (116). Similar results
have been reported in amurine AMLmodel (117). Engagement of
PD-1 concurrently with TCR ligation impairs TCR-induced phos-
phorylation of CD3ζ, ZAP-70, and PKC-θ (118). PD-1 expressed
on the surface of effector T cells is recruited to TCR MC upon
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FIGURE 2 | Impaired immunological synapse formation at the
T-cell/B-lymphoma interface. (A) The stylized, classical “bulls-eye” IS as
depicted in Figure 1. (B) During interaction with B lymphoma cells, IS
formation is altered and a reduction in actin cytoskeletal remodeling is evident
in the dSMAC. This likely leads to reduced formation and centripetal migration
of TCR/CD28 microclusters. As a result of altered cytoskeletal remodeling,
dSMAC formation is incomplete, and Lck, Itk, filaminA (FLNa),
tyrosine-phosphorylated protein, and Rab27A recruitment to the IS are also
reduced. Consequently, the pSMAC contains reduced amounts of LFA-1 and
this is primarily the low affinity form which destabilizes T-cell: B-lymphoma
conjugate formation. This leads to reduced tyrosine phosphorylation and TCR

signaling leading to altered downstream gene transcription. Reduced TCR
signaling could also perpetuate impaired IS formation through reduced
ZAP-70 signaling. Increased transcription of genes encoding some molecules
that inhibit T-cell activity or regulate motility or division (e.g., CTLA-4,FAS, TNF,
IL10, CD200) occurs in CD8+ tumor-infiltrating lymphocytes (CD8+ TIL) as
well as reduced transcription of some molecules that contribute to efficient IS
formation [e.g., actinin-1 (ACTN1)], IL7R, CCR7, ITGA5. Lenalidomide acts to
restore F-actin polymerization, rho-GTPase signaling, recruitment of
tyrosine-phosphorylated protein (tyrosine PP), and also improves conjugate
formation between T cells and B lymphoma cells. Based on Ref. (51, 53,
55–57) (A); (81, 88) (B).

their formation and is translocated to the cSMAC within the MC
(119) and the higher the ligand availability, the more localization
of PD-1 at the IS (120). During this process, SHP-2 is recruited
to the immunoreceptor tyrosine-based switch motif (ITSM) of
PD-1, which in turn causes dephosphorylation of TCR proximal
signaling molecules within MC (119) impairing TCR-induced
“stop” signals required for T-cell activation (121). Blockade of PD-
1 ligation partially restores IS formation between healthy T cells
and CLL cells (122). Blockade of co-inhibitory receptor/ligand
interactions through a PD-1 antibody promotes T-cell function
and immune-clearance of solid tumors (123, 124), and early indi-
cations suggest a similar effect in FL (125) and HSCT for relapsed
or refractory DLBCL (126). The use of anti-PD-1 antibody has
been extended and combinedwith the anti-CD20AbRituximab in

relapsed FL (127). Generally, the use of PD-1 blockage has shown
promising outcomes in the case of lymphomas (128).

Events Outside the cSMAC

Malignant B cell-induced alterations in the IS extend beyond
the cSMAC (Figure 2). Stabilization of pSMAC LFA-1/ICAM-1
interactions are impaired in T cells from FL and B-CLL patients
(81, 82). Alterations in Rho-GTPase signaling that likely under-
lie these IS alterations (83, 129) also appear to perturb LFA-1
mediated migration. Perhaps, more pertinent for the topic under
consideration, effective LFA-1/ICAM interactions are required
for memory T-cell differentiation. In the absence of ICAM-1-
mediated stabilization of the IS, long-lived T-cell/DC conjugates
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are reduced in frequency (130).While this has little effect onT-cell
activation, proliferation, and cytotoxicity, a key outcome is failure
of activated T cells to develop effective memory populations and
clonal deletion of activated T cells (130). It is plausible if perturbed
LFA-1/ICAM-1 interactions led to similar outcomes in human T-
cells, this could underlie the reduction in frequency and loss of
responsiveness of EBV-reactive T cells in EBV+ve lymphoma.

Future Directions

Understanding the mechanistic origins of IS alterations in lym-
phoma is an area that could significantly advance therapy. Tran-
scriptional profiling has provided insight into pathways through
which altered IS structure and function are potentially established
and downstream effectsmediated (83, 88). Several areas of investi-
gation are likely to be fruitful, but fundamental questions remain.
We have principally discussed the role of lymphoma cells as APC
for T-cell activation, but clearance of B-cell malignancies also
requires CTL recognition ofmalignant cells. This is an understud-
ied area, and dissecting the role of malignant B cells as “activating
APC” for CTL will require further sophisticated studies.

It is intriguing, however, to consider whether antigen-specific
tolerance mechanisms contribute and whether this could be a
cause or consequence of altered IS function. An outstanding
question is whether functional alterations observed in T cells is
a global effect or the consequence of cognate tumor interactions
that affects only tumor-antigen specific T cells. For instance, does
impaired IS formation occur during the primary interactions of
T cells with malignant B cells in a way that programs subsequent
outcomes for those T cells? Impaired priming of T cells to a model
antigen in a mouse model of B-CLL (84) suggests global effects,
and clinical (82) and mouse studies (38, 47, 49) suggest tumor
burden is an underlying determinant of the effect. Rituximab
treatment restores immune responsiveness in FL in keeping with
a suggestion that reduction in tumor burdenmay reduce the effect
on T-cell dysfunction (131). On the other hand, some mouse
studies indicate that T-cell dysfunction is restricted specifically to
T-cells that display specificity for lymphoma cells (49), indicating
tumor antigen-specificity of the effect, and T-cell dysfunction
in B-lymphoma shows some evidence of specificity for tumor-
derived antigens (18–22).Many of the IS alterations reported for T
cells from lymphoma patients could be caused by proximal defects

in TCR signaling (38, 132) found in tolerant T cells. Tolerant
T-cells demonstrate impaired translocation of ZAP70, LAT, and
phospholipase C γ1, into the IS and IS formation (133–137). Fur-
ther investigationmay reveal whether antigen dose/affinity effects
onZAP-70 signaling andTCRdampingmolecule recruitment (71,
138, 139) or modulation of lipid rafts (140–142) underlie some
of the effects observed. In vitro visualization of the defects of
the IS and testing the capacity of pharmacological agents such
as lenalidomide (89–91) or co-inhibitory receptor blockade to
modulate this, using live cell and confocal microscopy, might be a
promising transitional step for a more advanced understanding.

Summary

It is apparent many processes are perturbed at the IS in B-
lymphoma. Several of these processesmay act in concert to inhibit
generation of effective T-cell responses tomalignant B cells. Alter-
natively, a small number of processes with widespread influences
may underlie the changes observed. Further characterization is
required to determine whether “defects” observed are “down-
stream” of other tumor effects or whether the alteration in IS
function described is the primary cause of failure of effective T-
cell immunosurveillance. This is an area that could provide useful
insights for the development of more effective therapies for B-cell
and other malignancies.
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