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Abstract

The microbiota refers to a plethora of microorganisms with a gene pool of

approximately three million, which inhabits the human gastrointestinal tract

or gut. The latter, not only promotes the transport of nutrients, ions, and fluids

from the lumen to the internal environment but is linked with the

development of diseases including coronary artery disease, heart failure, and

lung diseases. The exact mechanism of how the microbiota achieves crosstalk

between itself and distant organs/tissues is not clear, but factors released to

other organs may play a role, like inflammatory and genetic factors, and now

we highlight melatonin as a novel mediator of the gut‐lung crosstalk.

Melatonin is present in high concentrations in the gut and the lung and has

recently been linked to the pathogenesis of pulmonary hypertension (PH). In

this comprehensive review of the literature, we suggest that melatonin is an

important link between the gut microbiota and the development of PH (where

suppressed melatonin‐crosstalk between the gut and lungs could promote the

development of PH). More studies are needed to investigate the link between

the gut microbiota, melatonin and PH. Studies could also investigate whether

microbiota genes play a role in the epigenetic aspects of PH. This is relevant

because, for example, dysbiosis (caused by epigenetic factors) could reduce

melatonin signaling between the gut and lungs, reduce subcellular melatonin

concentrations in the gut/lungs, or reduce melatonin serum levels secondary

to epigenetic factors. This area of research is largely unexplored and further

studies are warranted.
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INTRODUCTION

The microbiota comprises myriad microorganisms
including protozoans, archaea, fungi, and bacteria1 that
inhabit the human gastrointestinal tract or gut.2 Gut
microbiota contains microorganisms with a gene pool of
approximately three million genes.3,4 Moreover, gut
microbiota contains digestive enzymes that help the
body metabolize animal and plant carbohydrates,5 and it
can produce short‐chain fatty acids that support beta‐
oxidation.6 These features of the microbiota allow it to
code for thousands of physiological factors that are kept
in homeostatic balance through microbiome‐host inter-
actions7 whereas an imbalance can also contribute to
some diseases.8 Gut microbiota can release these factors
(which could be inflammatory, genetic, or metabolic)
into the circulation where they can reach and impact3,4

other parts of the body9 describe in this paper as
crosstalk.10 This is observed for example, when short‐
chain fatty acids (butyrate, propionate, and acetate) are
produced by bacterial fermentation of indigestible poly-
saccharides and triggers the release of the satietogenic
hormone glucagon‐like peptide‐1 from enteroendocrine
L‐cells.11 These hormones travel through the body via
blood circulation to the hypothalamus where they can
regulate ingestive behavior.11 On the other hand,
propionate, butyrate, and acetate modulate the metabo-
lism and function of these tissues.12 The gut microbiota is
instrumental in the homeostasis of nutrient metabolism
and energy production, by supporting oxidative meta-
bolic pathways via this crosstalk action.13 Needless to

say, a homeostatic balance exists between “good and
bad” organisms, to promote good health.14 Herein lies
two important concepts, eubiosis,15 which occurs when
good organisms prevail over the bad, and dysbiosis,
which is the disbalance in the microbiota that predis-
poses to sickness.15 Dysbiosis may occur due to distur-
bances in the microbiome caused by various lifestyle and
environmental factors.16–19 Also with regard to dysbio-
sis,20,21 the literature supports the notion that it can
contribute to the development and progression of heart
and lung diseases.19,22

THE ROLE OF GUT MICROBIOTA
IN MAINTAINING IN HEALTH

The gut microbiota plays a major role in human health
through its ability to influence immune and metabolic
health, neuro‐ and cardiovascular‐related functions.23

Organisms that form part of the gut microbiota24 are too
many to discuss in this paper, but we present an abridged
list in Table 1. Some of the most well‐known species
include Clostridium spp., Lactobacillus reuteri, Enterococ-
cus faecium, Bifidobacterium bifidum, and Escherichia
coli.25 These organisms are believed to enter the human
host at birth, via the amniotic and maternal fluids.26 A
study by Putignani et al.27 demonstrated that the normal
structure, composition and thus functioning of the gut
microbiota promotes overall health. This suggests the
importance of maintaining a balance in microbiota
composition to ensure overall good health. Clostridium

TABLE 1 A brief overview of phyla, classes, genus, and species of microorganisms that form part of the gut microbiota.

Phylum Class Genus Species

Firmicutes Bacilli Lactobacillus Lactobacillus reuteri

Staphylococcus Staphylococcus leei

Enterococcus Enterococci faecium

Clostridia Clostridium Clostridium spp.

Ruminicoccus Ruminicoccus faecis

Bacteroidetes Bacteroidia Bacteroides Bacteroides vulgatis

Prevotella Prevotella spp.

Actinobacteria Actinobacteria Bifidobacterium Bifidobacterium bifidum

Bifidobacterium longum

Proteobacteria Delta proteobacteria Desulfovibrio Desulfovibrio intestinalis

Gamma proteobacteria Escherichia Escherichia coli

Fusobacteria Fusobacteriia Fusobacterium Fusobacterium nucleatum

Verrucomicrobia Verrucomicrobiae Akkermansia Akkermansia muciniphila
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spp, one predominant part of the gut microbiota, has
been reported to be essential in maintaining good health.
They have been associated with therapeutic effects on
intestinal and systemic health, probiotic ability, and the
ability to counteract the effects of inflammation and
other dysfunctions of the gut.28 Lactobacillus spp, known
for their lactic acid‐producing ability are commonly used
as probiotics and can be found in different parts of the
body including the gut, female reproductive system, and
so forth.29 The effects of these microorganisms include
colonization resistance against potential disease‐causing
bacteria.30 A study by Mu et al.31 outlined several
benefits of L. reuteri and these included antimicrobial
activity, inhibition of pathogenic activity, anti‐
inflammatory effects, and so forth. Bifidobacteria spp,
are also an important group of the gut microflora and
have been associated with immune system stimulation
and the production of short‐chain fatty acids.32 The
examples of some species that make up the gut
microflora share similar effects, showing their ability to
influence chemical processes that occur and molecules
the function within the body, immunity, pathogen‐
colonization resistance and thus, the normal functioning
of the body.29

THE ROLE OF GUT MICROBIOTA
IN CARDIOVASCULAR DISEASES

Gut microbiota is essential for maintaining the uptake of
essential nutrients and immune responses, and it can
influence how the host responds to pathologic condi-
tions.16,33–35 Alterations in gut microbiota can have
detrimental effects on human health and studies have
reported several of these effects including dysfunctions in
the intestinal barrier and systemic health, cognitive
impairment, COVID‐19 severity, and heart disease.36–39

Cardiovascular diseases (CVDs) are a leading cause of
death worldwide and has high morbidity and mortality
rates19,35,40,41 Multiple risk factors contribute to the
development of CVDs such as obesity, diabetes, hyper-
tension, and dyslipidaemia that result in permanent
damage to the cardiovascular system.35,40,42 Among these
detrimental risk factors, abnormal immune regulation,
and metabolic disorders play an important role in the
progression of CVDs.19,40 In recent years, studies have
found that alterations in the gut microbiome have been
linked to CVDs.16,33,34 Atherosclerosis is a chronic
inflammatory disease that is considered a key factor in
the onset and progression of CVD.33,34,40,43 Several
studies have highlighted the presence of an altered gut
microbiota in patients with atherosclerosis and coronary
artery disease.42,44,45 Bacterial DNA present in

atherosclerotic plaques correlates with the presence of
number of white blood cells in atherosclerosis plaques43

and microbial species differ significantly between ather-
osclerotic patients and healthy individuals.46,47

Given the instrumental role of gut microbiota in CVDs,
the opposite is also true, which is that it could serve as a
potential target for antihypertensive therapies.19 Here, the
importance of a particular metabolite produced by gut
microbiota, trimethylamine‐N‐oxide (TMAO) has been
highlighted.40,43 TMAO is produced through the digestion
of choline, phosphatidylcholine, and carnitine, found in
most animal products and a few plant products.19,34,48,49 The
increase of TMAO strongly influences multiple risk factors
for CVD, such as hypercholesterolemia and hyper-
tension.19,34,42,49 Increased TMAO also reduces cholesterol
clearance from the body and associates with the production
of atherosclerotic plaques19,50 (Table 2). Similarly, a strong
association has been found between hypertension and
TMAO production, data from a meta‐analysis demonstrate
that individuals with higher TMAO are more likely to
develop hypertension51,52 (Table 2). Therefore, TMAO levels
have considerable biomarker potential CVDs.40,53 However,
much remain to be better understood regarding the full
extent of gut microbiota's involvement in the development
of treatment of CVDs.54

THE ROLE OF GUT MICROBIOTA
IN PULMONARY
HYPERTENSION (PH)

PH is defined as a mean pulmonary artery pressure
≥20mmHg, when diagnosed with right heart catheteriza-
tion.60,61 Characteristic features include sustained
vasoconstriction, vascular remodeling, and thrombosis
formation.62 Pathologic triggers are believed to prime cells
in the pulmonary arterioles to excessive proliferation that
leads to narrowing and obliteration of the vessel lumen, and
thus, elevated pulmonary artery pressure.63 There is a
growing body of evidence from both preclinical and clinical
studies demonstrating that gut microbiota and its by‐
products play a role in the development of PH.11,64,65 The
full process is complex and poorly understood, but an
important finding is that microorganisms of the gut are also
present in the lungs,10 and these include Bacteroidetes and
Firmicutes, Bacteroidetes, Firmicutes, and Proteobacteria.66

The Firmicutes to Bacteroidetes (F/B) ratio
in PH

Anaerobic Firmicutes and Bacteroidetes make up >90% of
the total bacterial species in healthy individuals.56
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Characteristic findings of dysbiosis is an increased
Firmicutes‐Bacteroidetes ratio, reduction in short chain
fatty‐acids (SCFA) producing bacteria and decreases in
acetate‐ and butyrate producing bacteria as well as
increase in lactate producing bacteria56 (Table 2). An
elevated Firmicutes‐Bacteroidetes ratio, especially due to
reduced Bacteroidetes have been shown in both pre-
clinical and clinical studies to be a feature of altered gut
microbiota in PH. These findings were echoed by Sharma
et al.55 who also demonstrated that an increased
Firmicutes‐Bacteroidetes ratio in monocrotaline induced
PH (Table 2). Callejo and colleagues demonstrated in a
hypoxia plus SU5416 treated rats an almost four‐fold
decrease in the Bacteroidetes population in PH induced
rats (Table 2). Zhang et al.57 demonstrated that an
increased Firmicutes‐Bacteroidetes ratio in PH patients is
due to a decrease in Bacteriodetes as well as Firmicutes
enrichment (Table 2). Furthermore, although there is no
change demonstrated in alpha‐microbiota diversity in PH
animal models,55,56 both Li et al.58 Kim et al.59 and Zhang

et al.57 demonstrated a reduced alpha‐diversity in PH
patients.

The reduction in SCFA producing bacteria
and TMAO in PH

Reduction in SCFA producing bacteria contributes to
increased gut leakiness and inflammation through the
release and circulation of for example, acetate.67 Cajello
et al.56 found acetate and acetate‐producing bacteria to be
reduced in the serum of PH rats (Table 2). Kim et al.59

also found a significant reduction in genes responsible
for generating the SCFA metabolite, propionate, in
patients with PH, thereby confirming the potential role
of gut microbiota in the pathogenesis of PH in humans
(Table 2). On the other hand, various bacterial commu-
nities are associated with TMA/TMAO production,
including Coriobacteriales which is significantly
increased in PH6 (Table 2).7 TMAO promotes the

TABLE 2 A summary of key studies that highlights gut microbiota signatures in the context of cardiovascular disease and PH.

Gut microbiota
signature Model Findings References

Cardiovascular diseases

Humans The increase in TMAO strongly influences multiple risk factors
for cardiovascular diseases, such as hypercholesterolemia and
hypertension

[19, 34, 42, 49]

Increased TMAO also reduces cholesterol clearance from the
body and associates with the production of atherosclerotic
plaques

[19, 50]

A strong association has been found between hypertension and
TMAO production, data from a meta‐analysis demonstrate
that individuals with higher TMAO are more likely to develop
hypertension

[51, 52]

PH Monocrotaline‐
induced rats

Elevated Firmicutes‐Bacteroidetes [55]

Hypoxia plus SU5416
treated rats

Three‐fold increase in Firmicutes‐to‐Bacteroidetes ratio. Acetate
and acetate‐producing bacteria to be reduced in the serum of
PH rats.

[56]

ACE2 knock‐in PH mice Imbalances between beneficial bacteria such as Bacteroids and
SCFAs‐producing bacteria, and potential pathogenic bacteria
such as TMA/TMAO‐associated bacteria, are in parallel with
PAH, with functional changes of microbiome

[55]

Humans Increased Firmicutes‐Bacteroidetes ratio in PH is due to a decrease
in Bacteriodetes as well as Firmicutes enrichment

[57]

No change demonstrated in alpha‐microbiota diversity [55, 56]

Humans Reduced alpha‐diversity [57–59]

Humans Reduction in genes responsible for generating the SCFA
metabolite, propionate

[59]

Abbreviations: SCFA, short chain fatty‐acids; TMAO, trimethylamine‐N‐oxide.
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proliferation and migration of pulmonary artery smooth
muscle cells, by upregulating inflammatory factors.11,68

Endothelial dysfunction has also been shown to be
influenced by TMAO via inflammatory pathways that
lead to endothelial hyperpermeability.58,69 Furthermore,
TMAO promotes the production of reactive oxygen
species that adds to the impairment of endothelial
function.58,70 Poor prognosis and increased severity of
disease were associated with increased TMAO in PH (Li
and colleagues).

Streptococcus as part of the microbiota,
and its role in PH

Kim et al.59 have demonstrated an association
between Streptococcus and PH in humans, while
animal studies have shown depleted Streptococcus
levels.55 Interestingly, Streptococcus has been impli-
cated in the activation of a pro‐survival kinase
pathway mediated via ERK and PI3K.71 These kinases
are involved in the pathogenesis of PH through the
induction and proliferation of pulmonary smooth
muscle cells.72 Streptococcus also promote serotonin
production73 which has previously been implicated in
the smooth muscle cell contraction and proliferation
contribution to PH pathogenesis.

CROSSTALK BETWEEN
MICROBIOTA AND LUNGS IN PH
VIA INFLAMMATORY MEDIATORS

Crosstalk between the lung and gut, also termed the gut‐
lung axis, comprises a key mechanism through which the
gut microbiota influences the pathogenesis of respiratory
diseases.66,74,75 The gut microbiota plays an important
role in the regulation of the immune system,76,77

specifically, systemic and lung immunity, via the
regulation of T‐cell differentiation, the migration and
apoptosis of immune cells, and the activation of toll‐like
receptor signaling.78 The microbiota play a role in
modulating immune function in the prevention and
progression of chronic respiratory diseases.79,80 There-
fore, there is a crosstalk between the lungs and gut
microbiota. This cross‐talk is important as it can
influence the pathogenesis and treatment of lung
diseases,79–83 and furthermore, the amount and function
of immune cells activated through the gut‐lung crosstalk,
influences the pharmacokinetics and bioavailability of
therapeutics for lung diseases.84 Also important is that
when there is dysbiosis of the gut microbiota, clearance
of lung macrophages becomes compromised in diseases

like for example, lung tuberculosis, leading to an
imbalance in cytokine production, and the activation
and migration of T and B cells become impaired.83 When
the gut microbiota is in a state of equilibrium, there is
immune function homeostasis which equates to homeo-
static cytokine production, correct clearance of lung
macrophages, and the proper activation and migration of
T and B cells.83 The bulk of studies therefore confirm the
crosstalk between gut and lungs, and the instrumental
roles of gut microbiota in the pathogenesis of lung
diseases.80

Although the mature respiratory and gastro‐
intestinal tracts are different in several ways, one must
recall that they originate from the same embryonic
structure and thus, they do also display similarities in
structure and microbial colonization.85,86 Both derive
from the endoderm and consist of columnar epithelial
cells with projections (microvilli in the gut and cilia in
the respiratory tract) that serve as a physical barrier as
well as forming part of the immune system in
collaboration with lymphoid tissue, allowing both
organs to influence each other's immune responses
and creating somewhat of an immunological relation-
ship.64 However, impaired gut permeability and sys-
temic migration of gut microbiota is believed to be
associated with systemic inflammatory responses that
may act as a trigger factor for PH pathogenesis.87 The
gut‐lung crosstalk87 occurs in both directions (to and
fro), and is achieved when cytokines, endotoxins,
hormones, and metabolites are circulated between the
gut and the lungs88 This happens, for example, during
lung inflammation, when inflammatory mediators
(interleukin‐6, interferon‐gamma, tumor necrosis
factor‐alpha) are circulated to the gut, where lympho-
cytes are activated and transported back to the lungs89

Thus, the gut microbiota is closely linked with the
pulmonary system to provide protection in the presence
of lung pathology.

However, one must keep in mind that the crosstalk
is a homeostatic process, and an imbalance (abnormal
inflammatory processes)22,66 may also contribute to
PH. Furthermore, inflammatory, and immunological
processes are key to the pathogenesis of PH.16,90,91 In
experimental PH, rats display dysbiosis, which exces-
sively increases their Firmicutes‐to‐Bacteroidetes ratio
and reduces their acetate‐producing bacterial
genera.92 This likely happens when gut dysbiosis
increases gut permeability and allows the transport of
gut bacteria and bacterial endotoxin to the pulmonary
vasculature where it could trigger PH92,93 (Figure 1).
Some investigators have suggested that these abnor-
mal inflammatory processes may contribute to the
development of PH,92 and this interaction between
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the gut and lungs occur via lung‐gut crosstalk
(Figure 1). The crosstalk is further mediated by
bacterial lipopolysaccharides and interleukin‐6 that
are circulated from the gut to the lungs.92

CROSSTALK BETWEEN
MICROBIOTA AND LUNGS IN PH
VIA GENETIC FACTORS

Abnormal gut microbiota early in life, is linked to the
development of lung diseases later in life.94–96 This
has been ascribed to the insufficient maturation of gut
microbiota, the excessive use of antibiotics87,97,98 a
genetically inherent risk.94–96 For example, suscepti-
bility to autoimmune diseases is under strong genetic
control by class‐II human leukocyte antigen (HLA)
allele combinations99 Core microbiome and beta
diversity (i.e., the ratio between regional and local
species diversity)100 differs with HLA risk group and
genotype, and in addition, there is also the presence of
inherent protective HLA haplotypes that play a role.99

These are important factors to consider, as an
inherent genetic risk can play a role in determining
which patients are more susceptible to diseases. This
may have relevance to PH too, HLA haplotypes (HLA
risk) have been linked with the pathogenesis of PH in
patients, and based on the work of Russel and
colleagues,100 gut microbiota are involved in different
HLA risk groups (Figure 1). This is an important form
of crosstalk between gut and lungs, and surely plays a
role in PH pathogenesis.

CROSSTALK BETWEEN
MICROBIOTA AND LUNGS IN PH
VIA MELATONIN

Melatonin

Melatonin (N‐acetyl‐5‐methoxytryptamine) is a hormone
produced by the pineal gland in the vertebrate brain, but
also occurs in fruits and vegetables.101,102 It is present in
all bodily cells and play a role in regulation the circadian
rhythm, and can induce anti‐inflammatory, anticancer,
antioxidant, and vasodilatory effects103 In the brain,
melatonin is mainly produced at night in response
to changes in environmental light which leads
to serotonin‐N‐acetyltransferase activity increasing
significantly.104–107 Serotonin‐N‐acetyltransferase is
responsible for converting 5‐hydroxytryptamine into
N‐acetylserotonin, is methylated by acetylserotonin‐O‐
methyltransferase to form melatonin.108 These moieties
are also modulated by noradrenergic and neuropeptidergic
projections to the pineal gland as well as light information
that is transmitted from the retina to the pineal gland via
the suprachiasmatic nucleus in the hypothalamus. In
humans, melatonin secretion begins shortly after sunset
and peaks in the middle of the night. Although melatonin
is the main hormone produced by the pineal gland, extra‐
pineal sources include the retina, bone marrow cells,
platelets, skin, lymphocytes, cerebellum, and especially
the gut, among other.109 The concentration of melatonin
in gut can be as high as 10–100 higher than in plasma and
up to 400 times higher than in the pineal gland.108,110,111

The most well‐known molecular pathways through which

FIGURE 1 Depicts how the gut microbiota produce and release certain factors (inflammatory, genetic, and melatonin) as crosstalk
between the gut and the lungs.
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melatonin acts, is the activation of G‐protein coupled
membrane receptors, MT1 (or Mel1a or MTNR1A) and
MT2 (or Mel1b or MTNR1B).108,112,113 MT1 melatonin
receptor activation inhibits cAMP in target cells and is
associated with reproductive and metabolic functions, as
well as vasoconstriction.104,114 On the other hand, MT2
receptor activation leads to cAMP and cGMP inhibition,
plays a role in regulating circadian rhythms and dopamine
release in the retina, and also contributes to vaso-
dilation.113 Melatonin interact with the cardiopulmonary
system via various signaling pathways.115–118 It does so by
directly exerting its function over a receptor dependant
pathway including membrane receptors type 1 (MT1) and
type 2 (MT2) as well as the retinoid‐related orphan
nuclear receptors RZR and RORα.116,119 It also exerts its
beneficial effects indirectly as a free radical scavenger by
protecting cells against oxidative stress, reducing the
generation of free radical and reactive oxygen spe-
cies.120–122 Melatonin regulates blood pressure by centrally
modulating the baroreflex set point, and the sympathetic
and parasympathetic vascular tone.123

The involvement of melatonin in PH

In patients with PH, levels of melatonin are lower than in
healthy patients and this negatively correlates with an
increase in cytokine levels.62 Also, lower levels of
melatonin correlate with a worse long‐term survival rate
of PAH patients.124 Several animal studies have provided
evidence advocating the beneficial role of endogenous
melatonin. Hung et al.125 outlined that melatonin can
improve vascular resistance and oxidative injury in
hypoxia‐induced PH. By using a rat model, they
demonstrated how right ventricular systolic pressure,
vascular remodeling, markers of oxidative stress and
inflammation, TNF‐alpha, and malondialdehyde, were
significantly decreased when chronic hypoxic rats were
given pharmacological doses of melatonin. They also
observed that the nitric oxide bioavailability has
increased.125 Torres et al.126 reported similar results,
including enhanced pulmonary vascular function in
new‐born sheep with PH. An in vitro model showed
attenuated proliferation and inflammation in pulmonary
arterial muscle cells in the presence of melatonin while a
rat model showed improvements in right ventricular
systolic pressure and pulmonary vascular remodeling.127

Zhang and colleagues demonstrate how melatonin
significantly ameliorated hypoxia‐induced thickness of
the pulmonary artery wall and improved the remodeling
of blood vessels. They also demonstrated that PH is
associated with decreased serum melatonin levels.62

While decreased levels of melatonin were linked to poor

prognosis and increased mortality, Cai et al.124 reported
that at the time of diagnosis, serum melatonin levels can
be used to anticipate the clinical outcome of PH.
Maarman and colleagues in their monocrotaline rat
model demonstrated how melatonin therapy at both
therapeutic concentration and at concentration as found
in food protects against PH by reducing oxidative stress,
reduced right ventricular hypertrophy, improving right
ventricular function and cardiac interstitial fibrosis.
They however noted that the dose of melatonin
required for an equivalent effect in humans would be
substantially higher than what was the dose used in
clinical studies at the time.128 In concert, these studies
demonstrate the key role of melatonin in PH. However,
there is a shortage of literature that describes melato-
nin as a key player in gut‐lung crosstalk, and how it
can potentially modulate the pathogenesis or treat-
ment of PH.

The roles of melatonin in promoting gut
microbiota reprogramming

Melatonin contributes to improved metabolism of lipids1 and
remodeling of the gut microbiota composition in both
animals and humans.1,2 Yin et al.129 demonstrated in a gut
microbiota transplant mouse model that was subjected to a
high fat diet, displayed an accumulation of intestinal lipids as
well as dysbiosis. In this study, melatonin reduced lipid
concentration and the reversal of dysbiosis. The Firmicutes‐
Bacteroidetes ratio was also significantly increased and
improved synthesis of acetic acid upon supplementation
with melatonin. These findings therefore support the
important role melatonin plays in reprogramming of
the gut microbiota.129 It their study, Lui et al.130 investigated
the role of melatonin in alleviating dysbiosis caused by
aflatoxin B1 and its effects on the intestinal/liver axis, they
found that the alterations due to aflatoxin B1 exposure to be
corrected by melatonin administration. Melatonin reduced
the relative abundance of Firmicutes and the Firmicutes‐
Bacteroides ratio and elevated that of Bacteroides at the
phylum level of the taxonomic units, while also decreasing
the relative abundance of Clostridiales and Lactobacillales.
Aflatoxin B1 exposure resulted in elevations in the relative
abundance of Desulfovibrio, Clostridium‐XIVa, and Lactoba-
cillus at the genus level, but upon exposure to melatonin
these changes were reversed. It was concluded that the
dysbiosis in the gut microbiota due to AFB1 was successfully
reprogrammed by melatonin.130

Moreover, the gut microbiota can produce and release
serotonin131 and tryptophan,132 which are precursors for the
formation of melatonin. Melatonin concentrations are 400
times higher in the gut than in the pineal gland.133,134
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The gut has toll‐like receptors, which are molecular patterns
of antigens whose activation can stimulate innate immunity
to destroy pathogens.135 During the early postnatal stage, the
body reduces the expression of toll‐like receptors in the gut,
to promote healthy gut microbiota.136 In turn, the gut
microbiota can trigger toll‐like receptor signaling to suppress
inflammatory responses that make it possible for these good
microorganisms to survive in the gut.136,137 This is important,
because the gut expresses several receptors on its surface,
including the toll‐like receptors137 and melatonin receptors 1,
2, and 3.138 These receptors can bind melatonin139 that
resides within the gut and the lungs.133,134 To this end, Kim
et al.140 showed that improved sensing of bad bacteria
through toll‐like receptor‐4 and the regulation of bacteria
through altered goblet cells and antimicrobial peptides in
microbiota, is involved in the anti‐colitic effects of melatonin.
Melatonin‐induced activation of these receptors stimulates
the expression and release of NFkB, STAT‐3 and ERK141

which are known role players in PH pathogenesis (Figure 1).

GUT ‐LUNG CROSSTALK IN PH VIA
MELATONIN: THE MAIN
HYPOTHESIS

Melatonin levels can be reduced by stress,142 smoking,143

or shift work,144 where reduced melatonin are considered
pathologic. Furthermore, low serum levels of melatonin

associates with PH. Therefore, it is likely that dysbiosis
from psychological stress or other factors, may reduce
levels of melatonin and contribute to the development of
PH (Figure 2). Thus, dysbiosis reduces melatonin
signaling (via TLR4, MTR‐1, MTR‐2) and secretion in
and from the gut, and less melatonin reaches the lung,
this limits its protective effects and predisposes to the
development of PH. Considering that exogenous melato-
nin can improve experimental PH,60,128 it is of interest to
delineate the roles of melatonin as a crosstalk agent
between the gut microbiota and the lungs. Patients
and animal models of PH display impaired gut
microbiota,59,145 and it makes one wonder whether this
is also associated with impaired melatonin crosstalk92

Furthermore, would the latter contribute to a pre-
disposition to develop PH? Further investigations are
needed to better understand the roles and involvement of
melatonin in the crosstalk between gut and lungs. Future
studies could investigate the levels of melatonin in the gut
and lungs, in appropriate models of PH,146 as this may
provide useful information regarding its involvement in
the crosstalk between the gut and lungs. Using radioactive
labeling of melatonin (101I‐2‐iodomelatonin)147 could help
to trace the melatonin crosstalk, over time. For example,
in a rat model of PH one could measure melatonin levels
in the gut, lungs and circulation before PH is induced, and
measure it over a period of time. In this instance, one
might be able to see how melatonin levels change in the

FIGURE 2 Depicts how the gut microbiota produces and releases melatonin as a crosstalk between the gut and the lungs. Melatonin
can activate and regulate signaling pathways that could induce processes that may underpin the development of PH.
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gut, lungs, and circulation over time. A decrease melato-
nin levels in the gut and an increase in the circulation and
lungs, may suggest a crosstalk effect, or movement of
melatonin from gut to lungs during PH. This might mean
that (1) a lack of melatonin contributes to PH, (2) that
increased levels is a compensating effect for the existing
lung damage in PH, and (3) may confirm the melatonin
crosstalk in PH. However, whether these investigations
are performed in animal models or patients, it is important
to keep in mind that time of day and light exposure may
be confounding factors that influence the levels of
melatonin that is measured.147

CONCLUSIONS

It is plausible that melatonin and its receptors in both the
gut microbiota and the lungs may provide a relatively
novel crosstalk between these two biological sites.
Studies can investigate whether microbiota and melato-
nin genes play a role in the epigenetic aspects of PH, as
dysbiosis (caused by epigenetic or environmental factors)
could reduce melatonin levels and signaling or sub-
cellular concentrations in the gut or reduce melatonin.
This may help to explore the role of melatonin in the
crosstalk between the gut microbiota and the lungs
during PH. This area of research is largely unexplored in
the context of PH and may present a good opportunity for
the discovery of novel therapeutic targets or pathologic
role players in PH pathogenesis.
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