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a b s t r a c t 

This study introduces a simulation of biological reinforcement learning to explore the behavior 

of natural enemies in the presence of host pests, aiming to analyze the population dynamics be- 

tween natural enemies and insect pests within an ecological context. The simulation leverages on 

Q-learning, a reinforcement learning algorithm, to model the decision-making processes of both 

parasitoids/predators and pests, thereby assessing the impact of varying parasitism and preda- 

tion rates on pest population growth. Simulation parameters, such as episode count, duration in 

months, steps, learning rate, and discount factor, were set arbitrarily. Environmental and reward 

matrices, representing climatic conditions, crop availability, and the rewards for different actions, 

were established for each month. Initial Q-tables for parasitoids/predators and pests, along with 

population arrays, were used to track population dynamics. 

• The simulation, illustrated through the Aphid-Ladybird beetle interaction case study over 

multiple episodes, includes a sensitivity analysis to evaluate the effects of different predation 

rates. 

• Findings reveal detailed population dynamics, phase relationships between predator and pest 

populations, and the significant influence of predation rates. 

• These insights contribute to a deeper understanding of ecological systems and inform potential 

pest management strategies. 
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Background 

Deep learning algorithms are subset of machine learning algorithms that utilize neural networks with multiple layers [ 1 ]. The

field of deep learning has revolutionized various domains, ranging from computer vision to processing and synthesis of natural

language [ 2 ]. Reinforcement learning (RL) is one of the deep learning algorithms, primarily been employed for tasks involving

pattern recognition and decision-making in complex data-driven environments [ 3 ]. However, there is a growing interest in exploring

the applicability of these algorithms beyond traditional data-centric scenarios. The study of Frankenhuis et al. [ 4 ] affirmed the

benefits of RL in the field of behavioural ecology and how RL methods using biological mechanisms are applicable to solve problems

associated with development and learning processes in organisms. These algorithms have the capability to capture complex patterns 

and relationships from large datasets, making them well-suited for modelling the dynamics of ecological systems and they have shown

great promise in simulating and studying population dynamics [ 5 ]. Reinforcement Learning algorithms are adept at identifying

and learning from complex patterns within large datasets, which is essential for modeling the intricate and dynamic interactions

between pests and their natural enemies in ecological systems. RL excels in environments where decision-making processes must 

adapt to changing conditions, making it suitable for simulating the adaptive strategies of natural enemies and pests in response to

environmental changes and interventions. Its ability to model population fluctuations and interactions within ecological systems 

makes RL an ideal tool for developing more accurate and effective pest management strategies, thus enhancing our understanding 

and control of these complex biological processes. 

This paper aims to investigate the potential of deep learning algorithms, specifically RL, in studying population dynamics of

organisms, focusing on the behaviour of natural enemy (parasitoids, predators, etc.), a class of insects that exhibit unique biological

interactions with their hosts, making them a subject of interest for ecological research and pest management strategies [ 6 ]. Adult

females parasitoid usually oviposit inside or on the immature stage (either egg or larvae) of the host organism, and the developed

larvae feed and annihilate the host over time [ 7 ]. Herbivore densities and parasitoid parasitism rates have a major impact on the

dynamics of interaction between a pest and its natural enemy [ 8 ]. Parasitoids influence population dynamics of pest herbivores

and have the potential to control pest populations effectively [ 9 ]. In other hand, insect predators primarily feeds on other insects or

arthropods as their main source of food. Their behaviors encompass a wide range of actions and strategies employed by these creatures

to locate, capture, subdue, and consume their prey [ 10 ]. These behaviors are shaped by the predator’s evolutionary adaptations and

the specific ecological niches they occupy. Understanding the behavioural patterns and decision-making processes of natural enemies 

is essential for predicting their interactions with hosts, identifying factors influencing their population dynamics, and developing 

effective pest management strategies. Studying these aspects can help in devising sustainable and targeted approaches to control or

manage pest populations while minimizing ecological impact. 

Traditionally, studies on population dynamics of insects have relied on mathematical models, and statistical approaches that cap- 

ture the interactions between different life stages and environmental factors [ 11 , 12 ]. Although these approaches provide valuable

insights into the ecological processes governing the interactions between natural enemies and their hosts, they often fall short in

capturing the complexity and adaptability of these organisms within dynamic environments. For instance, in contrary to traditional 

models, RL could be employed to model interactions between insect populations and their environment, taking into account the influ-

ence of environmental factors, such as temperature, humidity, and resource availability, on population dynamics [ 13 ] and guide the

optimization of resource allocation decisions, such as allocating monitoring efforts between different pest populations or determining 

the allocation of limited resources for pest control [ 14 ]. Population dynamics play a pivotal role in the stability and functioning of

ecosystems. The fluctuations in population size and composition over time are influenced by various factors, including environmental 

conditions, resource availability, and the interactions between species [ 15 ]. Studying and predicting population dynamics in natural 

enemy-host systems is a complex task due to the inherent complexity of ecological interactions and the nonlinear nature of population

dynamics. 

On the other hand, while RL presents a promising approach due to its data-driven nature, noise elimination is fundamental.

Datasets derived from natural environments can contain significant noise due to measurement errors, environmental variability, and 

other factors. Therefore, before applying the developed RL methodology, it is crucial to implement noise elimination techniques to

ensure the accuracy and reliability of the predictions in real-world applications. This step is essential to fully harness the potential of

RL in modeling insect population dynamics and optimizing pest management strategies. 

To explore the potential of deep learning algorithms for population dynamics of natural enemies, this study proposes a biological

reinforcement learning simulation. The simulation incorporates reward, climatic, and crop availability matrices, creating a dynamic 

environment that mimics real-world conditions. By employing RL techniques, the simulation enables the predators to learn and adapt

their actions based on observed rewards, leading to population-level consequences. 

The research question addressed in this study is whether deep learning algorithms, such as RL, can be effectively applied to

model and analyze the population dynamics of parasitoids. Specifically, the investigation focuses on how RL algorithms can learn

and optimize natural enemy-pest behaviour based on feedback from the environment, which includes rewards, climatic conditions, 

and crop availability. 

Method details 

The study presents one of the first attempts to apply a biological reinforcement learning model to simulate the interactions between

a pest and its natural enemy. The methodology involves artificially creating a simulated environment with generated environmental 

variables where both organisms live and interact for resource competition. The methodology is broadly divided into three main stages:
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Table 1 

Stages of biological reinforcement learning model to simulate the interactions between a pest and a natural enemy. 

Stage 1: Initialization of the Environment Stage 2: Simulation Execution Data Collection and Analysis 

• The simulation runs for n episodes or 

iterations (numEpisodes). Each episode 

simulates n months (numMonths), and 

each month contains a maximum of n 

days (numSteps). 

• Two Q-tables are initialized for the 

natural enemy and pest respectively, each 

with n states (numStates) and n actions 

(numActions). 

• Reward and environmental matrices for 

each month are created. These matrices 

include climatic conditions and crop 

availability, which are randomly 

generated for the purpose of this study. 

• Population arrays for the parasitoid and 

pest are initialized to zeros. They will be 

updated as the simulation runs. 

• A sensitivity analysis parameter, the 

parasitism rate, is defined as values 

between the minimum and maximum 

predation rate of the natural enemies. 

• Stage 2: Simulation Execution 

• Initialize Simulation Parameters: 

• Set the number of episodes E, the number of 

months M per year (12), and the number of 

days D per month (30 or 31). 

• Initialize Q-tables for both the natural enemy 

(parasitoid) and the pest. 

• Episode Loop: 

• For each episode e (from 1 to E): 

• Monthly Loop: 

• For each month mm (from 1 to M): 

• Daily Loop: 

• For each day dd (from 1 to D): 

• Action Selection: 

• The parasitoid and pest independently choose 

actions Ap and Ae respectively, using the 

epsilon-greedy policy. 

• Time Complexity: O(1) for each agent per 

day. 

• State Transition: 

• Determine the next state based on the chosen 

actions and the current state. 

• Time Complexity: O(1). 

• Reward Calculation: 

• Calculate rewards based on current climatic 

and crop conditions. 

• Time Complexity: O(1). 

• Q-Table Update: 

• Update the Q-tables for the natural enemy 

and pest using the observed rewards and the 

predicted future rewards from the new state. 

• Time Complexity: O(1) for each Q-table 

update. 

• Population Update: 

• Update the populations of the natural enemy 

and pest based on the parasitism rate, and the 

defined growth and death rates. 

• Time Complexity: O(1). 

• Simulation Output: 

• After all episodes are completed, aggregate 

and analyze the results to evaluate the 

performance and dynamics observed in the 

simulation. 

• Generate visualizations and summaries of the 

population dynamics and other key metrics. 

• Overall Time Complexity for Each Episode: 

O(M ⋅D ⋅(Ap + Ae)) 

• Total Time Complexity for All Episodes: 

O(E ⋅M ⋅D ⋅(Ap + Ae)) 

• Since M and D are constants (12 and 30/31 

respectively), the time complexity simplifies 

to: O(E ⋅(Ap + Ae)) 

• The population results for each episode are 

stored for the sensitivity analysis. 

• After all episodes, the average population 

results for each parasitism rate are calculated. 

• The population dynamics of the parasitoid 

and pest over time are plotted. 

• A phase plot is created to visualize the 

relationship between the natural enemy’s 

population and the pest population. 

• Sensitivity analysis results are presented as 

surface plots to show how the natural enemy 

and pest populations change over time with 

different parasitism rates. 

 

 

 

 

 

 

 

The first stage consists of the initialization of the environment. This stage involves defining the basic parameters and structures

that will guide the interactions of the organisms. The second stage consists of executing the simulation. The stage involves running

several iterations of the simulation and automatically updating the behaviors of the system i.e. , the populations of the pest vis

a vis of the parasitoid based on predefined rules. The third stage consists of data collection and analysis that involves collecting

and analyzing the resulting data, including population dynamics and sensitivity analysis. The details methodology is presented in 

Table 1 . 

The directed graph presented in Fig. 1 shows the comprehensive methodology used in the study. The node represents every stage

in the methodology, while each edge shows the transition from one stage to another. The graph begins with ’Parameter Initialization’

and ends with ’Sensitivity Analysis’, highlighting the iterative nature of the methodology and the feedback loops that it contained.

Each node is colored for ease of identification and a better understanding of the process. 
3
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Fig. 1. Methodology direct graph. 

 

 

 

 

 

Method validation 

In this simulation, we use a simplified environment with assumed parameters where aphids and ladybird beetles interact over a

year, with monthly time steps. The goal is to train the predator (representing the ladybird beetles) to learn optimal actions that lead

to effective aphid population control. In the Biological RL simulation for a natural enemy-pest behavior, we analyzed the dynamics

of populations for both the predator and the pest, as well as their sensitivity to changes in predation rate. These results provide a

detailed understanding of the population dynamics and sensitivity of parasitoids and pests under varying environmental conditions. 

The graphical results are presented in Fig. 2 with details in Table 2 . 

Limitations 

The outcome of this research has significant implications for pest management strategies and ecological studies. By gaining insights

into the decision-making processes of predators, researchers and practitioners can develop targeted interventions to control pest 
Fig. 2. Biological reinforcement learning simulation for natural enemy -host behavior: the dynamics of populations and phase plot for both the 

parasitoid and the pest (a) and (b) respectively, as well as their sensitivity to changes in parasitism rate (c), and (d). 
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Table 2 

Results of the simulation. 

Natural enemy and pest 

population dynamics 

Phase plot: natural 

enemy vs. pest 

Sensitivity analysis: pest 

population vs. predation rate 

Sensitivity analysis: natural enemy 

population vs. parasitism Rate 

Fig. 2a illustrates the coexistence 

of the parasitoid and pest 

populations over a period of 300 

steps. The blue curve corresponds 

to the parasitoid population 

while the red curve corresponds 

to the pest population. These 

curves show an equilibrium 

observed trend in the populations 

of natural enemy and pest over 

time. 

Fig. 2b is a phase plot 

that shows the 

relationship between the 

natural enemy 

population and the pest 

population. It 

demonstrates a 

coexistence relationship 

between parasitoid and 

pest populations. 

Fig. 2c is a 3D surface plot that 

presents a sensitivity analysis for 

the pest population, concerning 

the natural enemy rate and time. 

The x-axis represents the varying 

predation rate, the y-axis 

represents the time in steps, and 

the z-axis represents the pest 

population. The surface plot 

shows that the proposed 

approach can be used to describe 

the observed sensitivity of the 

pest population to variations in 

the predation rate. 

Fig. 2d , similar to Fig. 2c , represents 

a 3D surface plot for the sensitivity 

analysis, but for the natural enemy 

population. The plot demonstrates 

that can be used to describe the 

observed sensitivity of the natural 

enemy population to variations in the 

parasitism rate. 

 

 

 

 

 

 

 

 

 

populations while minimizing the use of harmful pesticides. Additionally, this study contributes to the growing body of knowledge

on the applicability of deep learning algorithms beyond traditional data-centric tasks. However, further research is needed to refine 

the simulation model, incorporate real-world data, and validate the findings in field experiments. By pursuing these directions, we can

advance our understanding of population dynamics, ecological interactions, and decision-making processes in parasitoids, ultimately 

leading to more effective and sustainable approaches for pest management and ecosystem conservation. 
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