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Layered double hydroxides (LDH) are being used as electrocatalysts for oxygen evolution
reactions (OERs). However, low current densities limit their practical applications. Herein,
we report a facile and economic synthesis of an iron-copper based LDH integrated with a
cobalt-based metal-organic framework (ZIF-12) to form LDH-ZIF-12 composite (1)
through a co-precipitation method. The as-synthesized composite 1 requires a low
overpotential of 337mV to achieve a catalytic current density of 10 mA cm−2 with a
Tafel slope of 89mV dec−1. Tafel analysis further demonstrates that 1 exhibits a slope of
89 mV dec−1 which is much lower than the slope of 284 mV dec−1 for LDH and
172mV dec−1 for ZIF-12. The slope value of 1 is also lower than previously reported
electrocatalysts, including Ni-Co LDH (113 mV dec−1) and Zn-Co LDH nanosheets
(101 mV dec−1), under similar conditions. Controlled potential electrolysis and stability
test experiments show the potential application of 1 as a heterogeneous electrocatalyst for
water oxidation.
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INTRODUCTION

Water is an important renewable energy source and has the potential to meet current energy
crisis needs via photochemical, electrochemical, and photoelectrochemical splitting to produce
oxygen and hydrogen green fuels (Conti et al., 2016; Shao et al., 2018). Oxygen evolution
reaction (OER) is the most crucial reaction of water splitting. OER is considered as strenuous in
contrast to HER due to sluggish kinetics (Walter et al., 2010; Man et al., 2011) since OER is a four
electron process and involves simultaneous fragmentation of the O-H bond and formation of an
O�O bond that needs 1.23 V vs RHE (Symes and Cronin, 2013).

Noble metals (such as Ir, Pt, and Ru) based heterogeneous and homogeneous electrocatalysts
have been reported as benchmark electrocatalysts which show high activity and low
overpotential values toward water oxidation. However, due to their scarcity, high cost, and
instability in alkaline medium, commercial application of these precious metal catalysts is
restricted (McCrory et al., 2013; Symes and Cronin, 2013; Lattach et al., 2014; Sheridan et al.,
2015). Focus has now been given to the abundant and non-precious materials which can replace
these benchmark electrocatalysts (Zhu et al., 2019). Diverse inorganic materials including metal
oxides (Surendranath et al., 2009; Smith et al., 2013; McCrory et al., 2015; Yamada et al., 2020),
amorphous materials (Zhou et al., 2013), perovskite structures (Kudo et al., 2000; Sabba et al.,
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2015; Jin and Bard, 2020a), hydro(oxy)oxide (Song and Hu,
2014), chalcogenides (Gao et al., 2012), olivines (Lee S. W.
et al., 2012), and polyoxometalates (Stracke and Finke, 2011;
Soriano-López et al., 2013; Han et al., 2014) have been explored
as potential candidates for OER catalysis.

Layered double hydroxides (LDH), also known as
hydrotalcite-like clays, have stacking of brucite octahedral
layers. Space between the cationic layer host anions to
compensate for the positive charge of the layer (Long et al.,
2014). These anions are replaceable. So, these materials exhibit
a specific property as an anion exchanger, which makes them
highly attractive in the field of catalysis (Khan et al., 2016). In
LDH class, the metal cations from transition element groups
undergo redox reaction under applied potential range. Metal
cations in the layer have been supposed to enhance the charge
transport of the catalyst. Electron hopping mixed mechanism
along the layer is believed to be a reason for charge transport,
which is ascribable to the inner redox reaction between
oxidized and reduced forms of metal cations (Aguilar-
Vargas et al., 2013).

NiFe-LDH, (Hunter et al., 2016), CoMn-LDH (Wang J. et al.,
2016), and NiCo-LDH (Yu et al., 2016) have been reported as
efficient electrocatalysts for water oxidation in alkaline medium.
Muller et al., presented that oxygen evolution activity of [NiFe-
LDH] nanosheets is associated with Pka of the conjugate acid of
interlayer anions (Hunter et al., 2016). Similarly, Sun et al.,
reported a three-dimensional porous film of NiFe-LDH
nanoparticles as an extremely efficient and durable oxygen
evolution catalyst showing low onset overpotential of 320 mV,
Tafel slop of 50 mV dec−1, and water oxidation current density of
60 mA cm−2 (Yu et al., 2016).

Metal organic frameworks (MOFs) are a new class of
microporous and crystalline materials (Aiyappa et al.,
2019) which attained considerable attraction toward
catalytic reactions due to their inherent features, including
their large surface area (He et al., 2019), tunable porosity, and
tailorable functionality (Corma et al., 2010; Gascon et al.,
2014). For electrocatalysis, these materials are considered a
promising template for the synthesis of metallic compounds
and carbon-based porous materials by post calcination
treatment. Active metal center and pre-functionalized
organic ligands also have great electrocatalytic properties.
MOFs show the characteristics of heterogenous catalysts
(Wang and Wang, 2015; Wang and Wang, 2016).
Undoubtedly, MOFs offer great promise as oxygen
evolution reaction electrocatalysts because the accessible
and tunable pores and open channels in MOFs can
provide the accommodation to electrolytes, facilitate
diffusion process of the reactants, and assist the transport/
evolution of generated oxygen gas. Moreover, homogeneous
distribution of metal cations in MOFs can serve as the
catalytic active sites for OER, while ligands in frameworks
would control the redox switching properties of neighboring
metal cations through diversifying its coordination mode or
chelating fashion (Ryu et al., 2015).

MOF-based nanomaterials have been found to be highly
active for CO2 photoreduction (He X. et al., 2017). Recently,

many MOF-based materials have been reported for OER,
i.e., Bulk Ni.Co-MOF (Thangasamy et al., 2020), 2D Co-MOF
nanosheets (Xu et al., 2018), 2D Ni-MOF@Fe-MOF
nanosheets (Wan et al., 2017), Cobalt-based MOF ZIF-9
(Shen et al., 2017), ZIF-67 (Xia B. Y. et al., 2016), MOF-74
(Lu et al., 2017), ZIF-8 (Amiinu et al., 2017), 2D Cobalt MOF
(Guan et al., 2017), and Ni@NC-800 (Xu et al., 2017). There is
a great focus on fabricating MOFs for enhanced conduction
and improved catalytic applications (Yu et al., 2016; Song
et al., 2020). Zhou et al., reported Ni-based metal organic
frameworks synthesized by using 4,4-biphenyldicarboxylic
acid as ligand for high performance supercapacitor
application where it exhibits higher specific capacitance,
rate capability, operating current density, charge transfer
resistance, high energy density, and ion diffusion
impedance (Cao F. et al., 2017).

Herein, we have explored the synergistic effect between a
cobalt-based zeolitic imidazolate framework (ZIF-12) and
Fe-Cu-based LDH toward OER. Iron is an active metal
that enhances the activity of a composite (Anantharaj
et al., 2017). While copper in +2 oxidation state is a hard
metal that is conductive in nature and its rigidity provides
stability to the catalyst (Wang T. et al., 2018). Incorporation
of iron species in LDH structures dramatically enhances OER
activity. This behavior has been attributed to the Lewis
acidity of Fe(III) (Li et al., 2017). However, the Fe(III) is
more than a Lewis acid. These redox active ions in the LDH
lattice cause a charge imbalance in M(OH)6 layer that is
compensated for by the intercalated anions (Li Z. et al., 2015).
Boettcher recommends layered structures as critically
important for highly efficient water oxidation catalysis
(Trotochaud et al., 2012). The main purpose of
incorporation of metal-organic framework with LDH is to
increase surface area and roughness factor. Here, we have
chosen cobalt-based MOF because of its rich redox properties
and distinctive ability to form high oxidation cobalt species
during electrolysis that are critical for OER catalysis (Liang
et al., 2011; Li et al., 2013; Li et al., 2016; Jin and Bard, 2020b).
Due to the porous nature of MOF, the roughness factor
increases. The greater the roughness factor (Rf) is, the
greater the activity (Xia C. et al., 2016) will be (Rf � Cdl/
60 mF cm−2). ZIF-12/FeCu-LDH composite 1) has shown a
remarkable activity with a low overpotential value, low Tafel
slope, and excellent stability in alkaline conditions toward
electrocatalytic OER.

EXPERIMENTAL

Synthesis of ZIF-12
The cobalt imidazolate framework (ZIF-12) was synthesized
using a solvothermal process as described previously (He et al.,
2013). A solution of cobalt nitrate was prepared by adding
410 mg of Co(NO3)2.6H2O to 7 ml of N,N′-dimethyl
formamide (DMF). Another solution was prepared by
adding 720 mg of benzimidazole (C7H6N2) to 7 ml of
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distilled water. Both the solutions were mixed, stirred
vigorously for 5 min, and transferred into a 20 ml Teflon-
lined autoclave and placed in an oven at 150°C for 48 h.

After reaction completion the autoclave was cooled to room
temperature and the product was collected after filtration and
washed with DMF as shown in (Scheme 1).

SCHEME 1 | Schematic illustration of the synthesis of ZIF-12.

SCHEME 2 | Schematic illustration of the synthesis of composite 1.
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Synthesis of ZIF-12/Fe-Cu LDH
Composite (1)
Co-precipitation method was used for the synthesis of composite
1. Initially, 354 mg of ZIF-12 was suspended in a solution of
Fe(NO3)2.9H2O (171 mg) and Cu(NO3)2.2H2O (362 mg) to
make a stoichiometric ratio of 2:1:3. A solution containing
both (OH−) and interlayer anion CO3

2− was added dropwise
through burette. The mixture was stirred overnight, and the
product precipitates were collected, washed with deionized
water, and dried under vacuum as shown in (Scheme 2).

Instrumental Characterization
Details of instrumental characterizations are available in the
supplementary information.

Fabrication of Working Electrode
For the fabrication of a working electrode, an ink of the desired
catalyst was prepared by adding 5 mg of 1–2 ml of analytical
grade ethanol, with 20 µl Nafion as a binder, and then sonicated
for 3 h. After sonication, ink was coated on the surface of a
fluorine-doped tin oxide (FTO) coated glass slide by using the
drop casting method. The coated FTO electrode was dried in an
oven at 70°C overnight.

RESULTS AND DISCUSSION

Characterization
The structural investigation was carried out via powder X-ray
diffraction (PXRD) analysis. The PXRD patterns of FeCu-LDH,
ZIF-12 and composite 1 are shown in Figure 1. The PXRD
pattern of the composite have all the characteristic peaks of
Fe.Cu-LDH and ZIF-12, which reveals that the incorporation
of Fe.Cu-LDH in ZIF-12 does not change the framework
morphology. The characteristic peaks relevant to LDH are at

2θ � 12°, 37°, and 39° and to ZIF-12 at 2θ � 4°, 6°, and 15°, which
are shown in the PXRD pattern of composite 1. In x-ray
diffractogram (003), (006), and (009) basal plane peaks appear,
corresponding to the stacking of the lamellae, characteristic of the
LDH structure (Cao A. et al., 2017; Wang et al., 2020; de Melo
Costa-Serge et al., 2021) (Figure 1). Electrostatic force of
interactions are expected to exist at the interface of both
Fe.Cu-LDH and ZIF-12. This is due to the presence of
hydroxyl ions (OH−) in LDH and cationic metal sites in ZIF-
12. From the PXRD pattern, it is clear that there is no major shift
in the peak positions of ZIF-12 which represent that ZIF-12
retained its structural integrity in the composite 1.

Transmission electron microscopy (TEM) was carried out to
observe the morphology and particle size of the composite 1
ingredients; the images are shown in Figure 2A,B. The LDH
particles mostly exist in nanosheet structures. There are also some
particles of LDH where many LDH layers overlap to form a
multilayer structure (Figure 2C). Figure 2D shows the high
resolution TEM image where d-spacing of 0.233 nm corresponds
to (015) crystal planes of LDH (Liu et al., 2019). This plane
corresponds to 2θ � 39 in PXRD pattern. Lattice fringes in the
TEM images confirm the presence of layer double hydroxide (LDH)
in the MOF linings (Li et al., 2010; Valdez et al., 2015; Wang S. et al.,
2016). The element mapping further reveals the presence of Fe, Cu,
Co, and C elements distributed uniformly (Figures 2E–H).

The X-ray photoelectron spectroscopy (XPS) studies of
catalytic samples (Figure 3) confirms the existence of Fe, Cu,
Co, C, and O elements. As shown in Figure 3A, two peaks at
780.7 and 795 eV are assigned to the binding energy of Co 2p3/2
and Co 2p1/2, respectively (Jiang et al., 2011; Yao et al., 2011), with
two satellite peaks which are located at 786 and 803 eV and can be
assigned to Co 2p3/2 satellite and Co 2p1/2 satellite, respectively
(Yao et al., 2011; Zhang et al., 2016; Hada et al., 2001). The value
of Co 2p3/2 is distant from the value of Co0 (i.e., 777.6 ± 0.7) but
close to the value of Co2+ (i.e., 779.8 ± 0.8) which shows that
cobalt is in +2 oxidation state. Figure 3B shows two peaks at 934
and 954 eV that are assigned to the binding energy of Cu 2p3/2
and Cu2p1/2 respectively with the satellite peak located at 943 eV
that can be assigned to Cu 2p3/2 satellite, which indicates +2
oxidation state of copper. The chemical oxidation state of iron in
Fe.Cu-LDH/ZIF-12 was investigated by XPS spectra. The peaks at
716.07 and 725.52 eV are attributed to 2p3/2 and 2p1/2 spin state
of Fe(III) for LDH lamellar structure (Rajeshkhanna et al., 2018;
Zhu et al., 2018) as shown in Figure 3C. At the same time, a
satellite peak located at 720.76 eV also corresponds to the Fe(III)
oxidation state. While Figure 3D shows the XPS result of oxygen,
where a peak appears at 532.6 eV which corresponds to the metal
hydroxides (Yu et al., 2013). XPS was also used to examine the
composition of the catalyst, before and after catalytic activity.
Supplementary Figure S3 shows the spectra observed for the C
1s, N 1s, O 1s, Fe 2p, Cu 2p, and Co. 2p regions for pristine and
post-catalytic samples.

The chemical composition of as obtained composite 1 was
further determined by EDX (Supplementary Figure S4 and
Supplementary Table S1). Thermogravimetric analysis (TGA)
curve shows that thermal decomposition occurs in two steps
(Supplementary Figure S2). In the first step, 14% weight loss has

FIGURE 1 | PXRD patterns of LDH, ZIF-12, and composite 1.
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been observed within the range of 100–250°C due to the removal
of adsorbed water molecules and other ions. In the second step,
52% weight loss has been observed within the range of 250–350°C
due to the removal of benzimidazole that follows the formation of
metal oxides.

Oxygen Evolution Reaction Studies
Electrochemical OER performance of 1 was tested using a three-
electrode system in KOH solution (1 mol L−1). Figure 4A shows
OER performance of FeCu-LDH with a different ratio, (1:3)
found to be an optimum composition ratio toward OER
activity. In Fe.Cu-LDH, the active sites are iron metal (Burke
et al., 2015) while copper provides conductivity; when we increase
the ratio of copper, the conductivity increases to some extent, and
OER activity also increases. Further increases in copper ratio
decreases OER activity because copper metal replaces most of the
active site in (1:5), which causes a decrease in OER performance
(Burke et al., 2015). A linear sweep voltammogram of a bare FTO

electrode indicated that the bare FTO has almost negligible
activity toward OER, generating an insignificant amount of
current (Figure 4B). Hence, it can be concluded that the
current density obtained is due to oxygen evolution reaction.
An LSV curve of pure iron-copper LDH and ZIF-12 coated on
FTO showed that both catalysts exhibited good activity toward
water oxidation and produced current densities of 46 mA cm−2

and 30 mA cm−2, respectively.
It is important to note that the activity of iron-copper layer

double hydroxide was significantly enhanced by the
incorporation of ZIF-12. LSV curve of composite 1 exhibited
much improved OER performance by producing a current
density of 96 mA cm−2. LSV results also demonstrate a
significant shift in the onset potential. Composite 1 indicated
water oxidation peak at an onset potential of 1.4 V vs RHEwhile it
was observed at 1.71 and 1.69 V vs RHE for LDH and ZIF-12,
respectively. These results revealed that the incorporation of ZIF-
12 into FeCu-LDH has increased the efficiency of the catalyst.

FIGURE 2 | TEM images of composite 1 (A–D). Elemental mapping with element distributions: carbon (E), copper (F), cobalt (G), and iron (H).
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The ideal overpotential for OER is 10 mA cm−2, which is a
conventional value to estimation current density (j) applicable to
solar fuel synthesis with 12% solar to H2 activity (Song and Hu,
2014). The composite 1 showed fast kinetics for OER by
producing a current density of 10 mA cm−2 at an overpotential
of 337 mV (Figure 4B). The overpotential required for 1 is
comparable to NiFe-HT (more than 0.32 V) and NiFe-A
(0.34 V) (Lu et al., 2014) but is much lower than those
required for LDH only (470 mV), ZIF-12 (510 mV), CoP/rGO
hybrids (340 mV) (Jiao et al., 2016), carbon fiber paper@FeP
(350 mV) (Xiong et al., 2016), CoP hollow polyhedron (400 mV)
(Liu and Li, 2016), and Ni–Co LDH nanoboxes (420 mV) (He
et al., 2017b). In order to further investigate and compare the
catalytic efficiency, 1 showed a mass activity of 18.86 A g−1 at an
overpotential of 0.34 V which is comparable to the mass activity
reported for the benchmark Ir/C (9 A g−1, 0.38 V, 0.1 M KOH)
electrocatalyst (Lee Y. et al., 2012).

Furthermore, another criterion to investigate and compare the
catalytic efficiency of different electrocatalysts under similar
experimental conditions is the turnover frequency (TOF)
calculation of the catalyst. Composite 1 exhibited a TOF of
0.01 s−1 at an overpotential of 337 mV.

The electrochemical double-layer capacitance (Cdl) of catalytic
sites is another important parameter to evaluate the catalytic

efficiency of the designed materials and it is associated with the
electrochemical active surface area (ECSA) [4, 43–46]. Cdl value
can be determined by adopting two pathways: 1) By measuring
the charging currents or capacitive currents obtained from the
scan rate dependent cyclic voltammograms in the non-Faradaic
capacitive current region (Ibrahim et al., 2019), 2) Employing
electrochemical impedance spectroscopy (EIS) for the estimation
of the frequency reliant impedance of the electrocatalytic system
(Zhuang et al., 2012; Brug et al., 1984; Huang et al., 2007). In this
regard, a potential sweep window was selected in the non-faradic
capacitive current region of the LSV scan by visual estimation of
LSV data considering that all the current within that potential
range is produced only due to the electrical double-layer charging.
Under the chosen potential range, LS voltammograms were run at
variable scan rates (5–30 mV s−1) (Figure 4C). The capacitive
current was calculated by spotting a single potential value (1.15 V
vs RHE) somewhere in the non-Faradaic capacitive potential
window. The plot of anodic current vs. scan rates in the range
from 5 to 30 mV s−1 gave a straight line with a slope equivalent to
Cdl (Figure 4D) (Zou et al., 2013). The measured double layer
capacitance from this analysis is 0.96 mF cm−2, which is much
less than NiCoP/C nanoboxes (146 mF cm−2), Ni–Co LDH
nanoboxes (9.15 mF cm−2), and NiCoP nanoboxes
(28.93 mF cm−2) (He et al., 2017a). The obtained Cdl value

FIGURE 3 | The X-ray photoelectron spectroscopy (XPS) spectra: Co 2p (A), Cu 2p (B), Fe 2p (C), and O 1s (D).
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indicated that the current density obtained in the catalytic region
arises only because of the faradaic processes, as the measured
charging currents values are insignificant.

In Figure 5A Tafel analysis demonstrated that 1 exhibits a
slope of 89 mV dec−1 which is much lower than the Tafel slope
values obtained for LDH (284 mV dec−1) or ZIF-12
(172 mV dec−1) in the current study. This value is also
lower than previously reported electrocatalysts, i.e., Ni-Co
LDH (113 mV dec−1) (Yu et al., 2016) and ZnCo LDH
nanosheeets (101 mV dec−1) (Aiyappa et al., 2019), under
the same conditions.

An advantageous parameter to elucidate the oxygen
production performance of a catalyst is to determine the
Faradaic efficiency (FE). FE is obtained by comparing the
experimental and theoretical yield of evolved oxygen during a
controlled-potential electrolysis (CPE) (Shah et al., 2018). In
order to investigate the FE of the catalyst, a CPE experiment
was performed at a constant potential of 1.45 V vs RHE for
3,000 s using similar electrochemical reaction conditions. In this
regard, an oxygen probe of the dissolved oxygen (DO) meter was
inserted into an air-tight anodic compartment purged with N2 gas
for ten minutes, before the experiment, and the concentration of

DO was monitored for an hour to establish a baseline. The charge
accumulated during the electrochemical reaction was used to
calculate the theoretical yield of O2 applying Faraday’s law for a
four-electron process. The proximity between the amounts of DO
detected during CPE and the theoretically measured oxygen
evolution yield concluded FE of 77% and ruled out the
possibility of a side reaction. The FE was calculated from
theoretical and actual yield, which is about 77%
(Supplementary Figure S1). A possible reason for composite
77% FE is probably the metals oxidation’s current contribution
along with water electrolysis.

In order to assess the long-term stability and robustness of
composite 1, a controlled-potential electrolysis (CPE)
measurement was carried out for 10 h using
chronoamperometry at 1.65 V vs RHE under constant
experimental conditions as presented in Figure 5B. The CPE
test indicated that the catalyst produced an excellent current
density of 18.3 mA cm−2 that remained constant until the last
minute of CPE. A vital test to evaluate the robustness of 1 after the
catalytic activity can be performed by performing LSV
measurements of both pristine and post-catalysis samples,
witnessing the onset potential for OER and recording the

FIGURE 4 | (A) LSV curves of FeCu-LDH with different ratios (B) Linear sweep voltammograms of LDH, ZIF-12, and 1, (C) Cyclic voltammogram of non-faradaic
region of Composite 1 at different scan rates, and (D) plot of anodic current vs scan rates of 1 coated electrode KOH solution (1 mol L−1) as an electrolyte.
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maximum j values. It is clear in the inset of Figure 5B that the
LSV of 1 coated modified electrode (before and after catalytic
activities) demonstrated insignificant change in the onset
potential and maximum current density values which
confirmed that 1 retained its structural integrity throughout
the catalytic phenomenon. Noticing the CPE results, it can be
inferred that 1 has strong potential to be used as a robust and
efficient OER electrocatalyst. Electrochemical impedance
spectroscopy has also been done to provide more insight into
electrocatalytic activity. The frequency range for EIS was between
0.1 Hz and 100 kHz for both FeCu-LDH and composite 1. A
Nyquist plot of real and imaginary components of EIS in
Figure 5C clearly shows that composite 1 has small arc or
small charge transfer resistance as compared to FeCu-LDH,
which reveals fast OER kinetics in composite 1. The most
probable mechanistic pathway for OER at electrified anode is
as follows:

[composite 1]p+OH− → [composite 1] −HOp + e− (1)

[composite 1] −HOp +OH− → [composite 1] −Op

+ H2O (1) + e− (2)

[composite 1] −Op +OH− → [composite 1] − OOHp + e−

(3)

[composite 1] − OOHp +OH− → [composite 1]p + O2

+ H2O + e−
(4)

The surface active site of composite 1 electrocatalyst was
initiated by hydroxyl specie (OH-) from water and the
removal of an electron to form composite 1-OH, which
further reacts with another OH- to form composite 1-O-
specie (Oxo-specie). This oxo-species combines with OH- to
form hydro-peroxide as an intermediate composite 1-OOH.
Finally, OH- species reacts with composite 1-OOH
intermediate in step (III) to give O2 molecules in step (IV) of
the mechanistic pathway of OER. This is in good agreement with
the literature reports (Jiao et al., 2015; Suen et al., 2017; Lee et al.,

FIGURE 5 | (A) Tafel slops of Fe.Cu-LDH, ZIF-12 and 1, (B) controlled-potential electrolysis (CPE) of 1 in basic conditions and (inset) LS voltammograms of pristine
and post-catalysis of 1 modified FTO electrodes, and (C) electrochemical impedance spectra of non-faradaic region of 1 coated electrode recorded in KOH solution
(1 mol L−1) as an electrolyte.
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2018; Sapner et al., 2020) and is summarized in Eqs. 1–4. Table 1
shows the comparative analysis of different reported benchmark
electrocatalysts with composite 1.

CONCLUSION

This work represents the integration of nonprecious metal-based
LDH with ZIF-12 which provides structural and compositional
advantages and could have fruitful applications in the hydrogen
economy. LDH/ZIF-12 composite (1) has been synthesized
through the co-precipitation method. Composite 1 showed
enhanced OER performance as compared to individual
components, i.e., iron-copper layer double hydroxide and
ZIF-12. Chronoamperometric studies including controlled-
potential electrolysis show that one offers a higher current
density, requires low overpotentials, and has high mass

activity, faradaic efficiency, and stable catalytic response for a
longer period (ca. 10 h). Hence, it can be concluded that 1,
having excellent water oxidation performance, can be introduced
as an efficient and stable electrocatalyst with magnificent
commercial importance.
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