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Abstract

Background: During outbreaks of emerging and re-emerging infections, the lack of effective drugs and vaccines
increases reliance on non-pharmacologic public health interventions and behavior change to limit human-to-
human transmission. Interventions that increase the speed with which infected individuals remove themselves from
the susceptible population are paramount, particularly isolation and hospitalization. Ebola virus disease (EVD), Severe
Acute Respiratory Syndrome (SARS), and Middle East Respiratory Syndrome (MERS) are zoonotic viruses that have
caused significant recent outbreaks with sustained human-to-human transmission.

Methods: This investigation quantified changing mean removal rates (MRR) and days from symptom onset to
hospitalization (DSOH) of infected individuals from the population in seven different outbreaks of EVD, SARS, and
MERS, to test for statistically significant differences in these metrics between outbreaks.

Results: We found that epidemic week and viral serial interval were correlated with the speed with which
populations developed and maintained health behaviors in each outbreak.

Conclusions: These findings highlight intrinsic population-level changes in isolation rates in multiple epidemics of
three zoonotic infections with established human-to-human transmission and significant morbidity and mortality.
These data are particularly useful for disease modelers seeking to forecast the spread of emerging pathogens.
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Background

One of the most important factors in assessing the
health risks posed by an epidemic of infectious disease is
pathogen transmissibility. Widespread public anxiety
during the 2013-2016 West African Ebola epidemic,
while driven by an extremely high fatality rate during
the early stages, was fueled in part by the speed with
which Ebola Virus Disease (EVD) spread throughout the
populations of Liberia, Sierra Leone, and Guinea [1-3].
Similarly, concerns over annual influenza epidemics in
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the United States center on densely inhabited areas with
multiple opportunities for viral transmission due to
physical proximity between susceptible individuals [4].
Regardless of geographic setting, understanding how to
slow and control pathogen dissemination is a high prior-
ity in forecasting and preventing epidemics of infectious
disease.

Epidemic modelers frequently employ compartmental
models of disease outbreaks, such as Susceptible-
Infected-Recovered (SIR) models as in Keeling and
Rohani [5], Susceptible-Infected-Susceptible  (SIS)
models as in Gray et al [6], and Susceptible-Exposed-
Infected-Recovered (SEIR) models as in LeGrand et al
[7]. Accurately estimating and modeling the number of
infected and susceptible individuals in at-risk popula-
tions is of crucial importance in these models. Such esti-
mation is complicated, however, by efforts to isolate
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infected individuals in healthcare facilities or other com-
munity settings to decrease contact with the susceptible
population. While the isolation of infected individuals is
beneficial and should be encouraged, it challenges data
analysts because it is time-varying and reflects dynamic
and often unpredictable human behavior. Moreover, the
rate at which infected individuals are removed from the
population typically accelerates throughout an epidemic
as awareness of the infectious threat increases [8], a
process Drake et al referred to as “societal learning” [9].
Obtaining accurate estimates of this time-varying re-
moval of infected persons, while difficult, improves the
quality of compartmental models for epidemics of infec-
tious disease [9, 10]. To our knowledge, however, no
work has directly compared the rate of behavioral adap-
tion across multiple epidemics, societies, and geographic
settings.

Many factors can affect how quickly effective isolation
practices are implemented, such as access to health care,
local public health funding, international aid, and the ef-
ficacy of information campaigns [11]. Local health care
practices and non-formal healthcare systems also pro-
vide care to patients during epidemics and can play a
part in quarantining infected individuals [12]. Previous
work in Liberia has shown that a combination of these
approaches through simultaneous community engage-
ment and clinical intervention is more effective than any
single intervention, with both health care access and
utilization increasing hand-in-hand to decrease EVD
transmission during the 2013-2016 Ebola epidemic [13].
While infection prevention and control practices often
include vaccination, progress to develop effective vac-
cines for emerging infections is slow and not necessarily
more effective than isolation of infected individuals [14].
Ring vaccination with the rVSV-ZEBOV-GP Ebola vac-
cine [15] in the Democratic Republic of the Congo is
promising [16], but previous work has suggested that
ring vaccination may only provide a marginal benefit to
rigorous contact tracing and patient isolation [17].

This paper aims to identify key similarities and differ-
ences in the behavioral response to outbreaks of three
emerging zoonotic infections, focusing particularly on
the speed with which infected individuals are removed
from the susceptible population. We sought to deter-
mine how the mean removal rate (the inverse of the
number of days from symptom onset to isolation of in-
fected individuals) changed over the course of each out-
break as measured by epidemic week and viral serial
interval. Individuals often experience zoonotic and emer-
ging infections as innately more frightening than “famil-
iar” diseases, leading to rapid behavioral adaptations due
to high perceived risk of severe disease and death [18].
Behavior modification, while crucial for epidemic con-
tainment [19-21], is context dependent and difficult to
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predict due to social network, socioeconomic, and be-
havioral differences between populations [22]. Thus, we
chose seven different outbreaks of disease that stoked
significant local and international fear due to the risk of
global pandemic: the 2013-2016 Liberian Ebola epi-
demic, subsets of the 2013—-2016 Liberian outbreak from
Lofa and Montserrado Counties [23], the 2003 Hong
Kong SARS epidemic [24-26], the 2014 Saudi Arabia
MERS outbreaks in Riyadh and Jeddah [27], and the
2015 South Korea MERS outbreak [28]. We examined
whether epidemic week and serial interval successfully
predicted days from disease onset to hospitalization
(DSOH) and mean removal rate (MRR) throughout each
epidemic.

Methods

Data

We obtained anonymous patient-level data for Ebola
and MERS, and daily aggregated data for SARS. Require-
ments for participant consent were waived by the Insti-
tutional Review Board (IRB) of the University of Georgia
(Protocol ID#STUDY00002338). We added new col-
umns to each epidemic dataset to track the number of
days from symptom onset to hospitalization (calculated
as hospitalization date - date of symptom onset; abbrevi-
ated DSOH) and the mean removal rate (calculated as 1
/ DSOH; abbreviated MRR). In calculating MRR, we
considered only positive DSOH values in order to focus
on community transmission rather than nosocomial
transmission. Additionally, we converted symptom onset
dates to weekly onset dates by replacing each date with
that of the closest previous Sunday. We used weekly on-
set dates to aggregate data by epidemic week as de-
scribed below.

Binned data

We compiled data for each outbreak location binned by
epidemic week, to produce comparable data for regres-
sion analysis. Epidemic weeks came from weekly onset
dates described above. We also binned the same data by
serial interval, using 12 days as the estimated serial inter-
val for Ebola [23], 8 days for SARS [24], and 7 days for
MERS [27]; this was calculated as epidemic week/(serial
interval/7). Each dataset included, per week, the number
of new cases, the cumulative number of cases, mean
DSOH and associated standard deviation, and MRR and
associated standard deviation. We removed epidemic
weeks from the beginning of each outbreak so that the
first three epidemic weeks had greater than O cases of
disease each in order to focus on population-level behav-
ioral adaptation to large-scale disease outbreaks instead
of adaptations to individual disease events early in an
epidemic. We performed all regression analyses using
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this binned data, weighted by the number of cases per
epidemic week.

Regression analyses
Initial regression analyses fit linear models to predict
DSOH and MRR (Table 1, Egs. 1-2). As before, data for
DSOH excluded negative values (individuals who be-
come symptomatic after being hospitalized for other rea-
sons) to focus on community disease transmission and
behavior change instead of nosocomial infection.
Outlying points in the Liberian Ebola epidemic skewed
our initial linear regression models. We compared man-
ual removal of outliers, quantile regression, and robust
linear regression to find the most appropriate method
for handling such points. The three methods produced
almost identical results. We used robust regression to
re-fit all initial linear regression models to avoid the in-
fluence of outliers (Table 1, Eqs. 3—4). In addition, we
performed robust linear regressions of MRR with an
interaction term accounting for outbreak location (Table
1, Eq. 5-6) to examine predicted mean change in the
MRR in each epidemic. We used the Bonferroni correc-
tion [29] for multiple comparisons to compute confi-
dence intervals, utilizing a 99% confidence interval in
our model comparisons. The size of the smaller epi-
demics (MERS and SARS) played a large part in deter-
mining confidence interval size and significance. All data
management, modeling, and visualization was performed
in R [30].

Results

Days to hospitalization (DSOH) and mean removal rate
(MRR)

DSOH consistently declined over time in each epidemic.
Robust regressions for DSOH and MRR (Table 1, Egs. 3
and 4) showed negative and positive slopes, respectively,
which corroborated the observations made on non-
binned data (Fig. 1). Complete regression tables are pro-
vided in online supplementary materials.

Table 1 Regression equations predicting DSOH and MRR

Eq. Regression Type Response Predictor Interaction Term

1 linear DSOH epidemic week none
2 linear MRR epidemic week none
3 robust linear DSOH epidemic week none
4 robust linear MRR epidemic week none
5  robust linear MRR epidemic week outbreak location
6  robust linear MRR serial interval outbreak location

DSOH stands for days from symptom onset to hospitalization, MRR stands for
mean removal rate, calculated as (1 / DSOH). Epidemic weeks were weighted
by cases per week. Outbreak location for DSOH and MRR included seven levels
(Liberia, Lofa County, Montserrado County, South Korea, Riyadh, Jeddah, and
Hong Kong)
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From regression analyses accounting for outbreak lo-
cation (Table 1, Egs. 5 and 6), we calculated the mean
change in the MRR for each outbreak location using the
interactionMeans function from the R package phia for
post-hoc interaction analysis. This analysis showed that
the mean change in the MRR of the Hong Kong SARS
epidemic was approximately five times (per serial inter-
val) to seven times (per epidemic week) more than the
mean change in the MRR of the Liberian Ebola epidemic
(Fig. 2). The mean change of the MRR in the Ebola epi-
demic in Lofa County, Liberia, was significantly higher
than the mean change of the MRR for the overall Liber-
ian epidemic and the outbreak in Montserrado County,
Liberia, regardless of predictor (epidemic week or serial
interval) (Fig. 2). The three MERS outbreaks (Riyadh,
Jeddah, and South Korea) did not differ significantly
from one another and had limited precision (Fig. 2).

We found that predicting mean change of the MRR by
epidemic week (Table 1, Eq. 5) led to higher mean esti-
mates and wider confidence intervals in the MERS and
SARS outbreaks; conversely, predicting with serial inter-
val (Table 1, Eq. 6) lowered mean estimates and nar-
rowed the associated confidence intervals (Fig. 2). We
identified little difference in the mean change of the
MRR for the Ebola outbreak depending on predictor
(Fig. 2). This indicates that, at least in the case of MERS
and SARS, both the passage of time and the serial inter-
val of each virus may affect the speed with which popu-
lations develop and maintain health behaviors.

Discussion

The models presented in this study show that the re-
moval of infected individuals from the susceptible popu-
lation increases over time and varies significantly based
on outbreak duration and location. Our findings suggest
that populations perceive the health risks posed by
emerging and re-emerging pathogens and respond rap-
idly to limit community transmission. Such population-
level quarantine behaviors develop quickly in extremely
disparate settings (Liberia, Hong Kong, Saudi Arabia,
and South Korea) and distinct viral outbreaks (SARS,
MERS, and Ebola). While DSOH improved (decreased)
in every epidemic over time, extreme disparities in start-
ing values (approximately 13 days from symptom onset
to hospitalization at the beginning of the 2013-2016
Ebola outbreak in Liberia, versus approximately 5 days
in the 2015 MERS outbreak in South Korea) highlight
the intrinsic disadvantage that low-income countries
may experience due to the interrelated concerns of pov-
erty, limited access to health care, and low investment in
public health. DSOH and MRR regressed against epi-
demic week differed across all observed outbreaks, and
MRR likewise differed markedly based on the virus in
question (Ebola, MERS, or SARS), the location, and at
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Fig. 1 Regression results predicting DSOH and MRR by epidemic week. The public health response to epidemic infection varied widely between
the outbreaks studied. These graphs depict model lines from regressions of each of the 2 response variables (DSOH (Table 1, Eq. 4) and MRR
(Table 1, Eq. 5)) on epidemic week for the 7 outbreaks indicated in the legend. South Korea and Liberia exhibited the most extreme slopes in
both analyses. As an illustration of the observed difference between outbreaks, the graphs show South Korea achieving an almost complete
removal of infected individuals from the population and a sharp decline in days till hospitalization within 20 weeks, while Liberia only achieved a
roughly 20% removal rate by 50 weeks

times both. Both DSOH and MRR are useful measure-
ments of public health behavior during outbreaks, and
are useful tools to compare outbreak response effective-
ness in distinct geographic, economic, and social set-
tings. Of course, DSOH and MRR are intrinsically and
simply related since one is simply the reciprocal of the
other. The main advantage of DSOH is that it is
expressed in intuitive units (days elapsed), whereas MRR
reflects the theoretical “removal rate” of standard com-
partmental models [5].

Figure 2 highlights differences in mean change of the
MRR due to outbreak type (Ebola, MERS, or SARS) and
location. Mean change of the MRR was similar when
calculated using epidemic week versus serial interval for
Ebola, but demonstrated a lower estimate and lower

standard error when calculated using serial interval in all
three outbreaks of MERS and the outbreak of SARS in
Hong Kong. This suggests that the relevance of various
predictors (epidemic week versus serial interval) may
vary based upon the type and location of an outbreak, al-
though the comparative relevance of epidemic type ver-
sus location cannot be disentangled with the data
available in this study. We recommend similar analyses
of MRR be conducted across a wide range of geograph-
ies as outbreaks of emerging pathogens arise, providing
important data on the range of MRR, and its expected
rate of change, in different settings. This approach would
be further strengthened by incorporating data regarding
other context- and culture-specific social conditions,
such as the presence of domestic and international aid
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workers, access to health services, and density and fre-
quency of social interaction. Comparing findings be-
tween different viral epidemics is also challenged by
different periods and mechanisms of viral transmission
(e.g. respiratory droplets versus aerosols, presence or ab-
sence of transmissibility before symptoms, etc.).

While our findings demonstrate large and statistically
significant differences in MRR, it is notable that the cal-
culated rates of change in the MRRs are within a factor
of ten (when calculated using epidemic week) to seven
(when calculated using serial interval) of each other (Fig.
2), with the mean change being the lowest in the EVD
outbreak in Liberia and the highest in the MERS out-
break in South Korea. For modelers seeking to under-
stand the epidemiology of emerging infectious diseases
with limited or no data from previous outbreaks, this
study provides a range of acceptable values for the MRR
based on seven geographically distinct outbreaks of three
emerging diseases. Similarly, while large disparities in
DSOH are obvious (Fig. 1), these data highlight that all
societies quickly adapt to outbreaks of emerging infec-
tions. Drake et al previously demonstrated the positive
impact of behavior change in infectious outbreaks, not-
ing that doubling the rate of “societal learning” in a
model of the 2003 SARS outbreak in Singapore approxi-
mately halved the estimated number of infected patients
[9]. While there is a theoretical upper limit to the speed
with which newly-infected individuals can be removed
from the susceptible population [9], public health strat-
egies aimed at fostering behavioral adaptations and ac-
celerating isolation should form a cornerstone of
interventions tasked with limiting the spread of highly
contagious and deadly emerging pathogens [31]. Such

strategies extend beyond what we have presented here,
such as prompt isolation of infected individuals within
hospitals and other health care settings, and include
other collective measures such as household quarantine
practices, remote work, cancellation of mass gatherings,
limitations on travel, use of facemasks or other virus-
specific barriers against transmission, immunizations
(when available), and more.

Conclusions

We have shown that rates of hospital or healthcare
facility isolation of infected individuals from the sus-
ceptible population vary significantly by pathogen
and location, but can in some cases be predicted by
the timing and serial interval of the epidemic. This
study detected variation in DSOH and MRR based
on epidemic location and outbreak type, indicating
that it may be possible to estimate a general range
of the rate of change in these variables over time.
Due to location-specific differences in DSOH and
MRR, modelers who seek to develop forecasts early
in an outbreak would benefit from estimating an ex-
pected range for removal of infected individuals
using data from past outbreaks of the same pathogen
in a similar setting. Furthermore, the quality of these
estimates will be impacted by the metric chosen, as
seen by the notable, but distinct, trends detected in
DSOH and MRR. As seen in this study, even a rela-
tively small amount of data from an emerging or re-
emerging outbreak of infectious disease can be
paired with a well-chosen response variable such as
DSOH or MRR to make effective forecasts about
public health behavior.



Lodge et al. BMC Infectious Diseases (2021) 21:577

Abbreviations

EVD: Ebola Virus Disease; SARS: Severe Acute Respiratory Syndrome;

MERS: Middle East Respiratory Syndrome; DSOH: Days from Symptom Onset
to Hospitalization; MRR: Mean Removal Rate; SIR: Susceptible-Infected-
Recovered; SIS: Susceptible-Infected-Susceptible

Supplementary Information
The online version contains supplementary material available at https://doi.
0rg/10.1186/512879-021-06299-x.

Additional file 1: Table 1, Eq. 1: Linear Regression (DSOH ~ Epidemic
Week), Stratified by Location. Table 1, Eq. 2: Linear Regression (MRR ~
Epidemic Week), Stratified by Location. Table 1, Eq. 3: Robust Linear
Regression (DSOH ~ Epidemic Week), Stratified by Location. Table 1, Eq.
4: Robust Linear Regression (MRR ~ Epidemic Week), Stratified by
Location. Table 1, Eq. 5: Robust Linear Regression (MRR ~ Epidemic
Week + Location + Epidemic Week*Location). Table 1, Eq. 6: Robust
Linear Regression (MRR ~ Serial Interval + Location + Serial
Interval*Location).

Additional file 2.

Acknowledgements
Not applicable.

Authors’ contributions

EL helped develop the project and conduct initial data analysis with JD as
part of the University of Georgia Population Biology of Infectious Diseases
REU Site. AS updated EL's analyses with finalized Ebola data and wrote an
initial paper draft from that work. EL and JD finalized the manuscript for
submission. All authors read and approved the manuscript for submission.

Funding

This work was performed as part of the Population Biology of Infectious
Diseases REU Site Program. Funding was provided by grants from the
National Science Foundation (DBI-1156707) and the National Institute of
General Medical Sciences of the National Institutes of Health under Award
Number U0TGM110744. Lodge was additionally supported by the University
of North Carolina at Chapel Hill Medical Scientist Training Program (T32
GMO008719-18), the National Institute of Environmental Health Sciences (T32
ES007018), and the National Institute of Child Health and Human
Development (T32 HD007168). The content is solely the responsibility of the
authors and does not necessarily reflect the official views of the National
Science Foundation or the National Institutes of Health.

Availability of data and materials

We studied seven outbreaks: the 2013-2016 Liberian Ebola epidemic on a
country-wide level, subsets of the same epidemic in Lofa and Montserrado
Counties, the 2003 Hong Kong SARS epidemic, the 2014 Saudi Arabia MERS
outbreaks in Riyadh and Jeddah, and the 2015 South Korea MERS outbreak.
The Ebola data was originally obtained by the World Health Organization
and provided by Christopher Dye (dyec@who.int). The Hong Kong SARS data
was provided by Gabriel Leung (gmleung@hku.hk) of Hong Kong University.
Please contact Christopher and Gabriel for data regarding Ebola and SARS,
respectively, due to concerns regarding potentially identifiable health infor-
mation. Finally, the MERS data for Saudi Arabia and South Korea were ob-
tained from data compiled by Andrew Rambaut (a.rambaut@ed.ac.uk) of the
University of Edinburgh, and is publicly available at https://github.com/
rambaut/MERS-Cases/blob/gh-pages/data/cases.csv. The code for this project
was written by Annakate Schatz and Evans Lodge, and is available in the ac-
companying R Markdown file, Lodge_et_al_Behavior_Change.Rmd.

Declarations

Ethics approval and consent to participate

The Institutional Review Board (IRB) of the University of Georgia determined
this study to be exempt (Protocol ID#STUDY00002338) and waived
requirements for participant consent. Data access permissions were granted
by Christopher Dye (World Health Organization) for Ebola, Gabriel Leung
(Hong Kong University) for SARS, and Andrew Rambaut (University of

Page 6 of 7

Edinburgh) for MERS. All data was anonymized prior to access and use. See
“Availability of Data and Materials” for more information.

Consent for publication
Not applicable.

Competing interests

The authors declare they have no actual or potential competing financial
interests. Funders of this project played no role in data collection, study
design, analysis, or manuscript preparation.

Author details

'Department of Epidemiology, Gillings School of Global Public Health,
University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC
27599, USA. School of Medicine, University of North Carolina at Chapel Hill,
Chapel Hill, North Carolina, USA. *0dum School of Ecology and Center for
Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA.

Received: 28 April 2020 Accepted: 9 June 2021
Published online: 15 June 2021

References

1. Ebola Response Team WHO. Ebola virus disease in West Africa — the first 9
months of the epidemic and forward projections. N Engl J Med. 2014;
371(16):1481-95. https;//doi.org/10.1056/NEJMoa1411100.

2. Garske T, Cori A, Ariyarajah A, Blake IM, Dorigatti |, Eckmanns T, et al.
Heterogeneities in the case fatality ratio in the west African Ebola outbreak
2013-2016. Philos Trans R Soc B Biol Sci. 2017;372(1721):20160308. https.//
doi.org/10.1098/rstb.2016.0308.

3. Ebola Response Team WHO. West African Ebola epidemic after one year —
slowing but not yet under control. N Engl J Med. 2015;372(6):584-7. https.//
doi.org/10.1056/NEJMc1414992.

4. Dalziel BD, Kissler S, Gog JR, Viboud C, Bjgrnstad ON, Metcalf CJE, et al.
Urbanization and humidity shape the intensity of influenza epidemics in U.
S. cities. Science. 2018;362(6410):75-9. https://doi.org/10.1126/science.aat603
0.

5. Keeling MJ, Rohani P. Modeling infectious diseases in humans and animals.
Princeton: Princeton University Press; 2011. 368 p. https://doi.org/10.2307/.
ctvemn4gko.

6. Gray A, Greenhalgh D, Hu L, Mao X, Pan J. A stochastic differential equation
SIS epidemic model. SIAM J Appl Math. 2011,71(3):876-902. https;//doi.org/1
0.1137/10081856X.

7. Legrand J, Grais RF, Boelle PY, Valleron AJ, Flahault A. Understanding the
dynamics of Ebola epidemics. Epidemiol Infect. 2007;135(04):610-21. https//
doi.org/10.1017/50950268806007217.

8. Brug J, Aro AR, Richardus JH. Risk perceptions and behaviour: towards
pandemic control of emerging infectious diseases. IntJ Behav Med. 2009;
16(1):3-6. https://doi.org/10.1007/512529-008-9000-x.

9. Drake JM, Chew SK, Ma S. Societal learning in epidemics: intervention
effectiveness during the 2003 SARS outbreak in Singapore. PLoS One. 2006;
1(1):20. https;//doi.org/10.1371/journal.pone.0000020.

10.  Hayashi MAL. Integrating mathematical models of behavior and infectious
disease: applications to outbreak dynamics and control: The University of
Michigan; 2016.

11, Freimuth V, Linnan HW, Potter P. Communicating the threat of emerging
infections to the public. Emerg Infect Dis. 2000,6(4):337-47. https://doi.org/1
0.3201/eid0604.000403.

12. McLean KE, Abramowitz SA, Ball JD, Monger J, Tehoungue K, McKune SL,
et al. Community-based reports of morbidity, mortality, and health-seeking
behaviours in four Monrovia communities during the west African Ebola
epidemic. Global Public Health. 2018;13(5):528-44. https://doi.org/10.1080/1
7441692.2016.1208262.

13. Sebastian F, Iza C, Amanda T, Etienne G, Anton C, Eggo Rosalind M, et al.
The impact of control strategies and behavioural changes on the
elimination of Ebola from Lofa County, Liberia. Philos Trans R Soc B Biol Sci.
2017;372(1721):20160302.

14.  Dimitri N. The economics of epidemic diseases. PLoS One. 2015;10(9):
e0137964. https.//doi.org/10.1371/journal.pone.0137964.

15. Regules JA, Beigel JH, Paolino KM, Voell J, Castellano AR, Hu Z, et al. A
Recombinant Vesicular Stomatitis Virus Ebola Vaccine. N Engl J Med. 2017;
376(4):330-41. https//doi.org/10.1056/NEJMoa1414216.


https://doi.org/10.1186/s12879-021-06299-x
https://doi.org/10.1186/s12879-021-06299-x
mailto:dyec@who.int
mailto:gmleung@hku.hk
mailto:a.rambaut@ed.ac.uk
https://github.com/rambaut/MERS-Cases/blob/gh-pages/data/cases.csv
https://github.com/rambaut/MERS-Cases/blob/gh-pages/data/cases.csv
https://doi.org/10.1056/NEJMoa1411100
https://doi.org/10.1098/rstb.2016.0308
https://doi.org/10.1098/rstb.2016.0308
https://doi.org/10.1056/NEJMc1414992
https://doi.org/10.1056/NEJMc1414992
https://doi.org/10.1126/science.aat6030
https://doi.org/10.1126/science.aat6030
https://doi.org/10.2307/j.ctvcm4gk0
https://doi.org/10.2307/j.ctvcm4gk0
https://doi.org/10.1137/10081856X
https://doi.org/10.1137/10081856X
https://doi.org/10.1017/S0950268806007217
https://doi.org/10.1017/S0950268806007217
https://doi.org/10.1007/s12529-008-9000-x
https://doi.org/10.1371/journal.pone.0000020
https://doi.org/10.3201/eid0604.000403
https://doi.org/10.3201/eid0604.000403
https://doi.org/10.1080/17441692.2016.1208262
https://doi.org/10.1080/17441692.2016.1208262
https://doi.org/10.1371/journal.pone.0137964
https://doi.org/10.1056/NEJMoa1414216

Lodge et al. BMC Infectious Diseases

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

(2021) 21:577

World Health Organization. Preliminary results on the efficacy of rVSV-
ZEBOV-GP Ebola vaccine using the ring vaccination strategy in the control
of an Ebola outbreak in the Democratic Republic of the Congo: an example
of integration of research into epidemic response. 2019 [cited 2019 Aug 1];
Available from: https//www.who.int/csr/resources/publications/ebola/ebola-
ring-vaccination-results-12-april-2019.pdf?ua=1

Wells C, Yamin D, Ndeffo-Mbah ML, Wenzel N, Gaffney SG, Townsend JP,

et al. Harnessing Case Isolation and Ring Vaccination to Control Ebola. PLoS
Negl Trop Dis [Internet]. 2015 [cited 2019 Aug 11,9(5). Available from:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4449200/

Hong S, Collins A. Societal responses to familiar versus unfamiliar risk:
comparisons of influenza and SARS in Korea. Risk Anal. 2006;26(5):1247-57.
https://doi.org/10.1111/j.1539-6924.2006.00812.x.

Kerstiéns B, Matthys F. Interventions to Control Virus Transmission during an
Outbreak of Ebola Hemorrhagic Fever: Experience from Kikwit, Democratic
Republic of the Congo, 1995. J Infect Dis. 1999;179(Supplement 1):5263-7.
Ngwa GA, Teboh-Ewungkem MI. A Mathematical Model with Quarantine
States for the Dynamics of Ebola Virus Disease in Human Populations.
Comput Math Methods Med [Internet]. 2016; [cited 2019 Jul 11];2016.
Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4992550/.
Hsieh Y-H, King C-C, Chen CWS, Ho M-S, Hsu S-B, Wu Y-C. Impact of
quarantine on the 2003 SARS outbreak: a retrospective modeling study. J
Theor Biol. 2007;244(4):729-36. https://doi.org/10.1016/}jtbi.2006.09.015.
Bauch CT, Galvani AP. Social factors in epidemiology. Science. 2013;
342(6154):47-9. https://doi.org/10.1126/science.1244492.

Chowell G, Nishiura H. Transmission dynamics and control of Ebola virus
disease (EVD): a review. BMC Med. 2014;12(1):196. https.//doi.org/10.1186/
512916-014-0196-0.

Wallinga J, Teunis P. Different epidemic curves for severe acute respiratory
syndrome reveal similar impacts of control measures. Am J Epidemiol. 2004;
160(6):509-16. https://doi.org/10.1093/aje/kwh255.

Riley S, Fraser C, Donnelly CA, Ghani AC, Abu-Raddad LJ, Hedley AJ, et al.
Transmission dynamics of the etiological agent of SARS in Hong Kong:
impact of public health interventions. Science. 2003;300(5627):1961-6.
https.//doi.org/10.1126/science.1086478.

Cauchemez S, Boélle P-Y, Donnelly CA, Ferguson NM, Thomas G, Leung GM,
et al. Real-time estimates in early detection of SARS. Emerg Infect Dis. 2006;
12(1):110-3. https//doi.org/10.3201/eid1201.050593.

Assiri A, McGeer A, Perl TM, Price CS, Al Rabeeah AA, Cummings DAT, et al.
Hospital outbreak of Middle East respiratory syndrome coronavirus. N Engl J
Med. 2013;369(5):407-16. https.//doi.org/10.1056/NEJMoa1306742.

Cowling BJ, Park M, Fang VJ, Wu P, Leung GM, Wu JT. Preliminary
epidemiologic assessment of MERS-CoV outbreak in South Korea, May-June
2015. Euro Surveill [Internet]. 2015:20(25) [cited 2019 Jul 30], Available from:
https.//www.ncbi.nlm.nih.gov/pmc/articles/PMC4535930/.

Bland JM, Altman DG. Multiple significance tests: the Bonferroni method.
BMJ. 1995;310(6973):170. https://doi.org/10.1136/bmj.310.6973.170.

R Development Core Team. R: a language and environment for statistical
computing [internet]. Vienna: the R Foundation for statistical Computing;
2011. Available from: http://www.R-project.org/

Barbisch D, Koenig KL, Shih F-Y. Is there a case for quarantine? Perspectives
from SARS to Ebola. Disaster Med Public Health Preparedness. 2015;9(5):
547-53. https://doi.org/10.1017/dmp.2015.38.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Page 7 of 7

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions


https://www.who.int/csr/resources/publications/ebola/ebola-ring-vaccination-results-12-april-2019.pdf?ua=1
https://www.who.int/csr/resources/publications/ebola/ebola-ring-vaccination-results-12-april-2019.pdf?ua=1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4449200/
https://doi.org/10.1111/j.1539-6924.2006.00812.x
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4992550/
https://doi.org/10.1016/j.jtbi.2006.09.015
https://doi.org/10.1126/science.1244492
https://doi.org/10.1186/s12916-014-0196-0
https://doi.org/10.1186/s12916-014-0196-0
https://doi.org/10.1093/aje/kwh255
https://doi.org/10.1126/science.1086478
https://doi.org/10.3201/eid1201.050593
https://doi.org/10.1056/NEJMoa1306742
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4535930/
https://doi.org/10.1136/bmj.310.6973.170
http://www.r-project.org/
https://doi.org/10.1017/dmp.2015.38

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Data
	Binned data
	Regression analyses

	Results
	Days to hospitalization (DSOH) and mean removal rate (MRR)

	Discussion
	Conclusions
	Abbreviations
	Supplementary Information
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Declarations
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

