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Abstract
Background  The phosphatidylinositol 3-kinase delta 
isoform (PI3Kδ) belongs to an intracellular lipid kinase 
family that regulate lymphocyte metabolism, survival, 
proliferation, apoptosis and migration and has been 
successfully targeted in B-cell malignancies. Primary 
Sjögren’s syndrome (pSS) is a chronic immune-mediated 
inflammatory disease characterised by exocrine gland 
lymphocytic infiltration and B-cell hyperactivation 
which results in systemic manifestations, autoantibody 
production and loss of glandular function. Given 
the central role of B cells in pSS pathogenesis, we 
investigated PI3Kδ pathway activation in pSS and the 
functional consequences of blocking PI3Kδ in a murine 
model of focal sialoadenitis that mimics some features 
of pSS.
Methods and results  Target validation assays showed 
significant expression of phosphorylated ribosomal 
protein S6 (pS6), a downstream mediator of the 
phosphatidylinositol 3-kinase delta (PI3Kδ) pathway, 
within pSS salivary glands. pS6 distribution was found to 
co-localise with T/B cell markers within pSS aggregates 
and the CD138+ plasma cells infiltrating the glands. 
In vivo blockade of PI3Kδ activity with seletalisib, a 
PI3Kδ-selective inhibitor, in a murine model of focal 
sialoadenitis decreased accumulation of lymphocytes 
and plasma cells within the glands of treated mice in 
the prophylactic and therapeutic regimes. Additionally, 
production of lymphoid chemokines and cytokines 
associated with ectopic lymphoneogenesis and, 
remarkably, saliva flow and autoantibody production, 
were significantly affected by treatment with seletalisib.
Conclusion  These data demonstrate activation of 
PI3Kδ pathway within the glands of patients with pSS 
and its contribution to disease pathogenesis in a model 
of disease, supporting the exploration of the therapeutic 
potential of PI3Kδ pathway inhibition in this condition.

Introduction
The phosphatidylinositol 3-kinase delta isoform 
(PI3Kδ) belongs to the class 1 phosphoinositi-
de-3-kinase family of intracellular lipid kinases 
that regulate metabolism, survival, proliferation, 
apoptosis, growth and cell migration.1 Extensive 
data demonstrate a central role for PI3K signalling 
in several aspects of adaptive immune responses. 
Expression of the catalytic subunit of PI3Kδ is 
greatly enriched in lymphocytes. In B cells, PI3Kδ 

represents the predominant PI3K isoform to trans-
duce signals derived from the B cell receptor and 
receptors binding B cell survival factors, cytokines, 
chemokines and costimulatory molecules.2–4 Down-
stream signalling on PI3Kδ activation results in the 
activation of AKT and mTOR; the latter exists in 
two major protein complexes, the rapamycin-sen-
sitive mTORC1 (in complex with raptor) and the 
rapamycin-insensitive mTORC2 (in complex with 
rictor). A key substrate of mTORC1, ribosomal 
protein S6 kinase (S6K), phosphorylates ribosomal 
protein S6 (pS6), which can thereby act as a marker 
of active PI3K-mTOR signalling. The sensitivity 
of pS6 expression to PI3Kδ signalling has been 
demonstrated in both T and B cells.5 6

The significant role of PI3Kδ in regulating B 
cell biology has led to the development of PI3Kδ 
inhibitors as therapeutics for B cell malignancies.7–9 
Idelalisib, a PI3Kδ selective inhibitor, has recently 
received Food and Drug Administration approval 
for the treatment of chronic lymphocytic leukaemia 
and non-Hodgkin’s lymphoma (NHL). Clinical 
trials have demonstrated the ability of idelalisib to 
inhibit B cell survival and interfere with microen-
vironment-derived signals responsible for mainte-
nance of malignant cells within the lymph node.7 
The established role of PI3Kδ in B cell hyperactivity 
suggest that this pathway is an attractive target for 
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Table 1  Baseline characteristics of subjects included in the study

Cohorts 1 and 2 Birmingham 

Baseline characteristics pSS (cohort 1) Sicca (cohort 1)

Age (years)* 63.0 (55, 67) 47 (46, 52)

Female† 9/9 (100) 3/3 (100)

Anti-Ro antibody positive† 7/9 (78) 0/0 (0)

Anti-La antibody positive† 6/9 (67) 0/0 (0)

IgG (g/L)* 17.6 (12.9, 42.5) –

Focus score >1 N/A

Germinal centre† – N/A

ESSDAI – –

N/A, non applicable.

Baseline characteristic pSS (cohort 2) Sicca (cohort 2)

Age (years)* 56.0 (24, 57) 41 (32, 76)

Female† 4/5 (80) 3/5 (60)

Anti-Ro antibody positive† 4/5 (80) 0/0 (0)

Anti-La antibody positive† 2/5 (40) 0/0 (0)

IgG (g/L)* 13.05 (9.95, 19.94) 9.26 (7.51, 13.98)

Focus score* 1.29 (0.8, 2.14) N/A

Germinal centre† 2/4 (50) N/A

ESSDAI 9 (8, 17) N/A

Cohort 3. Rome 

Baseline characteristic pSS Sicca

Age (years)* 48 (26,72) 55 (37,70)

Female† 15/17 (88.2) 15/15 (100)

Anti-Ro antibody positive† 11/17 (64.7) 0/0 (100)

Anti-La antibody positive† 8/17 (47.1) 0/0 (100)

Anti-nuclear antibody positive† 12/17 (70.6) 0/0 (100)

Hyperglobulinemia† 7/17 (41.2) 0/0 (100)

Focus score* 2.8 (1,10) N/A

Germinal centre† 11/17 (64.7) N/A

ESSDAI* 1 (0, 7) 0 (0, 2)

*Median (range).
†Number positive (%).
BAFF, B cell activating factor; ESSDAI, EULAR Sjögren’s Syndrome Disease Activity 
Index; Ig, immunoglobulin; pSS, primary Sjögren’s syndrome.

autoimmune conditions characterised by B cell hyperactivation, 
such as primary Sjögren’s syndrome (pSS).

pSS is characterised by systemic autoantibody production and 
local, predominantly B cell infiltration of the exocrine glands 
that often results in functional loss. Cellular infiltrates are 
characterised by ectopic production of lymphoid chemokines, 
T/B cell segregation and formation of follicular dendritic cell 
networks within ectopic germinal centres (GC).10 11 Moreover, 
local expression of AICDA, the gene encoding for the activa-
tion-induced cytidine deaminase (AID), the enzyme instrumental 
for B cell affinity maturation, is expressed in pSS GC where it 
is believed to support local autoantibody production.12 Progres-
sive enlargement of pSS inflammatory foci is characterised by 
increased accumulation of activated B cells, and in some cases, 
local emergence of post-GC malignant clones responsible for 
the development of NHL.13–18 Dysregulated B cell activation, 
locally manifested by salivary gland swelling and production 
of anti-SSA and anti-SSB autoantibodies, is also accompanied 
by systemic increases in immunoglobulins and autoantibodies, 
including rheumatoid factor and cryoglobulins.19–24 Additional 
systemic features associated with B cell hyperactivity, such as 
lymphadenopathy, night sweats and loss of weight are often 
observed during lymphoma development.21 24 25 The dysfunc-
tional humoral response present in these patients supports the 
investigation of PI3Kδ in pSS pathogenesis and its blockade as a 
therapeutic option for this condition.

Materials and methods
Mice and salivary gland cannulation
C57BL/6 mice were purchased from Charles River and were 
maintained under specific pathogen-free conditions in the 
Biomedical Service Unit at the University of Birmingham 
according to Home Office and local ethics committee regula-
tions. Under ketamine/domitor anaesthesia, the submandibular 
glands of female C57BL/6 (8–12 weeks) were intraductally 
cannulated with 108–109 plaque-forming unit (pfu) of lucif-
erase-encoding replication-defective adenovirus (AdV5), as 
previously described.26 Mice were sacrificed at day 15 post-
cannulation (pc) (peak of organisation of the lymphoid aggre-
gates). To collect samples, mice were given general anaesthesia as 
mentioned above and were then secured in the supine position. 
Salivation was induced by subcutaneous administration of 10 
mg/kg pilocarpine (Sigma-Aldrich) in phosphate buffered saline 
(PBS). Saliva was collected with a pipet over a 10 min period 
and transferred into weighed eppendorf tubes, the tubes were 
then reweighed and the volume of saliva calculated (1 mg=1 
µL saliva). Results were expressed as mg saliva/10 min/g body 
weight.

Seletalisib inhibitor
The in vitro and in vivo properties of seletalisib have been 
described previously.27 Mice were gavaged at a dose of 10 mg/
kg with seletalisib every day starting from day 0, day 3, day 5 
and day 8 pc.

Human salivary gland biopsies from patients with pSS
Minor salivary gland (mSGs) samples were obtained from the 
Human Biomaterials Resource Centre at the University of 
Birmingham under ethics number 10-018 and from the Sjögren’s 
cohort at the University of Rome, Sapienza under ethics 
Harmonics H2020. Specimens were identified among samples 
obtained by patients diagnosed with pSS according to the 2002 
American European Consensus Group Criteria criteria28 and 

fulfilling the histological criteria for the diagnosis of pSS (pres-
ence of aggregates>1 focus score). All patients included were 
untreated with immunosuppressive drugs including steroids.

Non-specific sialoadenitis samples were selected among 
patients undergone investigation for pSS, because of clinical 
symptoms of dryness (eyes and/or mouth) but either did not 
fulfil the classification criteria for pSS and/or were not clinically 
diagnosed as primary or secondary SS by the leading physician 
table 1.

On patients collected between 2012 and 2018, EULAR 
Sjögren’s Syndrome Disease Activity Index (ESSDAI) data were 
available and reported in table 1.

Histology and immunofluorescence
Immunofluorescence (IF) staining was performed as previously 
described on formalin-fixed, paraffin-embedded (FFPE) labial 
salivary gland biopsies from patients with SS10 29 30 and on 
murine SGs obtained from virus cannulated and control mice.30

The following antibodies were used: for mouse CD45 clone 
30-F11, CD19 clone eBio1D3 and CD3e clone ebio500A2 
(from eBiosciences) and for humans CD3 polyclonal rabbit or 
monoclonal mouse (Dako), CD20 clone L26 (Dako), CD138 
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Table 2  Primers and probes used for quantitative PCR

Gene Assay ID

Mouse β-actin Mm01205647_g1

Mouse Pdgfrβ Mm00435546_m1

Mouse AICDA Mm00507774_m1

Mouse BAFF Mm00840578_g1

Mouse CXCL13 Mm00444533_m1

Mouse CXCR5 Mm00432086_m1

Mouse CCL19 Mm00839967_g1

Mouse CCR7 Mm01301785_m1

Mouse CXCL12 Mm00445553_m1

Mouse CXCR4 Mm01292123_m1

Mouse LTβ Mm00484254_m1

Mouse LTα Mm00484254_m1

Mouse IL-23 Mm00484254_m1

Mouse IL-6 Mm00434256_m1

Mouse IFNγ Mm00434774_g1

Mouse TNFα Mm00443258_m1

Mouse IL-1β Mm00434228_m1

and CD68 (Abd Serotech) and pS6 polyclonal rabbit (Cell 
signalling).

RNAScope
IF staining was performed as previously described on FFPE labial 
salivary gland biopsies from patients with SS.10 29 30 Samples 
were probed for PI3KCD ref.520988 (ACDBio) following manu-
facturer’s instructions (ACDBio). Samples were double stained 
with antihuman CD45 NCL-L-LCA (Leica).

Enzymatic digestion and isolation of cells
ADV5 infected SGs from seletalisib-treated and vehicle-treated 
mice were isolated from culled animals at different time points. 
Glands were dissected and placed in 1 mL of RPMI-1640 (with 
2% fetal calf serum (FCS)) on ice. Once all SGs were collected, 
RPMI-1640 was removed, replaced with 2 mL enzyme mix 
(RPMI with 2% FCS, 0.8 mg/mL dispase, 0.2 mg/mL colla-
genase P and 0.1 mg/mL DNase I) and digested as previously 
described.31

Flow cytometry analysis and sorting
Single cell suspensions were incubated with 100 µL diluted 
antibodies for 30 min at 4°C in ice-cold fluorescence-activated 
cell sorting (FACS) buffer (0.5% bovine serum albumin, 2 mM 
EDTA in PBS) with ‘cocktails’ of the following antibodies: CD45 
clone 30-F11, CD3e clone 145–2 C11, CD4 clone RM4-5, 
CD62L clone MEL-14, CD44 clone IM7, CD8a clone 53–6.7, 
B220 clone RA3-6B2, CD23 clone B3B4, CD19 clone 1D3 and 
CD5 clone 53–7.3 (all from eBiosciences), CD21 clone 7G6 
(BD biosciences) and CD11c clone N418, F4/80 clone BM8, 
CD64 clone X54-5/7.1 and NK1.1 clone PK136. Intracellular 
staining for Ki67 clone B56 (BD Biosciences) and pS6 PE and 
pAKT Alexa Fluor 488 (Cell signalling) was performed by using 
the Cytofix/Perm kit (BD biosciences) and Fixation/Permeabili-
zation Buffer set (ebiosciences) according to the manufacturer’s 
protocol. Cells were resuspended in FACS buffer and then anal-
ysed using a Cyan-ADP (Dako) or Fortessa (BD) with forward/
side scatter gates set to exclude non-viable cells. Cells of interest 
were sorted by using BD FACSAria. Data were analysed with 
FlowJo software (Tree Star).

Microdissection, mRNA isolation, qRT-PCR
Microdissection and laser catapulting were performed on 
Cresyl-violet (0.1% in ethanol)-stained frozen tissue sections 
from salivary gland samples and tonsil GCs as previously 
described.32

Total RNA was isolated either from murine and human SGs 
with an RNeasy mini kit (Qiagen), from microdissected tissue or 
from sorted cells. RNA was then reverse transcribed using the 
high capacity reverse transcription cDNA synthesis kit (Applied 
Biosystems) according to the manufacturer’s specifications. 
Reverse transcription was carried out on a Techne 312 Thermal 
Cycler PCR machine. Quantitative real-time (qRT)-PCR (Applied 
Biosystems) was performed on cDNA samples for ccl19, cxcl13, 
lta, ltb and baff mRNA expression. β-actin and pdgfrβ were used 
as an endogenous control. The primers and probes used were 
from Applied Biosystems (table 2). qRT-PCR was run in dupli-
cates on a 384-well PCR plate (Applied Biosystems) and detected 
using an ABI PRISM 7900HT instrument. Results were analysed 
with the Applied Biosystems SDS software (SDS V.2.3) as previ-
ously described.30

Lipid analysis
Salivary gland tissue was pulverised in liquid nitrogen using a 
mortar and pestle and determination of phosphatidylinositol 
(3,4,5)-trisphosphate (PIP3) levels, including lipid extraction, 
derivatisation and mass spectrometric analysis, was carried out 
as described previously.33

Results
Target validation of PI3Kδ pathway engagement in SGs of 
patient with pSS
We confirmed the expression of PI3KCD transcript mRNA 
name for PI3Kδ in sorted peripheral blood mononuclear cell 
from patients with pSS (figure 1A) and in total mRNA isolated 
from minor SGs from pSS and sicca controls (figure 1B). Tran-
script levels of PI3KCD significantly correlated with the focus 
score (FSC) calculated in the same SGs (figure 1C) and asso-
ciate with immune activation markers such as the presence of 
autoantibodies, hyperglobulinaemia and the presence of GCs 
(online supplementary figure 1). qRT-PCR on microdissected 
tissue and RNAScope confirmed localisation of the transcript 
for PI3Kδ within the foci and in particular within GC+foci 
(figure  1D,E and control tonsil in the online supplementary 
figure 1).

In order to assess activation of the PI3Kδ pathway in minor 
SG biopsies and confirm its local engagement, we used IF to 
detect the presence of the phosphorylated ribosomal protein S6 
(pS6),27 34 in pSS and non-specific sialoadenitis control (NSCS) 
tissue. Significant expression of pS6 was observed in salivary 
gland biopsies of patients with pSS as compared with non-spe-
cific sialoadenitis. In NSCS, pS6 staining was only detected 
within the epithelium and not present in all samples analysed 
(figure 1F). On the contrary, in pSS, intense pS6 staining was 
detected within the lymphoid aggregates and on the periphery 
of the foci, in co-localisation with T (CD3+) and B (CD20+) 
cells and myeloid cells (figure  1G,H and online supplemen-
tary figure 1 for pSS and tonsil GC, used as control). This 
correlated with the extent of infiltration of the glands (online 
supplementary figure 1).

Interestingly, intense pS6 staining was detected in co-lo-
calization with CD138+ plasma cells in pSS SGs as demon-
strated by IF and flow cytometry (figure 1H,I). pS6 positive 

https://dx.doi.org/10.1136/annrheumdis-2017-212619
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Figure 1  (A) Quantitative real-time (qRT)-PCR analysis of PI3KCD transcripts in peripheral blood mononuclear cell (PBMC) isolated from patients 
with primary Sjögren’s syndrome (pSS). CD3+ cells (dark grey bar), CD19+ cells (black bar), CD138+ cells (red bar), CD11c+CD11b+ cells (light 
grey bar). Results represented as mean±SD of five patients; **p<0.01, one-way analysis of variance (ANOVA). (B) qRT-PCR analysis of PI3KCD 
transcripts in total mRNA isolated from salivary glands of patients with pSS (black circles) and sicca controls (open circles). Results represented as 
mean±SD of 15–17 patients in each group; *p<0.05, unpaired t-test. (C) Correlation between focus scores (FSC) and levels of PI3KDC expressed as 
2^-DCT detected in frozen salivary galnds from patients with pSS. R2 0.3941, p=0.0092. (D) qRT-PCR analysis of PI3KCD transcripts in microdissected 
epithelium, foci, germinal centre positive (GC+) foci from salivary glands of patients with pSS and GCs isolated from tonsils. Results represented as 
mean±SD of 5–10 biological replicates in each category; **p<0.01, ****p<0.0001, one-way ANOVA. (E) Microphotograph of minor salivary glands 
from patients with pSS, showing in red CD45 staining and in green PI3KCD RNA (visualised with RNAScope). (F) Representative microphotograph of 
salivary glands from non-specific sialoadenitis control (NSCS) patients stained for the PI3Kδ pathway activation marker phosphorylated ribosomal 
protein S6 (pS6; green) and 4′,6-diamidino-2-phenylindole (DAPI; grey); scale bars=100 µm. (G) Representative microphotograph of salivary glands 
from patients with pSS with pS6 (green) and DAPI (grey). (H) Representative microphotographs showing pS6 (green) expression within CD20 (blue) 
and CD3 or CD138 (red) cells in salivary glands from patients with pSS; scale bars=100 µm. (I) Representative histogram showing flow cytometry 
staining for pS6 (green) and isotype control (grey) in CD45+ cells present in salivary glands of patients with pSS. viSNE plots of flow cytometry of pSS 
salivary gland CD45+pS6+ cells. Colours indicate cell expression level of labelled marker. Histogram showing pAkt expression in CD45+pS6+ cells.
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cells encompassed also T, B and dendritic cells (DCs) and AKT 
activation (figure 1I).

These data suggest that PI3Kδ is engaged in several cell 
types within pSS inflammatory infiltrates and might be 
involved in the perpetuation of the local autoimmune 
response.

Blockade of PI3Kδ pathway reverses lymphocytic infiltration 
in a mouse model of focal sialoadenitis
The in vivo functional role and downstream effect of PI3Kδ 
inhibition in pSS was tested taking advantage of a mouse model 
of focal sialoadenitis induced by direct delivery of a replica-
tion-deficient ADV5 within murine wild-type SGs.26 Localised 
viral infection in this model mimics features of pSS, including 
the formation of focal lymphocytic aggregates, expression of 
lymphoid chemokines and cytokines as well as antinuclear 
antibodies.26 First, expression of PI3KCD was confirmed in 
the CD45+ compartment of cannulated SGs from mice sacri-
ficed at day 15 pc (figure  2A). Engagement of the pathway 
was confirmed by upregulation of pS6 and pAKT on isolated 
CD45+ cells, with a predominant expression in DCs, T cells, 
B cells and plasma cells (figure 2B–D). The large predominance 
of pS6+ DC in our model is probably related to the viral nature 
of the stimulus and is not reflecting entirely human pSS where 
the percentage of pS6+ cells only accounted for a minority of 
the CD11c+ and CD11b+ cells. Treatment of mice with sele-
talisib resulted in a significant decrease in the ratio between 
PIP3 and phosphatidylinositol (4,5)-biphosphate (PIP2), which 
demonstrated blockade of the PI3Kδ pathway (figure  2E). 
Moreover, seletalisib treatment induced downregulation of S6 
phosphorylation in CD45+ cells isolated from infected SGs in 
treated mice but not in vehicle controls (figure 2F). Together, 
these data confirmed the activation of the PI3Kδ pathway in 
our model and the ability to modulate it by using seletalisib. 
ADV5 infected mice treated with seletalisib, either prophy-
lactically (day 0 pc) or therapeutically (at day 3, 5 or 8 pc) 
showed a reduction in the absolute number of CD45+ cells in 
active treatment groups as compared with the vehicle-treated 
mice. This significant decrease was maintained in a full thera-
peutic regime when mice were treated from either day 3 or 5 
pc (figure 3A). Although this significant reduction in CD45+ 
cell counts was not maintained when treated day 8 pc, a signif-
icant reduction was observed in specific immune cell popula-
tions, notably T and B cells (online supplementary figure 2). 
Together, these data confirm the therapeutic potential of this 
drug in established disease. Flow cytometry analysis revealed a 
marked reduction in absolute numbers of CD3+ T cells (both 
CD4 and CD8 cells) (figure 3B–D) as well as CD19+ B cells 
in all active treatment groups relative to controls (figure 3E). 
Within the overall T cell population, memory and effector 
CD4 and CD8+ cells were both affected (online supplemen-
tary figure 3). Moreover, all subsets of B cells (B1A, B1b, B1c, 
B2, marginal zone and follicular B cells) displayed marked 
decreases in absolute cell numbers (figure  3F–G and online 
supplementary figure 4). In addition, the proliferative ability 
of both T and B lymphocytes was impaired as demonstrated 
by a significant decrease in Ki67 staining in both the T and B 
compartment (figure 3H–I).

Following our observation of PI3Kδ activation in CD138+ 
plasma cells, we also explored the effect of seletalisib on this 
cell type in cannulated mice treated either with the compound 
or its vehicle. Inhibition of PI3Kδ resulted in a significant 
decline in the number of CD138+ plasma cells in all treatment 

groups, suggesting that the PI3Kδ pathway also regulates 
plasma cell homeostasis (figure 3J).

Interestingly, the effects observed on specific subpopula-
tions can be different depending on the treatment regime used. 
While we did not observe a selective effect in samples treated 
prophylactically or from day 3 pc, we have observed a signif-
icant effect on all B cells as percentages (as well as absolute 
numbers) and in particular on B1a and MZ B cells in animals 
treated from day 5 pc (online supplementary figures 4 and 5).

Aggregate formation during salivary gland inflammation is 
abrogated in mice treated with seletalisib
Having observed a reduction in lymphocyte accumulation 
within SGs following seletalisib by flow cytometry, we wanted 
to confirm these observations by IF staining for CD3+ and 
CD19+ cells as well as to visualise any impact on the organisa-
tion of infiltrating lymphocytes. These data revealed impaired 
lymphoid aggregate formation in seletalisib-treated mice 
compared with those treated with vehicle. It was particularly 
marked in mice treated prophylactically with seletalisib, in 
which no visible lymphoid aggregate formation was evident. 
This was confirmed by quantification of the FSC, foci size and 
aggregate organisation, with all parameters demonstrating a 
significant reduction in the treated animals at day 15 pc as 
compared with the controls (figure  4A–C). Importantly, the 
abrogation of lymphocytic foci formation and organisation 
coincided with a decrease in antinuclear autoantibody produc-
tion in mice treated with the PI3kδ inhibitor compound as 
compared with vehicle controls (figure 4 and online supple-
mentary figure 4). Analysis of stimulated salivary flow also 
showed a significant improvement in saliva production in sele-
talisib-treated mice (figure 4E).

Inhibition of PI3Kδ pathway impairs the expression of ectopic 
lymphoneogenesis associated cytokines and chemokines
The reduced lymphocyte aggregation following seletalisib 
treatment led us to investigate its impact on the expression 
of factors that drive ectopic lymphoneogenesis. In accordance 
with the histological findings, qRT-PCR performed on whole 
SG tissue demonstrated significantly reduced transcript levels 
for the lymphoid cytokines (LTβ and LTα) in mice treated 
with seletalisib as compared with controls. Moreover, a signif-
icant reduction in CXCL13 and CXCL12 transcript levels was 
observed in seletalisib-treated mice, while a modest effect was 
observed for CCL19, one of the chemokines responsible for T 
cell migration within the affected glands. To further support 
the lymphoid chemokine expression and aggregate histolog-
ical data, qRT-PCR analysis for CXCR5, CCR7 and CXCR4 
mRNA also showed significantly lower transcript levels in sele-
talisib-treated mice when compared with vehicle controls. A 
significant reduction in B cell activating factor (BAFF) expres-
sion across all treatment groups tested as compared with 
vehicle-treated mice was also detected. Furthermore, marked 
suppression in AICDA mRNA transcripts (the gene encoding 
for AID) was observed in mice treated with PI3Kδ inhibitor 
(figure 5A).

IF analysis demonstrated decreased protein expression for 
CXCL13 and CCL21 in the mice analysed (figure 5B).

Overall, these results suggest that inhibition of the PI3Kδ 
pathway disrupts the positive feedback loop of lymphocytic 
infiltration and lymphoid chemokine production which is 
required for the establishment of ectopic GC and plasma cell 
survival niches in the affected SGs.

https://dx.doi.org/10.1136/annrheumdis-2017-212619
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Figure 2  (A) Quantitative real-time PCR analysis of PI3KCD transcripts isolated cells from salivary glands of cannulated mice at day 15 
postcannulation (pc). B cells (black bar), T cells (dark grey bar), plasma cells (red bar), macrophages (blue) and dendritic cells (light grey bar), CD45− 
cells (light yellow bars). Results represented as mean±SD from five mice; *p<0.5, ***p<0.001, one-way analysis of variance. (B) Pie chart showing 
distribution of different leucocyte populations within CD45+ phosphorylated ribosomal protein S6 (pS6+) cells present in salivary glands of wild-
type (WT) mice at day 15 pc (C) viSNE plots of flow cytometry of day 15 pc salivary gland CD45+pS6+ cells. Colour indicates cell expression level of 
labelled marker. Data is representative of two independent experiments with five mice. (D) Histogram showing phosphorylation of Akt in CD45+pS6+ 
cells in salivary glands of WT mice at day 15 pc. (E) Graphs showing phosphatidylinositol (3,4,5)-trisphosphate (PIP3)/phosphatidylinositol 
(4,5)-biphosphate (PIP2) ratio in salivary glands of mice treated with seletalisib versus vehicle control to demonstrate effect of the compound directly 
in the salivary glands. Results represented as mean±SD of three independent experiments with five mice per group; **p<0.01, unpaired t-test. (F) 
Histogram showing pS6 expression levels within the CD45+ cells in day 15 pc salivary glands of mice treated with seletalisib as compared with the 
vehicle-treated mice. Isotype control also shown. The mice were treated with seletalisib or vehicle from day 12 pc onwards. Data is representative of 
experiments with three mice in each group.
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Figure 3  (A) Graphs summarising flow cytometry data for absolute numbers of CD45 cells in salivary glands of wild-type (WT) mice at day 15 
postcannulation (pc) treated with seletalisib at day 0 (white bars), day 3 (light grey) and day 5 (dark grey) pc as compared with vehicle controls 
(black bars). Results represented as mean±SD of two independent experiments with five mice per group; *p<0.05, **p<0.01, ***p<0.001, one-way 
analysis of variance (ANOVA). (B) Graphs summarising flow cytometry data for absolute numbers of CD3+ T cells in salivary glands of WT mice at 
day 15 pc treated with seletalisib at day 0 (white bars), day 3 (light grey) and day 5 (dark grey) pc as compared with vehicle controls (black bars). 
Results represented as mean±SD of two independent experiments with five mice; *p<0.05, **p<0.01, ***p<0.001, one-way ANOVA. (C and D) 
Graphs summarising flow cytometry data for absolute numbers of CD4+ T cells, CD8+ T cells in salivary glands of WT mice at day 15 pc treated with 
seletalisib at day 0 (white bars), day 3 (light grey) and day 5 (dark grey) pc as compared with vehicle controls (black bars). Results represented as 
mean±SD of two independent experiments with three mice per group; *p<0.05, **p<0.01, ***p<0.001, one-way ANOVA. (E) Graphs summarising 
flow cytometry data for absolute numbers of CD19+ B cells in salivary glands of WT mice at day 15 pc treated with seletalisib at day 0 (white bars), 
day 3 (light grey) and day 5 (dark grey) pc as compared with vehicle controls (black bars). Results represented as mean±SD of two independent 
experiments with five mice glands per group; *p<0.05, **p<0.01, ***p<0.001, one-way ANOVA. (F–I) Graphs summarising flow cytometry data for 
absolute numbers of CD19+CD11b−CD5−B2 B cells, follicular (CD23+) B cells and Ki67+ (proliferating) T and B cells in salivary glands of WT mice 
at day 15 pc treated with seletalisib at day 0 (white bars), day 3 (light grey) and day 5 (dark grey) pc as compared with vehicle controls (black bars). 
Results represented as mean±SD of two independent experiments with three mice per group; *p<0.05, **p<0.01, ***p<0.001, one-way ANOVA. 
(J) Graphs summarising flow cytometry data for absolute numbers of B220+ CD138+ plasma cells in salivary glands of WT mice at day 15 pc treated 
with seletalisib at day 0 (white bars), day 3 (light grey) and day 5 (dark grey) pc as compared with vehicle controls (black bars). Results represented as 
mean±SD of two independent experiments with five mice per group; **p<0.01, ***p<0.001, one-way ANOVA.



256 Nayar S, et al. Ann Rheum Dis 2019;78:249–260. doi:10.1136/annrheumdis-2017-212619

Sjögren's syndrome

Figure 4  (A and B) Microphotograph of lymphoid aggregates in salivary glands of wild-type (WT) mice at day 15 postcannulation (pc) treated 
with seletalisib prophylactically or therapeutically as compared with vehicle controls (black bars) stained for CD3 (red) and CD19 (green). Scale 
bars=500 µm (tile scans) and 100 µm (foci snapshots). (C) Graphs represent the focus score (number of lymphocytic foci (>50 lymphocytes) per 4 
mm2), average size of foci and percentage of segregated aggregates in cannulated salivary glands from therapeutically treated mice as compared 
with controls. Results represented as mean±SE of two independent experiments with five mice per group; *p<0.05, **p<0.01, ***p<0.001, unpaired 
t-test. (D) Graphs represent percentage of antinuclear antibodies (ANA) positive mice from seletalisib-treated mice as compared with controls. Results 
represented as mean±SD of two independent experiments with 10 mice per group, unpaired t-test. (E) Graph comparing salivary flow in seletalisib-
treated mice and vehicle controls measured at day 15 pc. Salivary flow is measured as milligrams of saliva produced in 10 min/body weight following 
pilocarpine stimulation (see the Methods section). Results represented as mean±SD of three independent experiments with 10 mice per group, 
unpaired t-test.

Interestingly, control lymphoid tissue obtained from mice 
treated with seletalisib (lymph node and blood) showed 
minimal impact of the drug on circulating B cells and in the 
lymph node on the CD4/CD8 ratio (online supplementary 
figure 6). The anatomical structure of the secondary lymphoid 
organs was fully conserved in these animals (data not shown).

Discussion
Here, we provide evidence that the PI3Kδ pathway is active 
and functional in pSS and its blockade in vivo interferes with 

local and systemic disease progression in an animal model of 
focal sialoadenitis.

Aberrant B cell activation is the hallmark of pSS. B 
cell number rises in the SGs during disease progression, 
correlating with a higher FSC, higher autoantibody titres 
and the presence of systemic manifestations.10 19 22 35 36 The 
increased risk of lymphoma development also correlates with 
the progressive aggregation of B cells within the SGs and, 
while a positive association between lymphoma development 
and GC formation has not been established, the negative 

https://dx.doi.org/10.1136/annrheumdis-2017-212619
https://dx.doi.org/10.1136/annrheumdis-2017-212619
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Figure 5  (A) Quantitative real-time-PCR analysis of ltα, ltβ, cxcl13, ccl19, cxcl12, cxcr5, ccr7,cxcr4, baff and aicda mRNA transcripts in salivary 
glands of wild-type mice at day 15 postcannulation (pc) treated with seletalisib at day 0 (white bars), day 3 (light grey) and day 5 (dark grey) pc as 
compared with vehicle controls (black bars). Results represented as mean±SD of two independent experiments with five mice per group; *p<0.05, 
**p<0.01, ***p<0.001, one-way analysis of variance (ANOVA). (B) Microphotograph showing CXCL13 and CCL21 protein expression (green) in day 
15 ADV5-infected salivary glands from seletalisib-treated mice as compared with vehicle. T cells (CD3 red) and B cells (CD19 green) are also shown. 
Scale bars=20 µm.

predictive value of the absence of GC in lymphomagenesis 
seems clear.13 17 22 37 More recently, an increased frequency of 
transitional B cells and mature naive B cells expressing poly-
reactive antibodies has been demonstrated in the peripheral 
blood of patients with pSS, confirming that impaired periph-
eral B cell tolerance plays a critical role in pSS pathogen-
esis.38 Accordingly, we previously demonstrated that altering 
B cell recruitment by blocking the interleukin (IL)-22 medi-
ated production of CXCL13 reduces the formation of SG 

aggregates and abrogates production of autoantibodies in a 
mouse model of pSS.30

PI3Kδ regulates key aspects of B cell homeostasis. B cells 
derived from mice deficient in PI3Kδ activity or wild type 
B cells treated with the PI3Kδ inhibitor all display reduced 
proliferative ability and increased susceptibility to apop-
tosis in response to anti-CD40, IL-4 or anti-IgM stimula-
tion.39 40 Moreover, both B cell response to the BAFF41 and 
to the chemoattractant CXCL13 and shingosine-1-phosphate 
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(S1P) largely relies on PI3Kδ via activation of Rap1, a key 
GTPase in B lymphocyte migration.42 43 Memory T cell gener-
ation and function is also impaired in the absence of PI3Kδ6; 
thus, unsurprisingly, T cell-dependent antibody responses 
are also affected in the absence of PI3Kδ isoform.44 Finally, 
PI3Kδ-deficient lymphocytes are unable to form polarised 
synapses efficiently.44 45

While the rationale for PI3Kδ targeting in B cell driven autoim-
mune condition is clear, target validation has not been reported 
for pSS. Here we demonstrate that the PI3Kδ pathway is acti-
vated in pSS and clearly differentiates pSS samples from control 
sialoadenitis. Expression of the PI3Kδ transcript correlates with 
manifestations of B cell hyperactivity, including autoantibody 
production, formation of GCs and hyperglobulinaemia. The 
expression of pS6, a downstream adaptor of the PI3Kδ pathway, 
was anticipated in T and B lymphocytes but this marker was also 
detected in myeloid cells and plasma cells. This finding suggests 
that patients with pSS and in particular those manifesting B cell 
symptoms and those characterised by a ‘plasma cell signature’46 
have an increased engagement of the PI3Kδ pathway and would 
benefit from a treatment targeting its activation.

We used a small molecule seletalisib (UCB Celltech), previ-
ously demonstrated to be safe and efficacious in patients with 
psoriasis,27 47 to target this pathway in vivo, in a model of induc-
ible sialoadenitis.26 Treatment of cannulated mice with seletalisib 
resulted in downregulation of S6 phosphorylation and decreased 
conversion of PIP2 in PIP3, demonstrating the ability of sele-
talisib to inhibit PI3Kδ activation in treated samples. PI3Kδ 
blockade in the SGs of our murine model resulted in significantly 
decreased lymphocyte infiltration, both in terms of T and B cells, 
disrupted lymphocyte organisation, reduction in autoantibody 
production, abrogated transcription of lymphoid chemokines 
and cytokines and improvement in saliva production. In periph-
eral organs, we observed a non-significant decreased on total 
cellularity and some changes in the T/B cell ratio and CD4/CD8 
ratio. In the blood, we observed a more profound effect on cellu-
larity, probably due to bioavailability and a decrease in total B 
cell number. Importantly and in agreement with previous publi-
cations in human,27 47 including a recent study in pSS,48 the mice 
did not show any sign of infection or unexplained weight loss.

It has been previously demonstrated by us and others that 
lymphocytes, and in particular T cells, imprint the local 
microenvironment by releasing LTα, β and proinflamma-
tory cytokines, such as IL-22 or IL-17 that, in turn, regulate 
the expression of lymphoid chemokines and survival factors 
necessary for ectopic lymphocyte homing and maintenance in 
the tissue.30 49–58 Here we establish that inhibition of PI3Kδ, 
in seletalisib-treated mice, affects both T and B cells, directly 
interfering with the establishment of the pathogenic SG 
microenvironment, preventing the formation of the GC and 
the perpetuation of local disease.10 29 30 59–62 These data are 
in line with previous reports highlighting the role of PI3Kδ 
in the differentiation of T cells into T helper cells, required 
for effective GC responses and antibody production.45 63 64 
Accordingly, in our model, abrogation of tissue pathology was 
accompanied by decreased autoantibody production.

While the effect on antigen presentation and B cell func-
tion have been largely described4 45 and hereby confirmed by 
the decrease in IL-23 and DC number in the SGs, blood and 
lymph node, our data highlight a clear requirement for this 
pathway on plasma cells in our model. In patients with pSS, 
the aberrant levels of autoantibodies and immunoglobulin 
are used as biomarkers for disease activity and prognosis.20 21 
GC in the SGs are able to support B cell affinity maturation; 

moreover, Ro+ and La+ plasma cells have been demonstrated 
at the periphery of large intraglandular foci. The detection of 
long-lived CD138+ Bcl-2+ plasma cells in pSS SG has also 
been associated with higher FSCs,60 65 more severe systemic 
manifestation and increased lymphoma risk,23 66–69 thus estab-
lishing that in pSS, local and systemic activation of the plasma 
cell compartment is involved in disease progression. Here, we 
demonstrate intense pS6 staining within SG infiltrating plasma 
cells, suggesting that even on activation, plasma cells are reliant 
on the PI3Kδ pathway for homeostatic maintenance. Accord-
ingly, in vivo treatment with seletalisib significantly affects 
plasma cell numbers and abrogates autoantibody production 
in murine sialoadenitis. Similar data on the efficacy of a PI3Kδ 
blocking agent have been reported in a phase 2 study, showing 
a decrease in immunoglobulins in pSS-treated patients as 
compared with placebo. While primary endpoints were not 
met in this first study, effects on plasma cells and safety profile 
from this study support the continued investigation of PI3Kδ 
inhibitors such as seletalisib in pSS.48

All together, these data and the significant correlation 
between PI3Kδ expression in the glands and clinical mani-
festations associated with B cell hyperactivation strongly 
support the evaluation of seletalisib in patients characterised 
by systemic manifestations, including high levels of immuno-
globulins, presence of GCs and high FSC in the biopsies, often 
identifiable with high levels of ESSDAI.70–75

In pSS, B cell-depleting agents, such as rituximab, failed to 
demonstrate significant clinical success in phase 3 randomised 
clinical trials, and disease relapse has been observed in 
patients with pSS (and lymphoma) treated with rituximab.76–78 
While these disappointing findings with rituxumab might in 
part be due to trial design and choice of outcome measure, 
biologically, there is evidence of expansion of pathogenic B 
cell clones following depletion, allegedly supported by the 
persistent production of survival and chemotactic factors in 
the SG microenvironment.77 79–84 Of note, rituximab is unable 
to target long-lived plasma cells (CD20 negative) directly, thus 
leaving the autoantibody producing reservoir intact.85 Conse-
quently, a strategy that aims to target plasma cells directly, 
alongside T and B lymphocytes, using an agent such as sele-
talisib, would be desirable in patients with pSS presenting a 
clear plasma cell signature.46 Our findings, confirm that in 
pSS, PI3Kδ has a pleotropic effect on the homeostasis of T, 
B lymphocytes (including GC B cells) and plasma cells. Selec-
tive targeting of PI3Kδ using seletalisib significantly impacts 
pathogenic microenvironment in the inflamed murine glands, 
while affecting, systemically, the production of autoantibodies. 
Overall, these results appear to confirm a mechanistic role for 
PI3Kδ activity in the immunopathogenesis of pSS supporting 
the presence and engagement of this pathway in patients char-
acterised by local and systemic B cell hyperactivity. Overall, 
these results appear to confirm a mechanistic role for PI3Kδ 
activity in the immunopathogenesis of pSS supporting the 
presence and engagement of this pathway in human pSS sali-
vary gland and warranting the further evaluation of seletalisib 
in clinical trials in patients with pSS.
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