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Abstract

Antibiotic susceptibility testing is often performed to determine the most effective antibiotic

treatment for a bacterial infection, or perhaps to determine if a particular strain of bacteria is

becoming drug resistant. Such tests, and others used to determine efficacy of candidate

antibiotics during the drug discovery process, have resulted in a demand for more rapid sus-

ceptibility testing methods. Here, we have developed a susceptibility test that utilizes chemi-

luminescent determination of ATP release from bacteria and the overall optical density

(OD600) of the bacterial solution. Bacteria release ATP during a growth phase or when they

are lysed in the presence of an effective antibiotic. Because optical density increases during

growth phase, but does not change during bacterial lysing, an increase in the ATP:optical

density ratio after the bacteria have reached the log phase of growth (which is steady) would

indicate antibiotic efficacy. Specifically, after allowing a kanamycin-resistant strain of

Escherichia coli (E.coli) to pass through the growth phase and reach steady state, the addi-

tion of levofloxacin, an antibiotic to which E. coli is susceptible, resulted in a significant

increase in the ATP:OD600 ratio in comparison to the use of kanamycin alone (1.80 +/- 0.50

vs. 1.12 +/- 0.28). This difference could be measured 20 minutes after the addition of the

antibiotic, to which the bacteria are susceptible, to the bacterial sample. Furthermore, this

method also proved useful with gram positive bacteria, as the addition of kanamycin to a

chloramphenicol-resistant strain of Bacillus subtilis (B. subtilis) resulted in an ATP:OD600

ratio of 2.14 +/- 0.26 in comparison to 0.62 +/- 0.05 for bacteria not subjected to the antibiotic

to which the bacteria are susceptible. Collectively, these results suggest that measurement

of the ATP:OD600 ratio may provide a susceptibility test for antibiotic efficacy that is more

rapid and quantitative than currently accepted techniques.

Introduction

The cost of a molecule drug candidate to reach market is currently estimated at $2.5 billion,

while the time to bring that drug to market is approximately 10 years.[1] The cost is often a

result of only 10% of experimental drugs that enter clinical trials reach approval by the Food
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and Drug Administration (FDA).[2] The amount of time required for a drug to reach approval

may also be due to an increase in the frequency of procedures performed during clinical proto-

cols.[3] In either case, potential drugs that fail during late-stage clinical trials cost more than

those failing at earlier stages of the drug development process.[4] The increasing cost and time

of drug development have led to concerns related to declining economic returns for new

drugs,[5] which may be a determinant in the decrease in number of approved drugs despite

continued resources being dedicated to new drug discovery.[2] Thus, while a definitive reason

for the decreasing number of new drugs is a topic of debate,[6–8] it is evident there are less

new drugs being approved and, in turn, less new drugs reaching the public.[9] This trend in

approved drugs certainly applies to antibiotics for fighting bacterial infections.

Bacteria have the ability to quickly evolve while under selective pressure caused by a given

antimicrobial agent, therefore they have a better chance of survival from future exposure to

that antimicrobial agent, a phenomenon known as antimicrobial resistance. A subclass of anti-

microbial resistance caused by antibiotics is known as antibiotic resistance, which has been

increasing in frequency and number since the discovery of penicillin in 1940.[9–11] A danger

of antibiotic resistance is that bacteria have the ability to transfer antibiotic resistant genes to

other bacteria via a process known as horizontal gene transfer,[12–15] which has led to the for-

mation of pandrug resistant bacteria strains that are resistant to all current antibiotics.[16–18]

The imminent threat of antibiotic resistant bacteria led to the release of an executive order for

combating antibiotic resistant bacteria.[19, 20] The result of the executive order was the for-

mation of the National Action Plan, which consisted of five goals to combat antibiotic resistant

bacteria, including rapid diagnostic tools and tools for accelerating research in the develop-

ment of antibiotics and therapeutics.[21] Both of these goals rely heavily on susceptibility tests.

A susceptibility test involves challenging bacteria with an antibiotic and determining if the

bacteria can grow in the presence of the antibiotic. The three most common methods are the

broth microdilution method, the disk diffusion method, and the Etest method.[22] The broth

microdilution method is the most common method and involves diluting antibiotics in growth

media to create a series of antibiotic solutions, each with a smaller concentration of antibiotic.

Bacteria are inoculated into the antibiotic-media solution and incubated overnight to promote

growth. The type and concentration of antibiotic could be determined from this test for a

given bacteria strain.[22] The broth microdilution assay can be adapted for the high through-

put of samples or for colorimetric readout for other microbial species; however, a period of

24–48 hours is required to allow for bacteria growth.[23–25] The disk diffusion method uti-

lizes the diffusion of antibiotics through an agar plate to create a gradient of decreasing antibi-

otic concentration as distance from the antibiotic source increases. Bacteria are grown on the

plate and the distance of growth from the source of the antibiotic can be used to determine if

the bacteria are susceptible to the chosen antibiotic.[22] This method is known for being inex-

pensive and simple, but it requires a minimum of 16–24 hours to grow the bacteria on the

plate.[26, 27] This method has been adapted for automation, but it still requires at least 6

hours for bacterial growth.[28] The commercially available Etest works similarly to the disk

diffusion method. The Etest uses plastic strips that contains antibiotic in a gradient along the

strip that are placed on agar plates and incubated to promote bacterial growth. The Etest is

more quantitative than the disk diffusion method and offers improved inter-laboratory preci-

sion.[22, 29] However, the growth of bacteria still requires about 24 hours to produce results.

[30] Collectively, current susceptibility tests provide important information regarding the con-

centration and type of antibiotic that can be used for a given bacteria, but they suffer from

long incubation times, low precision among the different types of tests, and qualitative read-

out. [23, 31, 32]

Rapid susceptibility testing
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To overcome the shortcomings of current susceptibility tests, we report here the develop-

ment of a rapid test based on ATP, which has been previously used to detect the presence of

living bacteria for cleanliness purposes in both the food and medical industries.[33–35] Intra-

cellular ATP, typically at concentrations of 1–5 mM,[36–38] has also been used in susceptibil-

ity testing, but requires lysing the bacterial cells to access the intracellular stores.[39]

Importantly, extracellular ATP has been detected at concentrations ranging from 15 nM to 1.9

mM depending on the releasing bacterial strain and environment.[36, 40, 41] Extracellular

ATP is often viewed as a signaling molecule for communication between cells.[42, 43] It was

recently reported that bacteria release ATP into the extracellular matrix during the log phase

of bacterial growth. The extracellular ATP then decreases due to degradation or hydrolization

by the bacteria after they reach the stationary phase of growth. This trend of increasing, then

decreasing, extracellular ATP is only seen when the bacteria are alive and growing.[36] We use

these features of bacterial growth (in the form of a measurement of sample optical density,

OD600) and ATP levels to determine the susceptibility of bacteria to an antibiotic within min-

utes of adding the antibiotic to a growing bacterial culture, thus providing a quantitative sus-

ceptibility test that is also rapid.

Materials and methods

Growth media & agar plate preparation

Lysogeny broth (LB, EMD Chemicals, Darmstadt, Germany) was prepared by dissolving 3.0 g

of LB Broth–Lennox pellets in 300 mL of distilled and deionized water (DDW). The LB solu-

tion was then autoclaved for 45 minutes at 121˚C and allowed to cool prior to addition of anti-

biotics. Agar plates were created using the same procedure as the LB, but 2.25 g of agar

(laboratory grade, Fisher Scientific, Fair Lawn, NJ) were added prior to autoclaving.

Antibiotic reagents

Kanamycin sulfate (USP grade) and 10 mg/mL Gentamicin reagent solution were purchased

from Gibco by Life Technologies (Grand Island, NY). Levofloxacin (HPLC,� 98.0%), chlor-

amphenicol (water soluble) and tetracycline hydrochloride, were purchased from Sigma Life

Science (St. Louis, MO). After cooling of the LB broth, 50 mg of kanamycin were added to

each liter of LB solution, resulting in a final concentration of 100 μM for kanamycin resistant

(KanR) E. coli. For chloramphenicol, 5 mg were added per liter of LB solution, resulting in a

concentration of 15 μM for (chloramphenicol resistant (CmpR) B. subtilis (selective LB) stud-

ies. The use of the drug to which the bacteria are resistant was to ensure that only the bacteria

of interest were growing.

Bacterial strains

KanR E. coli was obtained from Dr. David P. Weliky[44] and CmpR B. subtilis was obtained

from Dr. Lee R. Kroos,[45] both from Michigan State University. A levofloxacin–resistant

strain of E. coli was created by growing KanR E. coli in 10 mL of selective LB containing 50

mg/L kanamycin for 6 hours and plating 1 mL of the culture onto a selective agar plate. Selec-

tive LB and selective agar are composed of LB media containing an antibiotic so only the bacte-

ria of interest are permitted to grow. A 22 mm disk cut from P5 filter paper (Fisherbrand,

Pittsburgh, PA) was placed in a solution of 10 mg/L levofloxacin. This filter paper disk was

then placed at the center of the selective agar plate and the plate was incubated upside down at

37˚C overnight to promote growth. The filter paper disk was used to create a gradient of levo-

floxacin that decreased in concentration as the distance from the disk increased. After

Rapid susceptibility testing

PLOS ONE | https://doi.org/10.1371/journal.pone.0210534 January 10, 2019 3 / 13

https://doi.org/10.1371/journal.pone.0210534


overnight growth, bacteria that grew closest to the filter paper disk were transferred by an

inoculating loop to 10 mL of new selective LB. This process was repeated until the bacteria

could grow successfully in a solution containing 5 mg/L of levofloxacin. The bacteria were

made into a glycerol stock and stored at -80˚C. To prepare a glycerol stock solution, a bacterial

colony from an agar plate was transferred to 10 mL of selective LB. The bacteria were grown to

mid-logarithmic phase (5 hours). Glyercol (spectrophotometric grade, 99.5+%) was purchased

from Aldrich (Milwaukee, WI) and prepared as an 80% (v/v) glycerol solution in DDW and

autoclaved at 121˚C for 45 minutes. Bacterial stock solutions were prepared in a sterile tube by

using 800 μL of the mid-logarithmic phase bacteria and 200 μL of the 80% glycerol solution.

The stock solutions were briefly mixed by vortexing and then stored at -80˚C.

Sample preparation

This procedure (Fig 1) was adapted from Mempin et al. [36] A sterile inoculating loop was

touched against the bacteria-glycerol stock and plated on an agar plate containing the drug to

which the bacteria are resistant. This plate was inverted and incubated overnight for E. coli or

48 hours for B. subtilis. One colony was scratched from the plate using a sterile pipette tip and

the pipette tip was placed in a culture tube containing 2 mL of selective LB containing 50 mg/L

kanamycin or 5 mg/L chloramphenical to ensure that only KanR E.coli or CmpR B. subtilis

Fig 1. The overall procedure for the susceptibility assay. The overall assay procedure involves the growth of a single colony of bacteria overnight

in selective media at 37˚C with shaking (not shown). The OD600 is measured and a diluted culture of 10 mL is prepared by dilution to an OD600

of approximately 0.005. After 2 hours of growth at 37˚C, 1 mL of the diluted culture is removed and the remainder of the diluted culture is mixed

with the antibiotic to which the bacteria are susceptible. Aliquots are removed at 20, 40, and 60 minutes after adding the antibiotic for OD600

determination; next, each aliquot is centrifuged at 30,000g for 30 seconds. The supernatant is transferred to a black bottom 96 well plate for the

quantitative determination of ATP.

https://doi.org/10.1371/journal.pone.0210534.g001
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could grow, respectively. The culture tube was incubated at 200 rpm and 37˚C overnight. Bac-

terial culture incubation was performed using a Talboys Professional Incubating Orbital Min-

ishaker (Talboys, Thorofare, NJ). The OD600 of the overnight culture was measured and a

diluted culture was prepared to an OD600 ~ 0.005. The diluted culture was grown for 2 hours

at 200 rpm and 37˚C. After 2 hours, 1 mL of culture was aliquoted and the drug of interest was

added to pharmacological concentration (5 mg/L for levofloxacin, and chloramphenicol; 6–10

mg/L for gentamicin; or 50 mg/L for kanamycin). Once the drug of interest was added, the cul-

ture resumed incubation at 200 rpm and 37˚C. Additional 1 mL samples were aliquoted at 20,

40, and 60 minutes after introduction of the drug of interest. Aliquots were stored at 4˚C until

the operator was ready to measure the OD600 of the bacterial culture and the extracellular

concentration of ATP in the supernatant.

Determination of OD600 and ATP

The relative amount of bacteria in solution was measured by OD600. OD600 is an absorbance

measurement at a wavelength of 600 nm. A sample of 150 μL was pipetted from the aliquots

and transferred to a clear bottom 96 well plate. The remaining volume of the aliquots was cen-

trifuged at 30,000g for 30 seconds. The supernatant was transferred to a new tube and stored at

4˚C until ATP measurements were performed. The ATP concentrations of each aliquot were

measured using the luciferin-luciferase assay. This assay is a chemiluminescence measurement

where the amount of light produced is dependent on the concentration of ATP in the sample.

The luciferin-luciferase solution was made by dissolving 2 mg of potassium luciferin (Gold

Biotechnology, St. Louis, MO) and 10 mg of firefly lantern extract (Sigma) into 5 mL of DDW.

Extra luciferin-luciferase reagent was stored at -20˚C. In a black bottom 96 well plate, 150 μL

of sample were added to a well and 20 μL of the luciferin-luciferase solution were added and

mixed directly before measuring luminescence. The concentration of ATP (Adenosine 5’-tri-

phosphatte disodium salt hydrate (Grade I,� 99%), Sigma) was determined by comparing the

luminescence levels with an ATP standard curve. An ATP working solution was prepared at a

concentration of 1,000 nM using standard ATP in DDW. Serial dilution was performed using

selective LB to create concentrations for the standard curve. The extracellular ATP concentra-

tion is dependent on the number of bacteria cells in culture, therefore the ATP/OD600 ratio

was used as an indicator of cell status. The ATP/OD600 ratio can vary due to the age of bacte-

ria, LB, or agar plates. To account for these variables, the ATP/OD600 ratios were normalized

against the ATP/OD600 ratio of the control before the drug of interest was added. The ATP/

OD600 ratios at a given time point were compared with the control at the same time point to

determine if there was a significant difference (α = 0.05) between the ratios. All ATP and

OD600 measurements were performed using a Flexstation 3 (Molecular Devices, Sunnyvale,

CA). Centrifugation was performed using a Sorvall ST 8R Centrifuge (Thermo Scientific, Wal-

tham, MA).

Results and discussion

ATP/OD600 of Gram-negative E. coli
Bacterial growth occurs in three phases; (1) an initial lag phase, where the bacteria adjust to

environmental factors and are not dividing at a significant rate, (2) a log phase (often called

the logarithmic or exponential phase) where the bacterial cells double at a constant, exponen-

tial rate, and (3) a stationary phase where population growth is steady. It was recently reported

that bacteria release ATP into the extracellular environment during growth until the late loga-

rithmic/early stationary phase. During the stationary phase, the ATP concentration decreased,

possibly due to hydrolysis of the ATP on the surface of living bacteria (when bacteria were
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killed, the ATP remained constant as opposed to decreasing).[36] Of course, during this period

of rapid cell growth, there is also an increase in the OD600 of the bacterial solution. A result of

the ATP release and OD600 values is an initial increase in the ATP/OD600 ratio, followed by

an eventual decrease as the bacteria approach the stationary phase (due to the ATP depletion

and a constant OD600). Importantly, this pattern of increasing and decreasing ATP/OD600

values was measured for many different types of gram-positive and gram-negative bacteria.

Based on these results, we anticipated that the addition of an antibiotic to the bacterial solution

at the ATP/OD600 maximum value could be used as a new susceptibility test. Specifically, at

the peak ratio, we hypothesized that the bacteria were now in the stationary phase (i.e., alive,

but not growing) and ATP values would begin decreasing. The addition of an effective antibi-

otic would lyse the bacteria, resulting in an increase in release of the intracellular ATP found

in the bacteria to the extracellular matrix. Because the OD600 is independent of whether a bac-

terial cell is living or dead, the result of an effective antibiotic would be an increase in the ATP/

OD600 ratio over time. To ensure maximum efficiency of this method, however, it would be

necessary to reach the maximum ATP/OD600 value; adding the antibiotic prior to this point

would make it difficult to differentiate between ATP release due to cell growth and ATP release

due to cell lysis.

Fig 2 shows the ATP release and OD600 from kanamycin-resistant Escherichia coli (E. coli).
The ATP/OD600 peak ratio is estimated to occur around 180 minutes (filled circles), similar

to previous reports. However, in these experiments, we also subtracted background absor-

bance of the 96 well plate and the growth media and discovered there is a period where small

amounts of bacteria seem to result in a large increase in extracellular ATP concentration. For

this strain of E. coli, this period of high ATP releases occurs around 30 minutes (open circles).

This increase would normally be masked by the background absorbance of the plate and

media because the increased absorbance from bacteria is small compared to the background

absorbance of the well plate and the media. Thus, background subtraction shifted the peak

ATP/OD600 ratio from ~ 180 minutes to ~ 30 minutes. This finding is important because, as

described above, effects from added antibiotics should be detectable if the ATP/OD600 values

have reached a maximum value.

Antibiotic effect on E. coli ATP/OD600

To measure the effects of an antibiotic on a bacteria-containing sample, the fluoroquinolone

bactericidal antibiotic, levofloxacin, was added at a pharmacological concentration of 13.8 μM

(5 mg/L) to the kanamycin-resistant E. coli culture after 2 hours of uninhibited growth. As

mentioned above, the antibiotic to which the bacteria are susceptible, levofloxacin in this

example, could have been added after 30 minutes, but to establish antibiotic efficacy, we chose

to use 2 hours for these first set of experiments to ensure that the ATP/OD600 ratio value was

low to ensure optimal sensitivity in a subsequent increase due to bacterial lysis. A significant

difference in the ATP/OD600 ratio (α = 0.05) between the bacteria samples exposed to kana-

mycin and levofloxacin (1.80 +/- 0.50) and kanamycin alone (1.12 +/- 0.28) was measurable 20

minutes after adding the antibiotic (Fig 3A). This difference in the increase in ATP/OD600

between the samples is believed to be associated with the susceptibility of bacteria to that anti-

biotic. The addition of levofloxacin to the kanamycin-resistant strain resulted in a lysis of the

bacteria cells, thus releasing intracellular stores of ATP while the OD600 remains constant.

To ensure that the measureable difference in ATP/OD600 between the levofloxacin-con-

taining samples and control samples was due to antibiotic susceptibility and not just the pres-

ence of the added antibiotic, the kanamycin-resistant E. coli was made levofloxacin-resistant.

The assay was then repeated using the E. coli that was resistant to both kanamycin and

Rapid susceptibility testing
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Fig 2. Evaluation of the extracellular ATP and optical density during growth of E. coli. ATP/OD600 curve for gram-negative E. coli with (open circles) and

without (dark circles) the background absorbance caused by the 96 well plate and growth media. Inlayed graphs show the individual extracellular ATP (left inlay)

and OD600 (right inlay) curves. The OD600 curve does not contain the background absorbance. n = 3; error = standard deviation. Note the shift in the peak ATP:

OD600 maximum value for the measurements that include the background subtraction.

https://doi.org/10.1371/journal.pone.0210534.g002

Fig 3. Normalized ATP/OD600 levels showing susceptibility and resistance of E. coli to bactericidal antibiotics. E. coli bacteria were preincubated for 2

hours with the antibiotic kanamycin (50 mg/L, black bars), which permits selective growth, before adding an antibiotic to which the bacteria are susceptible

(gray bars). (A) ATP/OD600 levels of kanamycin-resistant E. coli with kanamycin (50 mg/L) versus kanamycin (50 mg/L) and the antibiotic to which the

bacteria are susceptible, levofloxacin (5 mg/L). (B) ATP/OD600 levels of kanamycin/levofloxacin-resistant E. coli with kanamycin (50 mg/L) versus kanamycin

(50 mg/L) and levofloxacin (5 mg/L). (C) ATP/OD600 levels of kanamycin/levofloxacin-resistant E. coli with kanamycin (50 mg/L) versus kanamycin (50 mg/L)

and the antibiotic to which the bacteria are susceptible, gentamicin (6 mg/L). n = 3; error = standard deviation; � p< 0.05.

https://doi.org/10.1371/journal.pone.0210534.g003
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levofloxacin-resistant. As shown in Fig 3B, no significant difference was measured over the

same period as that shown in Fig 3A. Finally, the assay was repeated using the kanamycin and

levofloxacin-resistant E.coli, but this time the strain was challenged with the aminoglycoside

bactericidal antibiotic, gentamicin at pharmacological concentrations 12.6 μM (6 mg/L). A sig-

nificant difference is measured between the gentamicin and control sample within 40 minutes

of challenging the bacteria (Fig 3C), thus providing evidence that only an antibiotic to which

the bacteria are susceptible will affect the ATP/OD600 of the bacterial samples. The longer

time required to measure the significant difference using the gentamicin is possibly caused by

the differences in the mechanisms of action of the antibiotics themselves. The above results

show the ability of this method to determine antibiotic susceptibility of bactericidal antibiotics

on KanR E. coli. This method could also work for bacteriostatic antibiotics; however, it may

take longer after the addition of the antibiotic before a statistically significant difference in

ATP/OD600 ratios can be measured when compared to the controls. The ATP/OD600 ratio,

of the bacteria challenged with the bacteriostatic antibiotic, would not be increasing as rapidly

since the bacteriostatic antibiotic would not be causing lysis at a high rate like a bactericidal

antibiotic. The difference in ratios would not be detectable until the ATP/OD600 ratio of con-

trol bacteria cultures deplete the extracellular ATP in the late logarithmic/early stationary

phase of growth.

The data in Fig 3 provide evidence that antibiotic efficacy can be measured with high signif-

icance levels. However, one of the objectives of our studies was to provide a rapid antibiotic

susceptibility test; therefore, the assay used to create Fig 3A was repeated with only a 30 minute

growth period with kanamycin (as opposed to the 2 hour growth period prior to addition of

the antibiotic to which the bacteria are susceptible used in Fig 3). Importantly, the data in Fig 4

Fig 4. Normalized ATP/OD600 levels showing susceptibility of E. coli to a bactericidal antibiotic with only a 30

minute pre-incubation. The E. coli bacteria were preincubated for only 30 minutes with the antibiotic kanamycin (50

mg/L, black bars) which permits selective growth, before adding the antibiotic to which the bacteria are susceptible,

levofloxacin (gray bars). Levofloxacin (5 mg/L) along with the antibiotic that permits selective growth, were compared

against a control containing only the antibiotic that permits selective growth. n = 3; error = standard deviation; �

p< 0.05; # p< 0.10.

https://doi.org/10.1371/journal.pone.0210534.g004
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show a significant difference (α = 0.05) in the ATP/OD600 ratio between levofloxacin-free

solution (0.51 +/- 0.04) and levofloxacin-containing samples (1.02 +/- 0.20). By adding the

antibiotic close to the maximum ATP/OD600 level on the growth curve in Fig 2 (~ 30 min-

utes), the ATP/OD600 decreases rapidly; thus, an ineffective antibiotic would not have an

effect on the sample and the ratio would continue to decrease. In contrast, the efficacy of the

levofloxacin resulted in cell lysis, an increase in extracellular ATP and a subsequent higher

ATP/OD600 value. Collectively, while the ATP/OD600 ratio absolute values are lower, the

increase in the ratio is still indicative of an effective antibiotic and could lead to much earlier

detection of antibiotic susceptibility.

Gram-positive B. Subtilis
The kanamycin-resistant strain of E. coli is a gram-negative strain. Therefore, to demonstrate

that the reported method is also effective with gram-positive bacteria, we also tested Bacillus
subtilis (B. subtilis). Following a similar protocol for the gram-negative E. coli strain, the ATP/

OD600 growth curve was measured to determine the required pre-incubation time to pass the

peak of maximum ATP/OD600 for Chloramphenicol-resistant B. subtilis. The maximum

ATP/OD600 for B. subtilis occurred 60 minutes after starting the incubation (Fig 5A). The

inlayed graphs show that this peak is the result of an increase in ATP by a comparatively small

number of bacteria, the same trend observed for E. coli. E. coli Chloramphenicol was allowed

to incubate with the Chloramphenicol-resistant B. subtilis for 120 minutes to remain consis-

tent with the assay for E. coli. kanamycin (50 mg/L or 103.2 μM) was used as the antibiotic to

which the bacteria are susceptible in this study and, as shown in Fig 5B, an increase in the

ATP/OD600 ratio was measured for the bacteria exposed to kanamycin (2.14 +/- 0.26) in com-

parison to those bacteria subjected to Chloramphenicol alone (0.62 +/- 0.05). Importantly, this

difference is measured at 20 minutes after adding the kanamycin, thus demonstrating potential

as a rapid susceptibility assay regardless of gram-negative or gram-positive classification. Bac-

terial strains with slower growth like CmpR B. subtilis, when compared to KanR, can still be

Fig 5. Results for gram-positive B. subtilis. (A) ATP/OD600 curve for gram-positive B. subtilis. Inlayed graphs show the individual extracellular ATP (left

inlayed) and OD600 (right inlayed) curves. The OD600 curve does not contain the background absorbance. n� 3; error = standard deviation. (B) Normalized

ATP/OD600 graph showing susceptibility of B. subtilis to a bactericidal antibiotic. B. subtilis was preincubated for 2 hours with the antibiotic chloramphenicol

(5 mg/L, black bars), which permits selective growth, before adding the antibiotic to which the bacteria are susceptible, kanamycin (gray bars). Kanamycin (50

mg/L), along with the antibiotic that permits selective growth, was compared against a control containing only the antibiotic that permits selective growth.

n = 3; error = standard deviation; � p< 0.05.

https://doi.org/10.1371/journal.pone.0210534.g005
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evaluated for antibiotic susceptibility, but the method requires a longer preincubation time

before the maximum ATP/OD600 is reached and more time may be required before a statisti-

cal difference from controls can be measured.

Mixed bacterial culture

A potential high-impact use for this assay is to test an antibiotic against an infection where the

identity of the bacteria causing the infection is unknown. Multiple bacteria strains could be

present at the infection site, even if only one strain is causing the infection. To test such a sys-

tem, both the kanamycin-resistant E. coli and the Chloramphenicol-resistant B. subtilis were

mixed in culture equally to an OD600 ~ 0.005. Both strains were incubated in media without

an antibiotic that permits selective growth to ensure growth that would be uninhibited by anti-

biotics. After a pre-incubation time of 2 hours, either Chloramphenicol (5 mg/L or 15.5 μM),

kanamycin (50 mg/L or 103.2 μM), or Gentamicin (10 mg/L or 20.9 μM) was added to the

mixed culture. While both strains of bacteria are susceptible to Gentamicin, each is only sus-

ceptible to one of the other antibiotics. The data in Fig 6 show a significant difference in ATP/

OD600 ratio when Gentamicin is used as the antibiotic to which the bacteria are susceptible in

comparison to controls; also, this difference could be quantitatively measured in 20 minutes.

Fig 6. Normalized ATP/OD600 levels showing susceptibility of kanamycin-resistant E. coli and chloramphenicol-

resistant B. subitilis mixed culture to bactericidal antibiotics. The bacterial mixed culture was preincubated for 2

hours before adding the antibiotic. Chloramphenicol (5 mg/L) (light gray), kanamycin (50 mg/L) (dark gray), or

gentamicin (10 mg/L) (white) were compared against a control containing no antibiotic (black). n = 3;

error = standard deviation; � p< 0.05.

https://doi.org/10.1371/journal.pone.0210534.g006
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There were some slight effects from the other two antibiotics, but these changes were not as

significant and required 40 minutes to be measured. Importantly, the data in Fig 6 demon-

strate that this method could be used to determine antibiotic efficacy against an unknown bac-

terium within 20–40 minutes.

Conclusions

Increasing cost of producing a drug, and the speed at which bacteria become resistant to new

drug candidate molecules, is resulting in a dangerous situation where certain bacterial strains

are becoming resistant to all available antibiotics. There is a need for rapid diagnostic tools to

facilitate drug discovery and clinical assays. Here, we have described a method to determine

antibiotic efficacy against both gram-negative and gram-positive bacteria. Unlike other suscep-

tibility tests, our test is quantitative and results can be obtained in as little as 20 minutes after

the addition of an antibiotic to a growing culture. The method is simple, requiring only an

optical density measurement at 600 nm (OD600) and a determination of ATP requiring the

well-established luciferase assay. Both of these components can be easily measured with a stan-

dard multi-modal plate reader, which can also be used for the established 96-well plate micro-

dilution antibiotic susceptibility test. The test could easily be multiplexed to determine efficacy

of multiple antibiotics against multiple strains simultaneously.
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for rapid antibiotic susceptibility test results: a proof-of-principle study. Journal of Antimicrobial Chemo-

therapy. 2017; 72(6):1659–68. https://doi.org/10.1093/jac/dkx026 PMID: 28333189

29. Ranque S, Lachaud L, Gari-Toussaint M, Michel-Nguyen A, Mallié M, Gaudart J, et al. Inter-laboratory
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