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ABSTRACT

For decades, natural products have been used as a
primary resource in drug discovery pipelines to find
new antibiotics, which are mainly produced as sec-
ondary metabolites by bacteria. The biosynthesis of
these compounds is encoded in co-localized genes
termed biosynthetic gene clusters (BGCs). However,
BGCs are often not expressed under laboratory con-
ditions. Several genetic manipulation strategies have
been developed in order to activate or overexpress
silent BGCs. Significant increases in production lev-
els of secondary metabolites were indeed achieved
by modifying the expression of genes encoding
regulators and transporters, as well as genes in-
volved in resistance or precursor biosynthesis. How-
ever, the abundance of genes encoding such func-
tions within bacterial genomes requires prioritization
of the most promising ones for genetic manipula-
tion strategies. Here, we introduce the ‘Secondary
Metabolite Transcriptomic Pipeline’ (SeMa-Trap), a
user-friendly web-server, available at https://sema-
trap.ziemertlab.com. SeMa-Trap facilitates RNA-Seq
based transcriptome analyses, finds co-expression
patterns between certain genes and BGCs of inter-
est, and helps optimize the design of comparative
transcriptomic analyses. Finally, SeMa-Trap provides
interactive result pages for each BGC, allowing the
easy exploration and comparison of expression pat-
terns. In summary, SeMa-Trap allows a straightfor-
ward prioritization of genes that could be targeted

via genetic engineering approaches to (over)express
BGCs of interest.

GRAPHICAL ABSTRACT

INTRODUCTION

By providing a wide range of biological functions, natural
products have been foundational to the survival and evolu-
tionary fitness of various organisms in the tree of life (1).
Also known as secondary metabolites (SMs), these com-
pounds are abundantly produced by plants and microor-
ganisms (2). For decades, these molecules have been fueling
various industries such as pharmaceutics as antimicrobial
agents (3,4). However, the decrease in the discovery rates of
novel antibiotics and the parallel increase in resistance to-
wards the existing antibiotics make the identification of new
bioactive compounds a task of paramount importance (5).
By encoding the enzymes necessary for compound produc-
tion, biosynthetic gene clusters (BGCs) represent the orga-
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nized groups of genes involved in the production of SMs (6).
During the last decade an enormous number of genomic se-
quences have been made available, revolutionizing genome
mining efforts in natural product research (7). Based on al-
gorithmic concepts like hidden Markov models (HMMs),
highly improved computational tools for BGC prediction
such as antiSMASH (8) enable rapid mining of sequenced
genomes. By using such tools, thousands of BGCs have been
made available to researchers stored in public databases
such as MIBiG (9), antiSMASH-DB (10) or The Natu-
ral Products Atlas (11). However, from the entire bacterial
kingdom, it was recently shown that only 3% of its genomic
potential for SMs has been experimentally verified (12). One
of the main reasons for this phenomenon is that the expres-
sion of the BGCs is often tightly regulated and not observed
under laboratory conditions. This non-expressed nature of
the BGCs creates a major bottleneck in the identification of
bioactive compounds with novel modes of action (13).

To activate silent BGCs and increase the production titers
of SMs, several strategies have been devised such as al-
tering the culturing conditions or heterologous expression
of the BGCs (14,15). Additionally, genetically modifying
global and local regulatory genes can enhance transcription
levels of biosynthetic genes (16). Activation or disruption
of positive and negative regulators, respectively, has led to
the expression of many silent BGCs (17,18). Furthermore,
it has been shown that increasing the expression of genes
encoding transporters (19), conferring resistance (20), or
involved in precursor supply (21) also increases SM pro-
duction. However, major antibiotic producers like the or-
ganisms belonging to the genus Streptomyces (22) encode
around 7000 genes on average (23). This raises the ques-
tion: Which ones to genetically modify? Comparative tran-
scriptomic analyses based on RNA-sequencing (RNA-seq)
can help decipher the complex pathways that regulate the
BGCs of interest and thereby, select the genes to prioritize
(hereinafter referred to as target genes) (24,25). This strat-
egy is mostly conducted by comparing the expression levels
of BGCs from organisms with genetic variance or from the
same strain cultured under different physiological condi-
tions (26,27). The overwhelming number of possible experi-
mental designs make the prioritization of promising culture
conditions and target genes crucial for genetic manipula-
tion approaches. To achieve this aim, we developed the ‘Sec-
ondary Metabolite Transcriptomic Pipeline’ (SeMa-Trap).
Available at https://sema-trap.ziemertlab.com, SeMa-Trap
allows for efficient transcriptome mining of BGCs in bac-
teria through a user-friendly web interface. The pipeline
performs RNA-Seq based transcriptome analysis of BGCs
predicted by antiSMASH, compares their fold-changes in
various experiments, and allows for promising experimen-
tal design and prioritization of the target genes for BGC
overexpression. Finally, SeMa-Trap provides interactive re-
sult pages for each BGC. This allows easy exploration of
BGC expression under certain culturing conditions and the
identification of co-regulated genes, which may be located
elsewhere in the genome and display potentially interesting
functions as defined by the KEGG database (28). Here we
provide an overview of the pipeline, highlight the visualiza-
tion of the interface and demonstrate the efficacy of SeMa-
Trap through a case study.

MATERIALS AND METHODS

Workflow

The SeMa-Trap pipeline consists of 4 key steps (Figure 1).
The first step is the acquisition of user provided genome
and RNA-Seq data. Afterwards, genes involved in BGC ex-
pression regulation in the genome (e.g. transporters or reg-
ulators, referred to as genes of interest) are annotated, and
BGCs are predicted by antiSMASH. BGC annotations in
addition to those identified by antiSMASH can also be pro-
vided by the user by using the ‘Defined clusters’ option. To
generate reference expression levels, essential housekeeping
genes are also identified. In the third step, RNA-Seq analy-
sis is performed to obtain expression levels and fold changes
of the genes and BGCs of interest. Finally, results are pre-
sented by interactive visualizations and summarizing tables
for easy exploration of the expression level changes. All re-
sults are kept in the server for 2 months. In addition, they
can also be downloaded by saving the results page to the lo-
cal machine. In case of larger data analysis, local installation
and combining SeMa-Trap with in-house analysis pipelines
is also possible using Anaconda.

Input options and data acquisition

Input form. SeMa-Trap accepts user provided genomes in
GenBank and FASTA format, however, the ideal input is
the assembly accession number of the annotated GenBank
file since that, in turn, will result in the automatic down-
load of all annotation files from the NCBI FTP server. For
efficient housekeeping gene identification, the correspond-
ing taxonomic clade of the organism (e.g. Actinobacteria)
should be selected through the ‘Reference set’ option. If the
input genome is not represented by any available reference
set, the ‘Unknown’ option offers HMM models acquired
from the Database of Essential Genes (Supplementary Ta-
ble S1) (29).

RNA-Seq data. For RNA-Seq based data options, allowed
input types are run accession numbers from NCBI-SRA or
EBI-ENA. Since it is imperative that the reads are down-
loaded in a fast and reliable fashion, SeMa-Trap utilizes
multiple downloading options. IBM Aspera (https://www.
ibm.com/products/aspera), a high-speed file transfer sys-
tem, is the preferred and recommended way of data trans-
fer (https://www.ncbi.nlm.nih.gov/books/NBK242621/). In
case of any complications, SeMa-Trap will directly down-
load from FTP servers or using fastq-dump (http://ncbi.
github.io/sra-tools/). In case of pre-analyzed RNA-Seq data
with other specific tools or parameters, the corresponding
‘BAM’ formatted files can also be uploaded. Limitations
due to the current computational power and the imple-
mentation of the server are provided in the Supplementary
Methods.

RNA-Seq analysis

Once data acquisition is complete, SeMa-Trap utilizes sev-
eral tools for analyzing the RNA-Seq data. Firstly, the fastp
algorithm (30) is used to filter reads with low quality and for
adapter trimming. Afterwards, filtered reads are mapped to
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Figure 1. Overall workflow of the SeMa-Trap pipeline. First, the genomic and transcriptomic data provided by the user are acquired from relevant databases
(A). Next step is the genome-wide annotation of the BGCs, essential housekeeping genes, secondary metabolite specific pathways and genes shown to have
an impact on SM production (B). Final steps include a complete RNA-Seq analysis (C) and the generation of the interactive results (D).

the reference genome by Hisat2 (31) and sorted to gener-
ate corresponding BAM formatted files via samtools (32).
Read count per gene is summarized by featureCounts (33).
Finally, gene expression normalization takes place for each
gene using the transcript per million (TPM) method de-
scribed by Wagner et al. (34), and differential expression
analysis is performed using DESeq2 (35), as detailed in Sup-
plementary Methods. For the calculation of expression level
or fold change of a BGC of interest, average expression of
the ‘core biosynthetic genes’ (annotated by antiSMASH) is
taken into account.

Scoring. In order to prioritize target genes, SeMa-Trap
uses a scoring function dependent on the gene expression
levels throughout the comparative transcriptomic experi-
ments. To calculate such scores, fold changes of the se-
lected BGC and the gene of interest are multiplied and then
the calculated numbers from each selected experiment are
added together (exemplified in Supplementary Table S2).
However, it must be noted that a high score does not nec-
essarily prove an association between a BGC and a gene.
It rather points to high expression changes in the different
conditions relative to a BGC of interest. Only when using
large amounts of expression data, credible associations can
be effectively detected (36).

Reference expression level. In order to set meaningful
thresholds to label a BGC as ‘expressed’, SeMa-Trap uses
three different average expression levels of specific genes.

One of them is the mean expression of housekeeping
genes throughout the genome. These genes are annotated
by hmmsearch (37) with specific TIGRFAM models (38)
unique for each reference set (39,40). The idea here is that
on average, a gene defined as ‘essential housekeeping gene’
should be expressed significantly to be used as a reference
for expression (41). However, BGCs can be expressed at
lower levels and still produce compounds (42). Since no ex-
act threshold exists to define BGC expression, SeMa-Trap
offers separate reference levels such as the mean of non-
housekeeping genes or all of the existing genes.

Annotation

Apart from antiSMASH’s BGC prediction, the Known-
ClusterBlast algorithm is also applied to identify the com-
pounds potentially produced by the BGC. If the provided
genome is in FASTA format, an initial gene prediction step
will take place using Prodigal (43). Since it is shown that
certain types of genes actively control BGC expression, an
extensive annotation of the genome is essential for priori-
tizing target genes to manipulate for BGC overexpression.
For this purpose, the eggNOG-mapper (44) is used, par-
ticularly for the annotation of genes encoding transporters
and genes residing in secondary metabolite specific KEGG
pathways termed as ‘biosynthesis of secondary metabo-
lites’ and ‘biosynthesis of antibiotics’. Using hmmsearch,
genes conferring antibiotic resistance or genes with regula-
tory functions are further defined via specific HMM models
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Figure 2. Overview result page of SeMa-Trap run for two comparative transcriptomic experiment designs. (A, B) The potential compound of the BGC and
functional annotations of the genes within, respectively. (C) Heatmap of the BGC of interest, displaying each genes fold changes in different experiments.
(D) Average fold change of the entire BGC, per experiment. (E) Expression (TPM) of a BGC relative to the selected, normalized reference expression level.

procured from PFAM (45), Resfams (46) and CARD (47)
databases.

RESULTS

Overview

Once the analysis is complete, SeMa-Trap presents the
overview of the overall fold changes of predicted BGCs and
their expression levels relative to either of the mentioned
reference expression levels (Figure 2). Various useful anno-
tations of the genes in the BGCs are presented as well as
the corresponding compound of the BGC if it is defined by
KnownClusterBlast. Furthermore, a heatmap of the BGC
content can be viewed in order to inspect fold changes of
genes per experiment. BGCs can be further explored by
clicking on the ‘Analyze in detail’ button.

Case study

A recent study by Lee et al. demonstrated the various effects
of microbial co-culturing on natural products biosynthesis
at the transcriptome level (48). Using six different compara-
tive experimental designs, the authors revealed that compe-
tition for iron increases the expression of specific genes lead-
ing to actinorhodin overproduction in Streptomyces coeli-
color A3(2) when co-cultured with Myxococcus xanthus. In
the following, by analyzing their publicly available RNA-
Seq data, we illustrate how SeMa-Trap simplifies the entire
analysis.

Visualization options and pathway analysis. The first part
of the result page (Figure 3A) offers a range of options
such as various displaying options for the presented genes,
the selection of specific experiments, and visualization of
RNA-Seq results by fold change or TPM based expression
level. Furthermore, it is possible to analyze specific path-
ways more in detail and explore the amount of differentially

expressed genes within. In the presented case study, genes
involved in the leucine and isoleucine degradation pathways
were shown to be overexpressed, which potentially provide
precursors for the actinorhodin biosynthesis. Using Sema-
Trap this can easily be highlighted (Figure 3B).

Genome browser. For the investigation of specific genes
within the BGC or throughout the rest of the genome, a
dynamic genome browser is available. Apart from efficient
exploration of gene expression and annotation, the genome
browser offers multiple options. Provided that the BGC of
interest is significantly expressed, it is possible to set more
accurate boundaries for the predicted BGC. Within the an-
tiSMASH defined boundaries of a BGC (Figure 3C), a
smaller, continuous succession of genes appears to be co-
expressed, suggesting that those are regulated in an operon
and represent the actual BGC boundaries.

Target gene prioritization. After thorough investigation,
Lee and colleagues identified the SCO6666 gene encoding a
transport system alternative to the one in the actinorhodin
BGC, which is encoded by the genes SCO5083–5084. Fur-
thermore, they found that the SCO6666 gene highly affected
the production of actinorhodin in iron restricted conditions.
Such prioritization can be easily made using the SeMa-Trap
tables sorted by concordantly and discordantly co-regulated
genes including scores (Figure 3D). Selection of the func-
tional category ‘Same KEGG annotations as BGC’ fur-
ther simplifies the investigation of the systems alternative to
those encoded within the BGC of interest. The ‘Combina-
tion’ column denotes the selected experiments, thus provid-
ing information on which genes are co-regulated with the
BGC of interest under which conditions.

Proof of principle

As a proof of concept, we used SeMa-Trap to examine
the transcriptome data of the actinomycete Amycolatopsis
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Figure 3. BGC centered results of SeMa-Trap. Initially, color codes for different annotations and multiple visualization settings are presented (A). Users
can also highlight genes in specific pathways and choose to visualize the results based on the selected experiments (B). In section (C), two genome browsers
are available in order to explore gene expressions from the selected experiments in the predicted cluster and throughout the genome. Finally, genes which
are likely impacting the BGC expression based on transcriptomic data can be viewed through an interactive table (D).

japonicum. A. japonicum is the producer of the complexing
agent [S,S]-EDDS (49), a structural isomer of EDTA, which
in contrast to EDTA is biodegradable and can replace
EDTA in many industrial applications. However, [S,S]-
EDDS production is inhibited by zinc at concentrations of
2 �M (50). Responsible for this regulation is the zinc uptake
regulator Zur. To produce [S,S]-EDDS even in the presence
of zinc the mutant A. japonicum �zur (referred to as zurko)
was generated (51). To determine which genes to overex-
press to increase [S,S]-EDDS production in A. japonicum,
we performed transcriptomic analysis. For this purpose,
RNA-Seq analyses of A. japonicum wild type (WT) and A.
japonicum �zur cultured in the presence and absence of zinc
for 24 h were performed. Thereby, a direct correlation be-
tween zur gene expression and the [S,S]-EDDS biosynthetic
genes (BGs) could be observed. In particular, using SeMa-
Trap we identified genes that exhibited high co-expression
with the [S,S]-EDDS BG (concordantly regulated genes)
and genes regulated in opposite manner (discordantly reg-
ulated genes). Since gene deletion is a multi-step, time-
consuming process, we opted for a straightforward ap-
proach and overexpressed the targeted genes as a proof
of concept. Thereby, we focused on genes with a regula-

tory function and those connected to secondary metabolism
pathways. The target gene bldC (‘AJAP RS36645’), with
the second highest score in the category ‘regulation’, en-
codes a transcriptional regulator of differentiation which
controls entry into development and the onset of an-
tibiotic production in Streptomyces (52). The lacI gene,
(‘AJAP RS11995’), encodes a pleiotropic regulator (fifth
highest score in the category ‘regulation’) which enhanced
the production of antibiotics in S. coelicolor (53). From the
pathways connected to secondary metabolism, we selected
the glutamate synthase-encoding glts (‘AJAP RS11230’)
gene (with second best score) involved in glutamate biosyn-
thesis. Since glutamate can be converted into L-aspartic
acid, one of the precursors for EDDS biosynthesis, this
gene was also taken into consideration. None of the se-
lected genes have been experimentally shown to be linked
to the [S,S]-EDDS production. Simultaneous overexpres-
sion of these genes resulted in an increased EDDS produc-
tion by 3-fold compared to A. japonicum WT (Figure 4).
Along with the experimental design, detailed methods (Sup-
plementary Tables S3 and S4) and analysis (Supplementary
Figures S1 and S2) can be further seen in the Supplementary
Data.
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Figure 4. [S,S]-EDDS production in A. japonicum WT and recombinant
strains. Strains were grown for 96 h in zinc depleted synthetic medium
(SM). A. japonicum wild-type (WT); A. japonicum containing an additional
copy of the genes bldC, lacI or glutamate synthase (glts), respectively and
A. japonicum containing an additional copy of the three genes (bldC + lacI
+ glts).

CONCLUSIONS AND FUTURE PERSPECTIVES

Leveraging on state-of-the-art sequencing techniques, com-
parative transcriptomic analyses have been continuously
used to identify genes that are co-regulated with BGCs of
interest and can be manipulated to activate silent BGCs. A
variety of tools exists in order to annotate and effectively
visualize biological functions of co-regulated genes such as
KOBAS (54), conduct RNA-Seq analysis such as ProkSeq
(55) or identify BGCs with co-expression data such as CAS-
SIS (56). However, to the best of our knowledge, SeMa-
Trap is the only public web server that combines genome
mining and transcriptomic approaches for the identification
of potential target genes for SM overproduction. The user-
friendly graphical interface of the web server allows efficient
and easy mining of RNA-Seq data, and was conceived for
natural product researchers who are not acquainted with
command line tools. Notably, SeMa-Trap also visualizes es-
sential information about the cell response to the produc-
tion of SMs on a transcriptomic level.

We showed herein that SeMa-Trap greatly facilitates the
identification of co-regulated genes as illustrated on the
actinorhodin-encoding BGC. However the limitations of
the pipeline must be noted. The current scoring system is
only designed to sort genes based on their similarity in tran-
scription levels to a BGC of interest. It can not be used as an
exclusive method for the selection of target genes. Thus, it
is incumbent upon the users to further evaluate the hits re-
turned by SeMa-Trap. For example, in the presented [S,S]-
EDDS overproduction experiment, our literature search
showed that the genes having the best co-expression score

were unlikely to play a role in [S,S]-EDDS production. Con-
sequently, three of the promising target genes were success-
fully overexpressed, leading to increased [S,S]-EDDS pro-
duction. Especially when based on a few number of tran-
scriptomic experiments, it becomes more likely that the
SeMa-Trap analysis will include false positive target genes
in the resulting tables. For future applications, by analyzing
large amounts of publicly available RNA-Seq data, we are
working on generating associations with certain gene types
and classes of BGCs. Through co-expression networks, us-
ing statistical methods such as Pearson correlation coeffi-
cient, our aim is to reduce the number of false positives
(57,58).

In summary, considering the ever-growing need for novel
bioactive compounds, we believe that SeMa-Trap will serve
as a helpful tool for the natural product community by fa-
cilitating the identification of specific co-expression patterns
between different types of BGCs and genes with potential
regulatory functions. Additionally, such analysis will also
improve our ability to define expression thresholds above
which the actual production of the encoded compound is
observed. Last but not least, knowledge about the global
cellular response to SM production may be the starting
point to devise alternative strategies to optimize compound
production and identify potential resistance mechanisms.

DATA AVAILABILITY

SeMa-Trap is publicly available online at https:
//sema-trap.ziemertlab.com/ with no access restric-
tions. All of the source code is available on Bitbucket
at https://bitbucket.org/mehmetdirenc/sematrap/. Source
code for generating only the interactive HTML out-
put is also available at https://github.com/Integrative-
Transcriptomics/bgc-expression-viewer. Transcriptomic
data files for EDDS overproduction and presented case
study are available in the NCBI Bioproject database un-
der the accession IDs PRJNA809550 and PRJEB25075,
respectively.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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