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Low-Dose Abdominal CT Using a Deep Learning-Based 
Denoising Algorithm: A Comparison with CT 
Reconstructed with Filtered Back Projection or Iterative 
Reconstruction Algorithm
Yoon Joo Shin, MD1, Won Chang, MD2, Jong Chul Ye, PhD3, Eunhee Kang, PhD3, Dong Yul Oh, BS4,  
Yoon Jin Lee, MD2, Ji Hoon Park, MD2, Young Hoon Kim, MD2
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Program in Bioengineering, Seoul National University, Seoul, Korea

Objective: To compare the image quality of low-dose (LD) computed tomography (CT) obtained using a deep learning-based 
denoising algorithm (DLA) with LD CT images reconstructed with a filtered back projection (FBP) and advanced modeled 
iterative reconstruction (ADMIRE).
Materials and Methods: One hundred routine-dose (RD) abdominal CT studies reconstructed using FBP were used to train the 
DLA. Simulated CT images were made at dose levels of 13%, 25%, and 50% of the RD (DLA-1, -2, and -3) and reconstructed 
using FBP. We trained DLAs using the simulated CT images as input data and the RD CT images as ground truth. To test the 
DLA, the American College of Radiology CT phantom was used together with 18 patients who underwent abdominal LD CT. LD 
CT images of the phantom and patients were processed using FBP, ADMIRE, and DLAs (LD-FBP, LD-ADMIRE, and LD-DLA images, 
respectively). To compare the image quality, we measured the noise power spectrum and modulation transfer function (MTF) 
of phantom images. For patient data, we measured the mean image noise and performed qualitative image analysis. We 
evaluated the presence of additional artifacts in the LD-DLA images.
Results: LD-DLAs achieved lower noise levels than LD-FBP and LD-ADMIRE for both phantom and patient data (all p < 0.001). 
LD-DLAs trained with a lower radiation dose showed less image noise. However, the MTFs of the LD-DLAs were lower than 
those of LD-ADMIRE and LD-FBP (all p < 0.001) and decreased with decreasing training image dose. In the qualitative image 
analysis, the overall image quality of LD-DLAs was best for DLA-3 (50% simulated radiation dose) and not significantly 
different from LD-ADMIRE. There were no additional artifacts in LD-DLA images.
Conclusion: DLAs achieved less noise than FBP and ADMIRE in LD CT images, but did not maintain spatial resolution. The 
DLA trained with 50% simulated radiation dose showed the best overall image quality.
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obtained regarding the dependence of performance on 
training conditions.

Therefore, this study tried to assess the image quality 
of LD CT using a deep learning-based denoising algorithm 
(DLA) and compare it with filtered back projection (FBP) 
and advanced modeled iterative reconstruction (ADMIRE) 
methods, as well as evaluate the changes in performance 
associated with various DLA training conditions.

MATERIALS AND METHODS

We conducted two separate phantom studies and one 
patient study to evaluate the performance of DLAs. First, 
we collected CT images from 100 patients and built a 
training set. The DLAs was trained with simulated LD CT 
from 100 patients as input and the RD CT of those patients 
as the ground truth under various training conditions. 
After training, a phantom study was performed to validate 
the DLAs. Finally, various DLAs were tested in another 
phantom study using the noise power spectrum (NPS) and 
modulation transfer function (MTF), as well as patient data 
from another 18 patients (Fig. 1).

Patients Included in the Training and Test Sets 
Our Institutional Review Board approved this retrospective 

study and waived the requirement for obtaining informed 
consent. One-hundred patients who had undergone RD 
abdominal CT in our institution from August 2017 to 
January 2018 and had no metallic objects in the scan 
range were included to build the training set for DLA. LD CT 
images at dose levels corresponding to 13%, 25%, and 50% 
of RD were simulated from RD CT images and reconstructed 
using FBP. This part of the study relied on ReconCT 
(Siemens Healthineers, Forchheim, Germany), a proprietary 
reconstruction software that allows simulating CT scans 
acquired with reduced radiation dose based on the raw 
data of original scans (19). Siemens Healthineers provided 
technical support in obtaining the simulated scans.

To test the image quality improvement obtained using 
DLA in the clinical environment, we recruited another 18 
patients who underwent LD (quarter dose) abdominal CT 
for clinical reasons from December 2017 to May 2018 as a 
test set. Therefore, we included 100 patients in the training 
datasets and 18 patients in the test datasets, regardless 
of their disease or chief complaint. Most patients were 
outpatients receiving routine cancer surveillance or who 
had nonspecific symptoms such as abdominal pain. In our 

INTRODUCTION

Computed tomography (CT) is a widely used imaging 
modality because of its wide availability. However, concerns 
regarding radiation exposure persist as CT itself emits 
ionizing radiation and the number of CT scans performed 
increases (1, 2). Since reducing the radiation dose inevitably 
affects the performance of CT, many attempts have been 
made to find the best compromise between radiation risk 
and diagnostic performance (3-6). In this context, one of 
the most successful attempts is the use of the iterative 
reconstruction (IR) technique in CT image reconstruction (4, 
6-10). However, commercially available IR algorithms are 
vendor-specific and only partly disclosed by manufacturers. 
Furthermore, it can present the disadvantage of requiring 
long computation times to execute repetitive reconstruction 
process (7).

Deep learning techniques have become widespread in the 
medical imaging field due to recent advances in machine 
learning and improvements in hardware performance. 
Image denoising algorithms using artificial neural networks 
have been intensively researched and developed (11-13). 
Recently, the possibility of using deep learning to improve 
the image quality of CT has been proposed (14, 15). 
According to these studies, deep learning algorithms trained 
using the acquisition of routine-dose (RD) CT and simulated 
low-dose (LD) CT images of the same patient provide similar 
quality to conventional RD CT (14, 15). Kang et al. (14) 
proposed a new convolutional neural network architecture 
optimized for CT denoising, which combines wavelet 
transformation with deep-processing. The performance of 
this denoising framework was evaluated using the dataset 
of the American Association of Physicists in Medicine Low 
Dose CT Grand Challenge (16) in 2016 and they were able to 
reconstruct high-quality images even from quarter-dose CT 
images.

However, previous studies have several limitations. 
First, they used only simulated LD CT images for testing 
and fundamental studies on the applicability of these 
techniques in the clinical environment are lacking. 
Second, image quality was evaluated using a limited set of 
metrics and a quantitative evaluation of noise and spatial 
resolution was not performed (14, 15, 17, 18). Third, they 
did not compare the quality of CT images processed using 
deep learning algorithms to that of commercially available 
IR methods. Finally, since the previously developed models 
were trained only under fixed conditions, no insight was 
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institution, we used quarter dose abdominal CT to reduce 
the radiation risk in young patients (under 45 years of age) 
with abdominal symptoms, thereby we could use these LD 
CT to test the DLA.

Deep Learning Algorithm
The deep learning algorithm that was implemented was 

a deep convolutional framelet-based denoising algorithm 
(18), which was an advanced version of that proposed 
by Kang et al. (14) in 2016. We only used a feed-forward 
network, except for the iterative process, which used a 
recursive neural network. Further details can be found 
in the original article by Kang et al. (18). All the model 
training and evaluation processes were carried out under 
the same computing environment, MATLAB (Version R2017a, 
The MathWorks, Inc., Natick, MA, USA) using two compute 
unified device architecture (CUDA)-enabled Nvidia Titan 
12 GB graphic processing units (Nvidia Corporation, Santa 
Clara, CA, USA) with CUDA 8.0/cuDNN 7.0.5 dependencies.

We trained the DLAs using the simulated LD CT images 
at each dose level as the input data and the RD CT images 
reconstructed with FBP as the ground truth. As a result, 
DLAs were developed under various training conditions, 
with three dose levels (DLA-1, -2, and -3 for the 13%, 25%, 
and 50% dose levels, respectively) and varying number of 
training cases (n = 1, 3, 5, 7, 10, 20, 50, and 100).

CT Scanning Protocol
All patients included in the training set underwent RD 

abdominal CT with portal venous phase on a 128-channel 
scanner (SOMATOM Definition Edge, Siemens Healthineers) 

using the following parameters: 128 x 0.6 mm collimation, 
gantry rotation time of 0.5 seconds, reconstruction slice 
thickness of 4.0 mm, slice interval of 3.0 mm, tube 
potential of 100 kVp, variable milliamperage determined 
by x-, y-, and z-axis-automated dose modulation (CARE 
Dose 4D, Siemens Healthineers) with a reference tube 
current-time of 210 effective mAs per patient. The timing 
of the portal venous phase scan was optimized using the 
fixed time-delay technique of 90 seconds after contrast 
administration.

For the test study, 18 patients underwent quarter dose 
abdominal CT with portal venous phase by changing the 
reference tube current-time to 40 effective mAs per patient 
under the same scan protocol as above. 

All LD CT images were reconstructed using both FBP and 
ADMIRE methods and LD-DLA images were obtained from 
LD-FBP images using DLAs without raw projection data.

Phantom Studies
We performed CT scans of the American College of 

Radiology (ACR) CT accreditation phantom (Gammex 464, 
Sun Nuclear, Middleton, WI, USA) to quantitatively evaluate 
image quality. The phantom studies were also conducted 
under the same scan protocol with fixed current-time values 
(50 mAs or 200 mAs to approximate a 25% or 100% dose, 
respectively) without dose modulation.

To assess the objective image quality, the NPS and MTF 
were calculated using the ACR phantom. Because of the 
ethical issues of performing CT scans at multiple doses in a 
single patient, quantitative image analysis was performed 
using phantoms. NPS is a comprehensive metric of noise 

Fig. 1. Schematic diagram showing study population in phantom and patient studies. ACR = American College of Radiology, ADMIRE = 
advanced modeled iterative reconstruction, DLA = deep learning-based denoising algorithm, FBP = filtered back projection, LD = low-dose, MSE = 
mean squared error, NPS = noise power spectrum

To train DLA

Routine dose abdomen CT of 100 patients
  (August 2017–January 2018)
-  Input: simulated LD FBP CT (13%, 25%, 50%)
- Ground truth: routine dose FBP CT

Phantom study
-  Apply each DLAs to customized body 

phantom
-  Measure MSEs between each DLAs and 

FBP

Phantom study
-  Apply DLA, FBP, and ADMIRE to quarter-dose 

CT of ACR phantom
- Measure NPS and MSE

Patient study
-  Apply DLA, FBP, and ADMIRE to quarter-dose 

CT of patient
-  18 patients with quarter-dose abdomen CT  

(December 2017–May 2018)
- Measure mean image noise level

To validate DLA To test DLA
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experience in CT interpretation) measured the mean image 
noise of the LD-DLA, LD-FBP, and LD-ADMIRE images 
from 18 patients. The mean image noise was measured 
by manually placing oval ROIs (range, 100–150 mm2) 
in homogeneous regions of the liver, subcutaneous fat, 
paraspinal muscles, and abdominal aorta. Each ROI was 
placed at the exact same location for the LD-DLA, LD-FBP, 
and LD-ADMIRE images using a copy-and-paste function.

Qualitative image analysis of image noise, spatial 
resolution, and overall image quality was performed. 
Another abdominal radiologist with 25 years of experience 
independently evaluated the 90 datasets of the portal 
phase abdomen CT images (five different CT reconstructions 
or processed methods, i.e., DLA-1, DLA-2, DLA-3, FBP, and 
ADMIRE, from each of the 18 patients). 

The five image sets from each patient were ranked 
against one another on a comparative scale from 1 to 5 
with regard to image noise, spatial resolution, and overall 
image quality, and average ranks were compared. A score of 
1 was given to the images with the best quality and 5 was 
given to the images with the worst quality. Reconstruction 
or processed methods were blinded and the order of image 
sets was randomized for each patient. 

The presence of additional artifacts that were not noted 
on LD-FBP and LD-ADMIRE CT images was also evaluated 
in the LD-DLA images of patients by a different abdominal 
radiologist with 8 years of experience. For the evaluation 
of the additional artifacts, reconstruction or processed 
methods were not blinded and LD-DLA images were 
compared with paired LD-FBP and LD-ADMIRE images. All 
noise measurements and qualitative image evaluations 
for patient images were performed with a commercially 
available workstation using the RadiAnt DICOM viewer 
(Mexidant, Poznan, Poland).

Statistical Analysis
All statistical analyses were performed with SPSS software 

(Version 22.0, IBM Corp., Armonk, NY, USA).
A paired t test was used to compare the MTF values of 

phantom images. Repeated measures analysis of variance 
followed by pairwise comparisons was used to compare 
image noise levels in the 18 patients’ images with different 
reconstruction methods and DLAs. After Bonferroni 
adjustment for the ten comparisons (all pairwise comparisons 
for FBP, ADMIRE, and DLA-1, -2, and -3.), a p value < 0.005 
was considered significant. The Friedman test was used to 
evaluate the qualitative image analysis. Dunn’s pairwise post 

properties. The NPS curve shows the variance in image 
intensity over spatial frequencies in an image. The mean 
image noise defined as the standard deviation of the CT 
attenuation value within a uniform region of interest (ROI) 
is correlated with the area under the curve (AUC) of the NPS 
curve and the image texture is determined by the shape of 
the NPS curve. The higher the AUC of the NPS curve, the 
greater the image noise. Reduced peak frequency of the 
NPS (left-shifted curve) represents a smoother and plastic-
like image texture (20). MTF is a representative metric of 
spatial resolution. The MTF curve provides a measure of how 
well the system transfers the contrast ratio of the original 
object (y-axis) across spatial frequencies (x-axis) (21). If 
the system has perfect spatial resolution, the object will be 
able to retain 100% contrast of its original contrast in any 
spatial frequency. However, in practice, the system is not 
perfect; therefore, the object’s contrast is more attenuated, 
and it is difficult to distinguish the object at higher spatial 
resolutions. Therefore, a higher MTF value means better 
spatial resolution.

To measure the NPS, we used the method proposed in a 
previous study (22). The peak frequency and AUC of the NPS 
were calculated. We used the circular edge method for MTF 
measurements, based on a study by Friedman et al. (22), 
because conventional methods could not reflect the spatial 
resolution dependence of the image contrast in the IR 
algorithm. The ACR phantom contains three inserts and one 
air cavity for the measurement of Hounsfield unit accuracy. 
We measured the MTF in the three inserts using different 
contrasts, which provided nominal Hounsfield unit values 
of -95, 955, and 120 at 120 kVp for polyethylene (Disc 
1), bone (Disc 2), and acrylic (Disc 3), respectively. We 
obtained the average MTF value after 21 repeated CT scans 
of a phantom and measured the MTF-50 to simplify the MTF 
comparison. The MTF-50 is defined as the spatial frequency 
at which the MTF becomes one half of its zero-frequency 
value in units of mm-1.

The NPS and MTF of ACR phantom images were calculated 
using MATLAB. 

In addition, the detailed method of another phantom 
study for assessing the training performance of the DLA 
and results of the training performance are described in the 
Supplementary Materials.

Patient Study
To objectively assess image quality in the clinical 

environment, a radiologist (blinded, with 5 years of clinical 



360

Shin et al.

https://doi.org/10.3348/kjr.2019.0413 kjronline.org

hoc test was performed for multiple pairwise comparisons, 
then a Bonferroni correction for multiple testing was applied. 
The modified Wald method was used to determine the 
confidence interval (CI) for the presence of image artifacts in 
the 2998 LD CT image slices of 18 patients.

RESULTS

The baseline patient characteristics and radiation dose of 
the training and test set are shown in Table 1. The age of 
patients (mean ± standard deviation) was 63.5 ± 13.0 years 
in the training population and 35.0 ± 12.2 years in the 
test population. Because LD abdominal CT was performed 
in adults under 45 years of age in this institution, the test 
population was younger than the training population. The 
mean volume CT dose index (CTDIvol), dose-length product, 
and peak mAs in the test population were approximately 
one-quarter of those in the training population.

Phantom Studies
LD-DLA achieved a lower noise level than LD-FBP and LD-

ADMIRE but led to a loss of spatial resolution. 
As shown in Figure 2 and Table 2, the peak frequency and 

AUC of the NPS curves in the LD-DLA images were lower 
than those of the LD-FBP and LD-ADMIRE images at all dose 
levels. In addition, the NPS curves were shifted towards 
lower spatial frequencies in the LD-DLA images compared 
with those of the ADMIRE images.

Table 3 shows the mean MTF-50 value of each 
reconstructed CT image for the three different disc objects 
of the phantom CT with a 25% radiation dose level. The 
MTF-50 was significantly lower in the LD-DLA images than 
in the LD-ADMIRE and LD-FBP images (all p < 0.001). 

Figure 3 shows the MTF for the DLA, ADMIRE, and FBP 
methods acquired at the 25% dose level for various contrast 

inserts. When the training radiation dose decreased, the 
AUC of the NPS curve and MTF values of the LD-DLA images 
decreased. DLA-1 showed the least noise and worst spatial 
resolution among the three DLA methods.

Patient Study
In the 18 patients, the mean image noise in all the LD-DLA 

images was significantly lower than that in the LD-ADMIRE 
and LD-FBP images (all p < 0.001). Table 4 shows the mean 

Table 1. Baseline Characteristics of Study Population

Charecteristics
Training Population 

(n = 100)
Test Population 

(n = 18)

Demographics
Age (year) 63.5 ± 13.0 35.0 ± 12.2
Body mass index 22.9 ± 3.6 23.0 ± 2.5

Radiation dose 
CTDIvol (mGy) 6.5 ± 1.3 1.4 ± 0.3
DLP (mGycm) 312.8 ± 74.3 72.1 ± 20.4
Peak tube current (mAs) 240.1 ± 58.6 52.8 ± 9.2

Data are mean ± standard deviation. CTDIvol = volume CT dose 
index, DLP = dose-length product

Table 2. AUC and Peak Frequency of NPS Curve in Each 
Reconstruction Method

NPS Property DLA-1 DLA-2 DLA-3 ADMIRE FBP
AUC (x 104, HU2 mm2) 1.37 1.91 3.86 5.52 8.89
Peak frequency (mm-1) 0.05 0.07 0.13 0.18 0.22

ADMIRE = advanced modeled iterative reconstruction, AUC = area 
under curve, DLA = deep learning-based denoising algorithm, FBP 
= filtered back projection, HU = Hounsfield unit, NPS = noise power 
spectrum
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Fig. 2. NPS of 25% dose CT of phantom according to 
reconstruction method. NPS curves are shifted towards lower spatial 
frequencies in images produced by DLAs trained at lower radiation 
dose level. HU = Hounsfield unit, NPS = noise power spectrum

Table 3. MTF-50s (mm-1) of 25% ACR Phantom CT according to 
Different Discs and Reconstruction Methods

Reconstruction 
Method

Disc 1
(Polyethylene)

Disc 2
(Bone)

Disc 3
(Acrylic)

P*

DLA-1 0.410 0.445 0.415

< 0.001
DLA-2 0.418 0.446 0.423
DLA-3 0.434 0.447 0.435
FBP 0.454 0.448 0.452
ADMIRE 0.563 0.499 0.551

*p value for all pairwise comparisons. ACR = American College of 
Radiology, MTF = modulation transfer function
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computational time compared with IR (14). Although a 
direct comparison was difficult in our experiment because 
we could not test the ADMIRE method in the same 
computing environment as that processing the DLAs, the 
DLAs might potentially reduce computing load relative to 
the ADMIRE method. Finally, we evaluated DLA performance 
using quarter dose CT images, which is a frequently used 
radiation dose in clinical LD CT (23, 24). To the best of our 
knowledge, this is the first study suggesting alternative 
approaches for CT denoising in a clinical setting, specifically 
comparing DLAs with the FBP and IR algorithms in real low-
dose CT images of patients.

In the test study with 18 patients, we were able to test 
the DLAs with LD CT in a real clinical environment. We 
found that DLAs effectively reduced image noise in the test 
study and did not show any additional image artifacts. Due 
to several negative aspects of deep learning techniques, 
such as their “black-box” nature and the complexity of 
neural networks, we are concerned that the processed 
images might show unknown artifacts. However, there were 
no deep learning-related image artifacts in approximately 
3000 images. Therefore, we cautiously concluded that 
artifacts are highly unlikely under these test conditions. 
However, additional evaluations will be required under 
different conditions (e.g., images with beam hardening 

image noise values according to the image reconstruction 
method. As the training radiation dose of DLA decreased, the 
mean image noise also significantly decreased (p < 0.001). 
Representative images are shown in Figure 4. 

Table 5 shows the mean ranking scores for image quality 
according to the image reconstruction method. In the 
qualitative image analysis, the overall image quality was the 
best for DLA-3, although it was not significantly different 
from that of ADMIRE (p > 0.999). Although DLA-1 and DLA-
2 had lower noise than the other methods, they provided 
worse spatial resolution and lower overall image quality 
relative to the other methods.

The DLA images showed no additional image artifacts in 
the 2998 image slices of each DLA (0%, 95% CI, 0–4 slices).

DISCUSSION

We found that DLA can achieve lower image noise than 
ADMIRE, which is a state-of-the-art commercially available 
IR method. Furthermore, there are several strengths of 
the DLA used in our study. First, while the IR algorithm is 
vendor-specific and has limited applicability to other CT 
systems, FBP-based DLAs can be used in a more general way 
because they allow image-based reconstruction without raw 
data in the FBP method (7). Second, DLAs require shorter 

Table 4. Mean Image Noise (HU) according to Image Reconstruction Method

Measuring Site
Reconstruction Method

DLA-1 DLA-2 DLA-3 ADMIRE FBP P* 
Liver 6.3 (1.2) 8.5 (1.6) 11.4 (2.0) 16.2 (1.6) 23.0 (2.5)

< 0.001
Subcutaneous fat 6.0 (1.2) 7.1 (1.5) 9.9 (1.5) 13.2 (1.3) 20.4 (2.5)
Paraspinal muscle 5.3 (0.9) 6.6 (1.3) 9.9 (1.7) 14.5 (1.1) 22.0 (3.0)
Abdominal aorta 6.3 (1.1) 7.7 (1.3) 11.1 (2.4) 15.5 (2.0) 21.3 (2.3)

Data are mean noise (standard deviation). *p value for all pairwise comparisons.
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artifacts, images in elderly patients with motion artifacts, 
or images from other parts of the body) that we did not 
consider during either training or testing.

In this study, we compared the image quality of LD-DLA 
CT with that of LD-FBP and LD-ADMIRE CT using quantitative 
metrics such as NPS, MTF, and mean image noise. We found 
that NPS and MTF measured in the phantom study showed 
less noise and less spatial resolution in the LD-DLA images. 

Regarding the dependence on training conditions, the 
AUC of the NPS curve, MTF values, and mean image noise 
level of the LD-DLA images decreased as DLA training 

radiation dose decreased. This tendency is difficult to 
explain but it might be related to the intrinsic limitation of 
deep learning, which requires proper training intensity. 

In terms of noise properties, the processed phantom 
images using DLA were less noisy than FBP. However, DLA 
images showed an over-smooth texture, just like those 
produced by the first-generation IR algorithm, which is 
currently used to lower the radiation dose by lowering the 
image noise with better spatial resolution (7). Because 
CT images reconstructed using IR algorithms can produce 
plastic-like texture, radiologists who are familiar with CT 

Table 5. Mean Image Quality Assessment Ranking of Image Reconstruction Methods
Reconstruction Method DLA-1 DLA-2 DLA-3 ADMIRE FBP

Image noise 1.1 (0.2)*† 1.9 (0.2)*† 3.2 (0.4)† 3.8 (0.4) 5.0 (0)
Spatial resolution 4.8 (0.5)*† 4.0 (0.3)* 1.8 (0.7) 1.8 (1.1) 2.6 (0.9)
Overall image quality 4.6 (0.6)* 3.7 (0.7)* 1.4 (0.5)† 1.7 (0.7) 3.7 (0.9)

Data are mean ranking score (standard deviation). *p < 0.05 in pairwise comparison with ADMIRE, †p < 0.05 in pairwise comparison with 
FBP. 

Fig. 4. LD abdominal CT images of test set with conventional reconstruction methods (A, B) and with DLA (C-E). A. FBP. B. ADMIRE. 
C. DLA-1. D. DLA-2. E. DLA-3. First column of each image shows LD (25%) abdominal CT using five different methods and enlarged image of first 
column is in second column. Mean image noise of all LD-DLA images was lower than that of LD-ADMIRE and LD-FBP images, and DLA-1 image 
showed lowest mean image noise. As training radiation dose of DLA increased, mean image noise of processed CT images increased.

A B

C D

E
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Our study has several limitations. First, we did not 
evaluate the task-based performance of the DLA. Despite 
the lower image noise in the objective measurements, the 
noise texture of the DLA image can be changed, affecting 
the diagnostic performance of DLA, such as in lesion 
detection. Because this is a preliminary study aiming to 
investigate the performance of DLAs in image noise and 
spatial resolution, future studies are needed to confirm 
this exploratory result as well as to determine the effects 
of DLAs on task-based performance. Second, because the 
DLA used in this study was trained using simulated LD CT 
images, we could not expect how the results would differ 
using actual LD CT images as training data. In addition, we 
did not evaluate the effects of image artifacts because we 
included only qualified images without significant artifacts 
in the training set. Finally, because we only included adult 
patients under the age of 45 and obtained quarter dose 
abdominal CT images, further studies using various LD CT 
protocols in different body parts may be required.

In conclusion, DLAs could improve image quality in terms 
of noise reduction in CT. Although DLAs achieved less noise 
than FBP and ADMIRE in LD CT images, they did not maintain 
the spatial resolution. Regarding the effect of the radiation 
dose in training conditions, a 50% simulated radiation dose 
for training images led to the best overall image quality.
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https://doi.org/10.3348/kjr.2019.0413.

Conflicts of Interest
The authors have no potential conflicts of interest to 
disclose.

Acknowledgments
We thank Seongyong Pak (Siemens Healthineers Ltd, Korea) 
for technical support on simulating low-dose CT images. 

ORCID iDs
Won Chang

https://orcid.org/0000-0001-7367-9841
Yoon Joo Shin

https://orcid.org/0000-0001-7872-5552
Jong Chul Ye

https://orcid.org/0000-0001-9763-9609

images reconstructed using FBP might be unfamiliar to those 
images and IR has its weakness in this regard (7, 9). Since 
we trained the DLAs with both LD-FBP and RD-FBP images, 
we assumed that DLA could maintain the image texture of 
the FBP method in the resultant images. However, the NPS 
curve was left-shifted in the DLA images, i.e, noise texture 
of DLAs was different from FBP and rather similar to that of 
ADMIRE. It is difficult to find a convincing explanation of 
these results, and further investigations are needed.

Conventional MTF measurements used highly dense 
materials and very low noise to improve measurement 
precision, and MTF tended to be greater in IR than in FBP 
for high-contrast objects (6). However, in real clinical 
settings, most CT images have lower contrast and higher 
noise than in an ideal environment. In fact, Richard et 
al (21). showed how the MTF in IR could be different for 
varying contrast and noise levels. Although the task-based 
MTF for model-based IR was shown to be greater than 
for FBP in high-dose and high-contrast objects, the MTF 
performance decreased in LD and low-contrast objects (21). 
Therefore, we evaluated the MTF for three different contrast 
materials in the phantom study. Our results showed a little 
loss of spatial resolution by DLAs for all disc objects, but 
the difference from FBP was marginal. Although the MTF 
increased as the training radiation dose increased, it may 
be difficult to go beyond the limits of FBP because the DLA 
training was based on RD-FBP CT images. If the DLAs were 
trained using CT images with improved spatial resolution, 
the MTF could be further improved in the DLA compared 
with that of FBP-based DLAs.

Our qualitative image analysis revealed that DLA-3, which 
trained with 50% radiation dose images, showed the best 
overall image quality among the five image sets (DLA-1, 
DLA-2, DLA-3, FBP, and ADMIRE). Interestingly, the spatial 
resolution of DLA-3 was not significantly different from that 
of ADMIRE, which showed the highest MTF values, although 
the quantitative MTF values of DLA-3 were significantly 
lower than those of conventional methods (FBP and 
ADMIRE). Overall image quality is a complex combination of 
image noise and spatial resolution. Indeed, a previous study 
assessed image quality using the detectability index, which 
is a function of the NPS, MTF, and other factors (25). In 
this context, the combination of low noise and low loss of 
spatial resolution is likely to result in a favorable outcome 
for DLA-3. On the contrary, although DLA-1 and DLA-2 had 
less noise, the overall image quality was not good because 
of a large loss of spatial resolution.
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