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Undaria pinnatifida is the commercially second most important brown alga in the world. Its
global annual yield has been more than two million tonnes since 2012. It is extensively
cultivated in East Asia, mainly consumed as food but also used as feed for aquacultural
animals and raw materials for extraction of chemicals applicable in pharmaceutics and
cosmetics. Cultivar breeding, which is conducted on the basis of characteristics of the life
history, plays a pivotal role in seaweed farming industry. The common basic life history
shared by kelps determines that their cultivar breeding strategies are similar. Cultivar
breeding and cultivation methods of U. pinnatifida have usually been learned or directly
transferred from those of Saccharina japonica. However, recent studies have revealed
certain peculiarity in the life history of U. pinnatifida. In this article, we review the studies
relevant to cultivar breeding in this alga, including the peculiar component of the life history,
and the genetics, transcriptomics and genomics tools available, as well as the main cultivar
breeding methods. Then we discuss the prospects of cultivar breeding based on our
understanding of this kelp and what we can learn from the model brown alga and
land crops.
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INTRODUCTION

The brown alga Undaria pinnatifida (Harvey) Suringar is an economically important kelp species
native to the Northwest Pacific and has been extensively farmed as human food in East Asia for more
than half a century (Yamanaka and Akiyama, 1993). It also can be used as feed for aquacultural
animals and raw materials for extraction of chemicals applicable in pharmaceutics and cosmetics
(Hwang et al., 2012; Taboada et al., 2012; Yang et al., 2013; Arijón et al., 2021). Its global annual yield
has been more than two million tonnes since 2012, second to Saccharina japonica in commercial
brown algae (Cai et al., 2021). In addition to East Asia, there is also small-scale cultivation of this alga
in Europe, mainly in France and Spain (Grulois et al., 2011; Peteiro and Freire, 2011, 2012).

Domestication and commercial cultivation of kelps has generally been started since 1950s (Tseng
et al., 1955). Cultivar breeding has been playing an important role in accelerating the development of
kelp cultivation industry (Hwang et al., 2019; Wang et al., 2020; Hu et al., 2021).U. pinnatifida and S.
japonica share the same basic life history typical of kelp species, which determines that their cultivar
breeding strategies are similar and may be referenced to each other. A large proportion of the
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Undaria products produced in China and Korea are exported to
Japan and thus the purposes of cultivar breeding are heavily
dependent on requirements of the Japanese market (Hwang et al.,
2019). Compared to S. japonica, the agronomical traits of U.
pinnatifida are more complex, e.g. with pinnate fronds and the
specific reproductive tissue named sporophyll. Furthermore,
quality of the fronds is more demanding, with smooth, thick
and brightly yellowish-brown ones being preferred in commerce.
Hence, cultivar breeding aims are more diverse, and it is difficult
to breed an elite cultivar encompassing all the desirable traits.

In spite of the same basic life history shared between U.
pinnatifida and other kelps, recent studies have revealed
certain peculiarity in the life history of U. pinnatifida (Li et al.,
2014). The new technology, such as the next-generation
sequencing, has been increasingly applied in studies on
genetics, transcriptomics, and genomics of this alga, providing
valuable information for cultivar breeding. The purpose of this
article is to review the research relevant to cultivar breeding of U.
pinnatifida with special highlight on its peculiarity and discuss
the prospects.

LIFE HISTORY

U. pinnatifida has a basic haplodiplontic life history in which
diploid macroscopic sporophytes (2n) alternate with haploid
microscopic gametophytes (n). Mature sporophytes generate
haploid spores through meiosis. The meiospores grow to male
and female gametophytes, which are usually dioicous and give
rise to sperm and eggs through mitosis during gametogenesis,
respectively. The discharged eggs are attached to the somatic cells,
while the motile sperm swarm to the eggs under the induction of
pheromones released by the female gametophytes (Maier and
Müller, 1986). After the eggs are fertilized by the sperm, zygotes
are formed and the sporophyte phase is started again.

Some unfertilized eggs are able to develop to sporophytes
through parthenogenesis, a phenomenon that occurs supposedly
mainly depending on genotype of the female gametophyte (Fang
et al., 1979; Nakahara, 1984; Shan et al., 2013). Most of the
parthenosporophytes are abnormal (e.g., twisted, or asymmetrical
or not intact) due to mixed ploidy (chimera). However, a small
proportion of them is normal and diploid, and these sporophytes
can become mature and release spores, all of which grow to
female gametophytes (Fang et al., 1979; Shan et al., 2013).
Spontaneous chromosome doubling is speculated to happen in
diploid parthenosporophytes (Fang et al., 1984). In addition,
apogamy, which is referred to the emergence of sporophytes
directly from the somatic cells of gametophytes, i.e., without
going through gametogenesis, was also described in some male
gametophytes (Fang and Dai, 1980). In S. japonica, the
sporophytes derived from apogamy were mostly abnormal and
haploid, and they could not form sporangia (Dai et al., 1997).
However, there has been no report on the fate of the sporophytes
derived from apogamy in U. pinnatifida.

Recently, an unusual monoicous phenomenon has been found
in some zoospore-derived male gametophyte clonal lines (Li et al.,
2014). They show typical male morphology during vegetative

growth; however, when cultured under conditions favoring
gametogenesis both antheridia and oogonia will be formed,
discharging sperm and eggs, respectively. The monoicous
gametophytes lack the female-linked markers (Li et al., 2017).
They are determined to be haploid by flow cytometry analysis,
different from the diploid gametophyte derived from tissue
culture of the sporophyte thalli (Zhang et al., 2007; Shan et al.,
2020b). Microsatellite analysis confirmed that hybrid
sporophytes could be obtained when the monoicous
gametophyte was crossed with another male gametophyte,
which indicates the eggs discharged by the monoicous
gametophyte can really be fertilized by sperm, and thus they
have the same sexual function as those discharged by the female
gametophytes (Shan et al., 2021). They can also self-breed to give
rise to doubled haploid (DH) sporophytes, albeit the fertilization
rate of the eggs during selfing is much lower than during
outcrossing. Despite the low fertilization rate in selfing, most
of the derived sporophytes are morphologically normal,
suggesting they are generated through self-fertilization (sexual
reproduction) rather than parthenogenesis which usually results
in a high ratio of abnormal parthenosporophytes (Shan et al.,
2021).

A thorough interpretation of the life history is critical for
conducting the cultivar breeding program. The versatile
characteristics of U. pinnatifida life history provide not only
challenges but also advantages for its fundamental and applied
studies relevant to cultivar breeding.

ESTABLISHMENT OF MAPPING
POPULATIONS AND CONSTRUCTION OF
GENETIC LINKAGE MAPS
In land crops such as rice, wheat and maize, the haploid phase of
their life history is not free-living, and thus recombinant
inbreeding lines (RILs) or DH lines need to be established to
obtain true-breeding lines. Comparatively, the haploid
gametophyte of kelp is free-living and thereby can be readily
cultured and preserved in vitro under controlled conditions (Pang
and Wu, 1996). This advantage provides a means to establish
permanent mapping populations in kelp.

Meiosis-derived segregating haploid gametophyte families
have been established in U. pinnatifida. Each gametophyte
clonal line within a family is originated from mitotic
propagation of a single meiospore and can be preserved for a
long time. This kind of permanent mapping population has been
used to construct an SNP-based high-density genetic linkage map
using specific length amplified fragment (SLAF) sequencing in U.
pinnatifida (Shan et al., 2015). Because the sex phenotype is
expressed in the haploid phase, the population can be used tomap
sex-linked loci. Five SLAF and one microsatellite markers were
found to be tightly linked to the sex phenotype (Shan et al., 2015).

The haploid gametophyte clonal lines have also been used to
establish permanent sporophyte populations. A method of
establishing an “immortalized F2” (IF2) population has been
proposed in U. pinnatifida, in which the F1 segregating
haploid gametophyte clonal lines, instead of the RILs or DH

Frontiers in Genetics | www.frontiersin.org December 2021 | Volume 12 | Article 8019372

Shan and Pang Breeding of Undaria pinnatifida

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


lines employed in land crops, are used for pairwise cross to obtain
IF2 populations (Shan et al., 2020b). Themethod is also applicable
to other kelp species. According to a cross experiment, it has also
been found that the monoicous and parthenogenetic phenotypes
of the parental gametophytes of U. pinnatifida are able to be
inherited to the next gametophyte generation after meiosis within
the hybrid sporophyte (Shan et al., 2021). Such an inheritable
feature makes it possible to establish DH lines by exploiting
phenotypes of monoicy and parthenogenesis. The availability of
the methods of establishing IF2 and DH populations provide
robust tools for analyses of quantitative trait loci (QTLs).

DNA MARKERS DEVELOPMENT AND
THEIR APPLICATION IN STUDIES OF
GENETYPIC VARIATION AND GENETIC
STRUCTURE

Markers such as random amplified polymorphic DNA (RAPD)
and amplified fragment length polymorphism (AFLP) were
adopted for genetic diversity analyses and germplasm
identification in U. pinnatifida in earlier time (Wang et al.,
2006; Li et al., 2013), but their use has been dramatically
decreasing due to their drawback of dominant nature.
Microsatellites and SNPs are currently the markers of
choice for analyses of genetic diversity and structure.
Totally 50 microsatellite markers (loci) have been developed
and characterized for U. pinnatifida (Table 1) (Daguin et al.,
2005; Shan et al., 2018). SNP markers have also been developed
by double-digest restriction site-association DNA (ddRAD)
sequencing or re-sequencing individuals from different
populations (Guzinski et al., 2018; Graf et al., 2021). Both
the microsatellite and SNP markers revealed that the genetic
diversity and heterozygosity are higher in native natural and
cultivated populations, but lower in introduced populations,
showing evidence of founder effect in the latter. The

unexpected high genetic diversity of the cultivated
population is likely attributed to the mixture of hundreds of
parental individuals of different origins in the seeding process
(Shan et al., 2018; Li et al., 2020; Graf et al., 2021). Specific
sequences from the mitochondrion (such as coding region of
cox3 and intergenic spacers between the atp8 and trnS genes,
between the trnW and trnI genes, and between the tatC and
tLeu genes) and nucleus (e.g., internal transcribed spacer (ITS)
of nuclear ribosomal DNA) (Voisin et al., 2005; Uwai et al.,
2006a; Uwai et al., 2006b) have also been used to elucidate the
genetic diversity in native and introduced populations
globally. Combination analyses of sequences of maternal
and bi-parental inheritance can provide complementary
information on genetic relationship among populations,
thereby being useful for tracing the origin of the introduced
populations.

Microsatellites and SNPs reveal prominent genetic structure in
native and introduced populations of U. pinnatifida, even at the
regional scale of the introduced area (e.g., Brittany, France), and
SNPs have proved to be more robust in revealing the fine-scale
genetic structure (Guzinski et al., 2018). Microsatellites have been
used to evaluate the genetic connectivity between cultivated
populations on a typical farm and the adjacent subtidal
natural population of U. pinnatifida, and the result suggests
scarce gene flow between them (Li et al., 2020). Such an
evaluation is necessary in cultivation practice of seaweeds in
order to avoid the reciprocal genetic pollution between farmed
and natural populations.

TRANSCRIPTOMICS AND GENOMICS

Transcriptomic study is essential for gene discovery and
functional annotation of the genome. De novo
transcriptome assembly was conducted through Illumina-
based RNA-seq of the male and female gametophytes at
vegetative and gametogenesis phases (Shan et al., 2015).

TABLE 1 | Main genetic, transcriptomic and genomic resources available for Undaria pinnatifida.

Resource type Brief introduction References

Microsatellites Twenty microsatellites isolated from an enriched library for tandem repeats, and 30
trinucleotide microsatellites developed through Illumina sequencing

Daguin et al. (2005), Shan et al. (2018)

Mitochondrial DNA
sequence

Coding region of cox3 and intergenic spacers between the atp8 and trnS genes, between the
trnW and trnI genes, and between the tatC and tLeu genes

Voisin et al. (2005), Uwai et al. (2006a), Uwai
et al. (2006b)

Nuclear DNA sequence Internal transcribed spacer (ITS) of nuclear ribosomal DNA Uwai et al. (2006b), Endo et al. (2009)
SNPs More than 10 thousand SNPs genotyped by using a dd-RAD sequencing method and

applied in population genomics study; Millions of SNPs identified by re-sequencing the native
and introduced populations

Guzinski et al. (2018), Graf et al. (2021)

Transcriptome of
gametophytes

De novo transcriptome assembly from male and female gametophytes at vegetative and
gametogenesis phases by using Illumina sequencing

Shan et al. (2015a)

Full-length transcriptome A full-length transcriptome covering male and female gametophytes at vegetative and
gametogenesis phases, and different tissues of the sporophytes obtained by using the
PacBio sequencing platform

Shan et al. (2020a)

Genetic linkage map A genetic linkage map constructed based on a segregating gametophyte family and SLAF
sequencing, with five SLAF markers tightly linked to sex phenotype identified

Shan et al. (2015b)

Organelle genome Plastid and mitochondrial genomes Li et al. (2015), Zhang et al. (2015), (2016)
Nuclear genome One male gametophyte from China and one sporophyte from Korea independently

sequenced and characterized
Shan et al. (2020c), Graf et al. (2021)
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Putative genes, which encode the key enzymes involved in
biosynthesis of important metabolites such as fucoidan,
alginate, mannitol and laminarin, were identified.
Subsequently, a full-length transcriptome was obtained from
a collective sample consisting of both the sporophyte and the
gametophyte phases using the single molecular real-time
sequencing (Shan et al., 2020a). Illumina sequencing was
then performed to identify the differentially expressed genes
during the development of the sporophyll. Putative genes
relevant to flagellar components, fucoidan biosynthesis and
meiotic nuclear division were found to be significantly
upregulated with development of the sporophyll.

Two nuclear genomes of U. pinnatifida have been obtained
independently from a Chinese male gametophyte and a Korean
sporophyte, both of which were from the cultivated population
(Shan et al., 2020c; Graf et al., 2021). The genome from China
is 511 Mb, and 502.8 Mb of the sequences are located on
30 pseudo-chromosomes with the assistant assembly of a
Hi-C approach. The genome from Korea is larger with a
total size of 634 Mb, and 462 Mb of them (72.7%) is
anchored and ordered according to the linkage groups of
the genetic map. The plastid and mitochondrial genomes of
U. pinnatifida have also been sequenced (Li et al., 2015; Zhang
et al., 2015; Zhang et al., 2016).

CULTIVAR BREEDING

Most of the authorized cultivars of U. pinnatifida have been bred
using the selection method, including four Korean and two
Chinese cultivars (Hwang et al., 2019). The breeding program
usually consists of gametophyte clone cross and subsequent
consecutive selection. Cultivars Haibao No.1 and No.2 were
bred using such a selection strategy. The difference is that
three hybrid lines resulting from gametophyte pair crosses
were chosen and subjected to consecutive mixed hybridization
and selection in Haibao No.1, and comparatively only one single
hybrid line was chosen and followed by recurrent inbreeding and
selection in Haibao No.2 (Xu et al., 2015; Shan et al., 2016).

Cross between gametophyte lines (line breeding) is another
breeding strategy that has been developed based on the free-
living characteristic of the kelp gametophyte. Heterosis can be
fully exploited and the F1 hybrid sporophytes resulting from a
single cross are homogeneous in genotype and phenotype (Pang,
1997; Pang et al., 1997; Shan and Pang, 2009). Hence, the F1 hybrid
can be directly used as a commercial cultivar, greatly reducing the
breeding period in comparison with the selection method. Line
breeding conducted in Undaria includes interspecific hybridization
between U. pinnatifida and U. peterseniana, and intraspecific cross
between geographically separated individuals, between wild and

FIGURE 1 | Schematic representation of line breeding (pair cross between gametophyte lines) and scaling up its application by exploiting monoicous and
parthenogenetic phenotypes of certain parental gametophytes. After we screen for the best cross (with desirable traits), we go back for the corresponding paternal and
maternal gametophyte lines. If either of them has the monoicous or parthenogenetic phenotype, DH sporophytes can be obtained. Hence, large quantities of zoospores
can be utilized for seeding, followed by large-scale seedling production.
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cultivated individuals, or between cultivated individuals with
contrasting traits (Hwang et al., 2012; Hwang et al., 2019; Niwa
and Kobiyama, 2019). Triploid (3n) or tetraploid (4n) intraspecific
hybrids have also been obtained by crossing between the diploid (2n)
and haploid (n) gametophytes or between two diploid gametophytes.
The triploid sporophytes were found to be sterile and superior in
growth compared to diploid sporophytes, and tetraploid
sporophytes were characterized with low-fertility and inferior
growth (Zhang et al., 2007).

PROSPECTS ON CULTIVAR BREEDING

Collection and preservation of gametophyte stock resources are the
first important work that needs to be done. The stock resources
should encompass both farmed and wild populations. In previous
breeding program particularly in China, wild resources have
almost been disregarded due to its undesired agronomical traits
(e.g., wrinkled fronds often observed in wild individuals) (Shan
et al., 2018). In fact, there exist wild individuals with desirable traits
that can be selected. Moreover, the local wild populations may
comprise gene pools that are adapted to the local environment, and
therefore are likely to be useful parental materials for breeding of
cultivars suitable for cultivation in local waters (Li et al., 2020). In
consideration of sustainable cultivation, the populations from
warmer locations will be more important as they likely show
better tolerance of higher temperature (Gao et al., 2012; Hu
et al., 2021), which will confer better resilience of the cultivars
to global ocean warming. For example, stock resources ought to be
collected from southern distribution limit in East Asia such as
Kagoshima of Japan, and Yushan and Zhoushan archipelagos of
China (Tseng, 2001; Watanabe et al., 2014).

Traditional cultivar breeding methods are expected to play a
central role in cultivar breeding in the near future. The recurrent
mixed hybridization or inbreeding of superior parental sporophytes
and targeted selection is a breeding strategy of low-cost that can
exploit the additive gene effects (Goecke et al., 2020). The simple
technical requirementmakes it easy to bemastered by the producers.
Line breeding method is time-efficient, resulting in the commercial
hybrid cultivar with homogeneous traits. It also helps the breeders to
protect their intellectual property of the cultivar because the growers
have to come back to the breeders every year for the original superior
F1 hybrid seedlings.What the breeders need to do is to keep the stock
culture of the parental gametophyte clonal lines and propagate a
large quantity of gametophyte filaments for seedling production. The
challenge is to produce enough gametophyte biomass satisfied for
large-scale cultivation. It may be partly tackled by using the DH
sporophytes resulting from monoicous selfing and parthenogenesis
of certain paternal and maternal gametophyte lines (Figure 1).
Monoicy phenotype has been shown to be more common than
expected in cultivated strains (Li et al., 2014; Shan et al., 2021). The
fecundity of mature DH sporophytes is high, being able to release
millions of spores with the same genotype as that of the
corresponding parental gametophyte (Shan et al., 2013; Shan
et al., 2021). Hence, DH sporophytes can be utilized in
crossbreeding to scale up the production by circumventing the
laborious and time-consuming propagation of gametophyte

filaments. Another advantage of this method is that the
zoospores released from the DH sporophytes can be easily seeded
on the strings of the collectors, largely solving the detachment
problem when gametophyte filaments are directly used for
seeding (Li et al., 2017; Shan et al., 2021).

Genetic linkage and QTL mapping analyses can be conducted
using the permanent mapping populations including DH and IF2. As
quantitative traits of these populations can be repeatedly measured
across different years and locations, it is possible to evaluate the
environmental effects and the interaction between genotype and
environment, thus making QTL analyses more accurate (Shan
et al., 2020b; Shan et al., 2021). Genome-wide association
analyses of morphological traits have recently been
conducted in Saccharina latissima and one SNP was found
to be associated with the stipe length (Mao et al., 2020). With
the availability of the genome of U. pinnatifida, it is also
feasible to conduct association mapping in this alga.
Linkage and association mapping methods are
complementary, and the appropriate approach may be
chosen according to the purpose of the study. Identification
of QTLs, particularly those of major effects, can accelerate the
marker-assisted selection (MAS), which is performed
depending on selection of individuals with specific DNA
markers linked to or associated with the QTLs
underpinning the desired trait. The more advanced breeding
strategy such as genomic selection and epigenetics-mediated
breeding may also be considered and developed to provide
more alternatives for cultivar breeding (Goecke et al., 2020;
Dalakouras and Vlachostergios, 2021).

A reverse genetics methodology which is based on the CRISPR-
Cas9 gene-editing system has recently been established in the
model brown alga Ecotocarpus sp. (Badis et al., 2021). Either
biolistics or microinjection was shown to be efficient in
delivering the introduction of CRISPR-Cas9 ribonucleoproteins
into Ectocarpus cells, and mutations at specific target sites were
generated. This method provides a robust tool for studying
function of the genes and relating gene function to specific
traits. If transferred to U. pinnatifida, the CRISPR-Cas9-based
gene-editing method may be utilized to introduce the traits of
interests by editing the relevant genes in this alga.
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